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Abstract
A comprehensive understanding of collocated social interactions can help campuses
and organizations better support their community. Universities could determine new
ways to conduct classes and design programs by studying how students have
collocated in the past. However, this needs data that describe large groups over a
long period. Harnessing user devices to infer collocation, while tempting, is
challenged by privacy concerns, power consumption, and maintenance issues.
Alternatively, embedding new sensors across the entire campus is expensive. Instead,
we investigate an easily accessible data source that can retroactively depict multiple
users on campus over a semester, a managed WiFi network. Despite the coarse
approximations of collocation provided by WiFi network logs, we demonstrate that
leveraging such data can express meaningful outcomes of collocated social
interaction. Since a known outcome of collocating with peers is improved
performance, we inspected if automatically–inferred collocation behaviors can
indicate the individual performance of project group members on a campus. We
studied 163 students (in 54 project groups) over 14 weeks. After describing how we
determine collocation with the WiFi logs, we present a study to analyze how
collocation within groups relates to a student’s final score. We found that modeling
collocation behaviors showed a significant correlation (Pearson’s r = 0.24) with
performance (better than models of peer feedback or individual behaviors). These
findings emphasize that it is feasible and valuable to characterize collocated social
interactions with archived WiFi network logs. We conclude the paper with a
discussion of applications for repurposing WiFi logs to describe collocation, along
with privacy considerations, and directions for future work.

Keywords: Wireless sensor networks; Infrastructure sensing; Collocation; Social
interactions; Student behavior; Academic performance

1 Introduction
Humans are social by nature; their functioning is related to behaviors that are interlinked
with those of others [1]. One form of social interaction is the collocation of individuals
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in the same space. Collocation provides the opportunity for synchronous interactions
through multiple channels — voice, expressions, gestures and body posture — and for
impromptu interactions that strengthen social ties. On campuses, understanding how
students collocate can provide valuable insights to support academic success. Using tra-
ditional methods like surveys can be limited when trying to continuously evaluate how
several individuals on a campus experience collocation. For these purposes, survey based
approaches can often be obtrusive and do not scale to represent dynamic human func-
tioning. Therefore, we need to identify a flexible approach to expressing collocation from
an egocentric perspective.

The passive sensing community has introduced many automated and unobtrusive sens-
ing methods to capture collocated social interactions [2–6]. However, approaches that
require specialized client devices have limits [3, 4, 7]. Evolving mobile manufacturer spec-
ifications can critically disrupt long term data collection during mid-study with an up-
date. In fact, the privacy concerns of installing such sensing firmware has also limited the
meaningful data-streams available to researchers [8]. Insights on social behaviors require
collective adoption from multiple socially related participants who must also consistently
maintain the devices (e.g., keeping devices charged), thereby posing challenges to large-
scale sensing and practical deployment of sensors. Together these factors challenge the
scalability of such methods because they provide a sparse representation of the commu-
nity.

An approach that mitigates some of the client-side challenges, is to use infrastructure-
based techniques, such as installing Bluetooth beacons into the built environment [4,
9]. Nevertheless, these techniques can also rely on data being collected and processed
through a client [6, 10]. Moreover, augmenting the entire infrastructure with new sen-
sors can be expensive and, yet, cannot be used to inspect a history of campus-scale social
behaviors (e.g., exam week, violent incidents, shutdowns, and global infectious disease-
related pandemics). In contrast, many campuses maintain a managed WiFi access-point
(AP) network that provides device association logs which can be repurposed to infer lo-
cations of users [11] and subsequently model individual behaviors [12, 13]. We posit that
WiFi logs can be mined to express social interactions by characterizing how individuals
collocate. We know that collocation presents avenues for social interactions that explain
performance of individuals working in groups [14–16]. This aspect of human interactivity,
is known as spatiality [17]. When individuals with a common intent gather in a space they
interact via both verbal and non-verbal cues, that in turn influence individual function-
ing. We assess if WiFi logs meaningfully approximate a student’s collocated social inter-
action patterns by testing if they represent a known outcome of such interactions — the
student’s performance [18–21] Specifically, in this study, we investigate if collocation can
explain the performance of students in project groups. We note that archival logs from
managed WiFi network are a coarse descriptor of location (compared to other sensors
they have lower spatio-temporal resolution). Yet, by examining if these logs can explain
student performance, we seek to demonstrate the potential of a coarse sensor accessible
to most modern campuses. Specifically, we pursue the following research goal: To evalu-
ate the ability of archival WiFi logs to retroactively express outcomes of collocated social
interactions.

The paper first provides a system description that elaborates how we determine col-
location from association logs. Next, we explore if unobtrusively inferred collocation of
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students in project groups can explain their individual performance. These students were
distributed across 54 course project groups in a single course, and interacted over a 14-
week period. Using statistical modeling approaches we examine if a student’s collocation
patterns are associated with an established outcome of social interactions—performance
[14, 19, 22, 23]. Together, we present a case study that illustrates how WiFi association
logs can model collocation patterns that capture signals of social interaction. Our find-
ings encourage researchers to use their managed WiFi network as an instrument to ex-
plore collocated social interactions on campus. Our work can be extended to model many
new aspects of collocation, such as where they occur (in classrooms, dorms, or cafes), who
they occur with (familiar or unfamiliar peers), and for what purpose (other classes, extra-
curricular activities, or serendipitous occurrences). Leveraging the archival logs enables us
to test these hypotheses related to these behaviors at scale and over a long period of time.
Lastly, the paper highlights applications of this data along with privacy and data-ethics
concerns related to practical deployments.

2 Background and related work
When individuals with a common intent are in the same space at the same time, and are
aware of it, they engage in some form of collocated synchronous interactions. Note, this pa-
per adopts the definition for social interactions as, “. . . acts, actions, or practices of two or
more people mutually oriented towards each other’s selves. . . ” [24]. Although these interac-
tions can take place digitally, this paper focuses on automatically identifying synchronous
social interactions in the physical world, i.e., the people interacting are collocated.

2.1 Collocation and performance
Literature on collocation describes the importance of intense interlinked activities in a
dedicated physical space [17, 25] (e.g., “warrooms”) as well as fluid activities in the pres-
ence of coworkers in a general physical space [14, 19] (e.g., open offices or adjacent cu-
bicles). Both forms foster social interactions that are associated with individual and team
performance [15, 16, 18, 25, 26].

Olson and Olson characterize multiple aspects of collocation at work and its implica-
tions [17]. Foremost, it is a synchronous social interaction that is not limited to verbal dis-
cussions and active sharing of resources. Even the presence of others working towards a
common goal allows for subtle exchange of information through gestures and expressions
[17] (e.g, is a teammate struggling, are they too absorbed or are they available for feed-
back). Additionally, collocation provides shared context that comprises common points of
reference (e.g., whiteboards, post-it notes, or verbal concepts) [17]. Moreover, it supports
informal interactions that can help “opportunistic information exchange” and improve so-
cial ties with teammates [17]. Prior work also posits several links between collocation and
performance. Being physically situated in the same space keeps team members up-to-date,
and therefore agile and innovative [14]. Staying collocated helps maintain common mental
models of tasks, resources, skills, and problems [22]. In contrast, distance is known to elicit
more conflict [26]. This is likely due to the non-uniform distribution of information that
can lead to excluded members partaking in incomplete, inaccurate, or redundant tasks
[27]. Distributed work is also related to heightened tensions between teammates, which
affect wellbeing and impede individual performance [16]. On the other hand, collocation
allows team learning, where members feel “safe” to seek feedback, experiment, and re-
solve errors [15]. Feedback from teammates is known to augment individual performance



Das Swain et al. EPJ Data Science           (2023) 12:22 Page 4 of 25

[18]. Moreover, collocation can improve social ties between members [28] and therefore
improve performance [23]. Related to performance, subtle cues of collocated social inter-
actions are related to individuals focusing on single tasks for longer, continuous periods
[19].

Traditional methods of evaluating collocated social interactions rely on survey instru-
ments, but these are limited by recall and desirability biases [29, 30]. Moreover, self-
reports are static assessments, while social interactions are fluid and vary over time [31].
One approach to studying human phenomena by avoiding such biases is with unobtru-
sive sensing. These automatic methods have the promise of dynamically sensing human
behavior without interfering with an individual’s natural functioning and are, therefore,
more practical for gathering reliable insights.

2.2 WiFi-based sensing of collocation
Researchers have tried to determine collocation through sensors in the environment. For
instance, WiFi-based fingerprinting can help identify ties between groups [10]. In such
approaches, a user device can determine its own location by measuring the difference be-
tween signals from different Access Points (APs) [32]. Researchers would then need to in-
stall loggers on each individual’s device to determine collocation. Deployment costs aside,
to get comprehensive insights the client application will need to be trained over an entire
network of APs and constantly update for persistence over long periods of time. Alterna-
tively, enterprises have used WiFi router networks to develop Real-Time Location Systems
(RTLS) [33, 34]. To infer location, these technologies store the Received Signal Strength
Indicator (RSSI) values for any client-device within a neighborhood of APs. This could
be extended to infer collocation but these solutions have a substantial cost for installation
(requiring a full fingerprinting survey of the network). This, coupled with the privacy con-
cerns of excessive precision, often outweighs the benefits of any realistic campus use-case.
Yet, a common form of WiFi infrastructure deployment in university campuses [12, 13]
only stores association logs describing which AP a client-device is connected to. Although
it is relatively coarse [35], this parsimonious representation of location has been used to
understand individual behavior — assist depression screening [12] and assign semantic
tags to spaces [13]. These works motivate us to an approach that adheres to data min-
imization. While prior examples trace individual dwelling patterns across campus, few
studies take an unsupervised approach to retroactively assess explicit social behaviors.
We expand on such WiFi–based efforts to identify collocation between multiple students
with a shared intent, such as a group project. Even though collocation does not neces-
sitate verbal communication in the strict sense, it does serve a social function [17]. As
discussed in Sect. 2.1, these social factors can affect the performance of collocated indi-
viduals. Therefore, to determine if our WiFi–based characterization of collocation mean-
ingfully approximates social interactions, we inspect how it indicates performance. Prior
work has explored various passively sensed phenomena as a proxy for social interactions
between individuals. Mining WiFi network data can cluster people into social and behav-
ioral groups [36, 37]. Even other infrastructure-based coarse location technologies, such
as Bluetooth, have been used to capture subtle social interactions like synchrony within-
group routines [9]. While these studies implicitly associate individuals together (e.g., dis-
tinguish students by dining hall), they do not explore collocation in physical spaces suf-
ficiently. A recent work demonstrated how collocation can be used to predict stress by
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harnessing the campus network infrastructure [38]. However, these systems either rely on
additional augmentation of the infrastructure or knowledge of the network signal strength
received by clients. In contrast, we examine human behaviors as evident in rudimentary
raw network association logs that could be applied to almost any managed wireless net-
work today.

Notably, De Montjoye et al., used WiFi–based collocation to approximate instrumen-
tal social ties [39]. However, their study does not describe how the logs were modelled.
We also do not know if the WiFi–device infrastructure was engineered before the project
semester, especially given project teams interactions were supervised by the researchers
through the semester. By contrast, in our research both the participants and the infrastruc-
ture were completely unsupervised during the project semester. Therefore, through our
system description we highlight many nuances of modelling such coarse data retroactively
by triangulating multiple sources of archival data (e.g., raw WiFi logs, attendance records,
and course grades. Additionally De Montjoye et al., assume collocation reflect instrumen-
tal ties but they do not validate these against any meaningful ground truth. Their approach
leaves room for improvement. For instance, building–level collocation by De Montjoye et
al., provides greater reliability but is likely lower in resolution. Consider students within
the same majors, who visit the same building at the same time but for different classes.
These students might appear to have strong ties because they appear collocated. How-
ever, they might also be students who are regular in their respective coursework and will
do well in a team together regardless of how much they interact. Our research specifically
tries to disentangle these individual behaviors from collocation by representing the room–
level collocations. We also factor in when and where these collocations occur. Together,
these aspects give stronger evidence that any existing WiFi infrastructure can be tapped
to model its logs for collocated social interactions.

3 System description: identifying collocation with network logs
This study was done after the semester was over. Students’ behaviors were not influenced
by this study and their privacy was not compromised while they were enrolled in the
course. Therefore, we use class attendance records to validate the system, as these can
be obtained retroactively. This section describes a pipeline to determine collocation by
leveraging WiFi network association logs and an evaluation of its reliability by comparing
it to class attendance records (Fig. 1).

3.1 Network data
3.1.1 Sample association logs
We obtained consent from 46 students at a large public university in the United States, and
then analyzed their anonymized WiFi association logs. These students belonged to two
sections of a project-intensive course. Both sections were taught by the same instructor
and had attendance data for each lecture. We refer to these sections as “1A” (22 students)
and “1B” (24 students) throughout the paper. The instructor for the course provided each
consenting student’s attendance and group label, along with the course lecture schedule.
We partner with the institute’s IT management facility to obtain network log data for any
device owned by a consenting student without requiring direct access to device MAC
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Figure 1 Processing Pipeline.We derived collocation periods from raw WiFi network logs and validated it with
attendance records

Table 1 Sample raw log

Field Sample

Timestamp Apr 1 00:10:51
Update Type snmpupdate
Anon. User 2099
User Device c4:7d:eb:0f:df:d5
AP ID 40:cd:14:b2:02:c0
AP Label 122S-209

addresses. This data was accessed at the end of the semester1 and contains approximately
14 weeks of data, which spans 34 lectures for each section.2

3.1.2 Managed WiFi network
Every AP installed on campus is mapped to a building ID and a room ID. The room ID
indicates the room closest to the AP or the room that contains the AP (Table 1). Every en-
try in the log documents an SNMP (Simple Network Management Protocol) update in the
network. This update is triggered when APs see a change, such as when a device connects.
An update can also be triggered by an SNMP poll request to the AP. In response, the AP
responds with devices connected to it, thus creating new logs. Therefore, the log itself in-
dicates that a device is in the vicinity of an AP, but without information of the client RSSI,
this inference has a low spatial resolution. Moreover, the logs for a connected device are
erratic because of variable connectivity settings in the device agent (e.g., the WiFi turns
off when inactive). The irregularity in log updates leads to a low temporal resolution. The
low resolution is what introduces “coarseness” to this data. Outside of the specific associ-
ation timestamps—when an AP responds to an SNMP poll or a client switches APs—the
connected device is invisible in the logs.

1This analysis was approved by the Institutional Review Board (IRB) of the relevant institution, and the data was de-
identified and secured in approved servers.
2No lectures took place 21st January 2019 (MLK Day), 1st week of January (winter break), and 3rd week of March (spring
break).
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Figure 2 SNMP Timestamps for section 1A on 5th April, 2019.Markers represent log updates. The red vertical
lines demarcate the lecture period

3.2 Phase I: identifying dwelling segments from raw logs
(i) Determine if an Individual is Mobile — To assess how students move, we examine the
logs accumulated in the 30 minutes before and after the lectures of sections 1A and 1B
(Fig. 2). One of the classrooms had only 1 AP while the other one had 3 APs for coverage.
Only less than 1% of the log entries showed concurrent updates at different APs from two
or more devices owned by the same student. Thus we treated all log entries from a stu-
dent’s device as a proxy for the student. Since SNMP updates occur when a device roams,
we measured the interval between two successive log entries from a user’s device that asso-
ciate with different APs. For example, from entering the building to entering class, devices
will snap to different APs. This leads to 2 successive log entries at different locations. How-
ever, 2 such entries do not necessitate the time between them was spent moving. Consider
Participant 2173 in 2, who associates with an AP outside the building, then logs an entry
at an AP in the same building before logging an entry in the classroom, almost 8 minutes
later. This raises the possibility that the student was dwelling in an adjacent area and then
moved to class when it started. Figure 2 also illustrates that for most students the log up-
dates before and after class times also exhibit higher update frequency in shorter intervals.
We considered the 90th quantile of the intervals between 2 different logs as a reasonable
threshold to reflect most of the instances where student is moving between APs. This was
found to be 233 seconds. The high quantile heuristic lets us ignore anomalous or excep-
tional cases where a device might have lost connectivity — and failed to register any logs
— while actually moving between APs. Specifically, we considered devices moving when
different APs successively log the same student’s device below this threshold.

(ii) Determine if an Individual is Dwelling in Place — The user was considered to be
dwelling for any time segment when they are not mobile. Based on the criteria for moving,
a user was considered stationary in 2 cases, (i) when successive log entries were at the same
location, (ii) the time before the next entry exceeds the threshold. Contiguous dwelling
segments where the AP does not change were combined to represent longer dwelling seg-
ments (Fig. 3).

(iii) Filtering Out Disconnection Periods — When students exit campus they disconnect
from the network Individuals can be lost to the network and then be “visible” when they
enter a building after a period of time. Due to our threshold, the time period between
these two mobility phases could be erroneously labeled as dwelling, whereas the user was
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Figure 3 Dwelling Segments. The time periods between moving segments are interpolated as dwelling
segments

actually disconnected from the network. This large interval needed to be distinguished
from actual dwelling periods. For this, we inspect the device dwelling times of students
who were actually present in class (based on their attendance). Modern devices conserve
their processes in various ways, such as turning off certain functions during inactivity. If a
student does not use their connected device, it can appear disconnected simply because it
has no active processes. Having said that, devices will “wake” from time to time to check
connectivity, or when it switches to a different AP, and therefore register a log. These
behaviors are unique to different connected devices and their use. Accordingly, we take a
datadriven approach to identify the longest period a device was connected to an AP while
inactive. We found the longest interval between two successive log entries was 76 minutes.
We consider this as a heuristic threshold to filter disconnections. With this, we marked any
periods of dwelling as disconnected (or inactive) where the log entries were timestamped
at intervals exceeding the threshold. It is possible for a user be away from campus and back
within 76 minutes. These will be the false positives of our filter. We anticipate this noise
to be minimal. These occurrences will be constrained to the APs at the edge of campus,
such as outdoor APs. For face validity we examined how connection and disconnection
varies by the hour of the day and days of week. The disconnection periods we identified
were predominantly on weekends and before or after class times (Fig. 4). This observation
gives us confidence that our filter provides a reasonable estimate of location.

3.3 Phase II: identifying collocation
After Phase I identified individual dwelling periods, in Phase II we identified coinciding
dwelling periods to describe collocation. Simply considering the overlapping dwelling seg-
ments could have breaks when even one of the collocated members inadvertently switches
between AP and then returns (e.g., participant 2034 in Fig. 3). This could occur either
when they took a break or if they are in place but their device intermittently found a bet-
ter connection to a different AP. Since the aim of obtaining collocation segments, is to use
it as a proxy for collocated social interactions (Sect. 2.1), we consider a liberal approach to
characterize collocation. Moreover, just because an individual is not in sight, it does not
signify the conclusion of social interactions [24]. For example, when an individual takes a
brief break from a meeting, say, to grab coffee or use the restroom. Therefore, instead of
dissecting the collocation around such short-lived absences, these gaps in the segments
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Figure 4 Disconnection by Day of Week. The median portion of time a user is disconnected from campus for a
given hour for a day of the week

were bridged. In particular, these gaps were characterized by (i) common members of a
group are collocated before and after a gap; and (ii) during the gap some subset of members
are still dwelling or collocated. After identifying such overlapping segments, we first found
the median duration of these gaps. In this case we consider the median as the absence of a
member may or may not indicate the termination of social interaction. The median in our
data for such occurrences was 11 m 7 s. Any gaps less than this threshold were resolved
by considering all members to be collocated throughout, including the break period.

3.4 System reliability
To quantify the reliability of this coarse collocation inference, we evaluated the attendance
of 46 students in 2 sections for the 34 lectures that occurred in the sample data period.
Each section had 3 classes a week and but met in different buildings. For both sections,
the instructor provided us with lecture-by-lecture records of each consenting student’s
attendance. Attending class is one form of collocation on campus that involves students
gathered around a WiFi AP. Even though every AP’s coverage on campus might vary, when
students collocate to work outside lecture times they typically gather in breakout rooms,
empty classrooms, library spaces, or other similar indoor spaces. Thus, we assume client
device behaviors to be consistent between classrooms and other spaces where students
would likely collocate. Hence, we consider presence in class a reasonable ground truth to
evaluate the reliability of our proposed automated method for the purposes of our study.3

Missing data On certain lecture days, we did not find any entry for some students. The
red stacks in Fig. 5 show the number of students per lecture with no log entries for section
1B. On comparing this to the attendance records, we learned that 93% of the times a stu-
dent does not appear in the logs, they were actually recorded as present by the instructor.
One possibility is that the student either had all their devices turned off or connected to a
different network (e.g., cellular data, or the campus guest/visitor network). Every student
in our sample had no WiFi log entries on at least one lecture they attended (the median
was five lectures). Therefore, despite its pervasiveness, leveraging the managed network

3Note that our work centers on collocation indoors and therefore, the heuristics used in the pipeline are applicable only to
similar scenarios.



Das Swain et al. EPJ Data Science           (2023) 12:22 Page 10 of 25

Figure 5 Section 1B Collocation over the Semester. Each stack depicts where students were found to be
connected during that day’s lecture: the lecture room’s AP, another AP in the same building, to the campus
network, or not connected at all

Figure 6 Actual vs inferred attendance Precision: 0.89,
Recall: 0.75

can still miss out on students who were actually present. For such occurrences, the au-
tomated method cannot ascertain presence or absence and therefore, we exclude these
student records (for that lecture) from further analysis.

Performance measures We considered a student to be in class if any time during class
they were “seen” as connected to the AP associated with the room of the lecture. For ev-
ery time our system identified a student to be present, the likelihood they were actually
in class was 0.89. This describes the precision of our system. On the other hand, our sys-
tem rarely indicated a student is at a location when they were not physically present. The
false discovery rate was only 0.11 We speculate, the false positives could be due to students
failing to record their name on the attendance sign-up sheet (e.g., if they showed up late
to class). Alternatively, for every instance when the student was present in class, the like-
lihood our system inferred their presence was 0.75. This is the recall of our system. For
reference the false negative rate was 0.25. A false negative could occur when a student’s
device connects to a different AP on the network. Figure 3 denotes these as the orange
segments. A device could also connect to an AP that is physically further away because
the signal from their closest WiFi was attenuated [40].

To summarize, the F1-score of such a system can be interpreted as 0.81 (Fig. 6). It has
high precision, but with a sensitivity of (0.75), it does run the risk of erroneously marking
students as absent. In the future, this can be addressed by deploying a broader set of APs
for a given location.
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4 Case study: collocation and performance in groups
So far, we have shown how a managed WiFi network can be repurposed to describe col-
location among individuals connected to the network. Although this system illustrates a
“coarse” sensor, it also presents an easily accessible data source that can describe many so-
cial interactions over a long period of time. Therefore, it is important to examine if these
retroactively inferred collocation patterns are indicative of meaningful social interactions
among students on campus. We know that collocated social interactions are associated
with performance [17–19, 25, 26]. If the collocation described by our system is meaning-
ful, it should be able to reflect these latent aspects of social interaction. We evaluated the
viability of archival WiFi logs for to describe these latent social interactions through this
case study.

4.1 Study
The participants were enrolled in an undergraduate design course for computer science
(CS) majors. The course is offered every semester and is a two-semester sequence. Stu-
dents in this course were expected to work with a team of four to six students over two
semesters (Part 1 and Part 2) on a single design project. In Spring 2019, this course had
four sections for Part 1 and five sections for Part 2. The system reliability described in
Sect. 3.4 was based on 2 sections from Part 1 where the instructors recorded attendance
for each lecture. This case study includes those students along with students from other
sections and Part 2 for the analysis. Each section had an enrollment of about 40 students.
In terms of course structure, Part 1 involved both lectures as well as project milestones. In
contrast, Part 2 had fewer lectures and expected students to allocate scheduled class-times
for project-related efforts. Students in both parts were expected to collaborate on project
work outside scheduled lectures. It is not generally known how often student teams met
outside of class, nor is it known how much those collocations impacted performance. In-
structors of the course used various peer–evaluation surveys to characterize the psycho–
social experiences of students. Although it is unclear how explanatory these surveys are,
we know the their responses were subjectively factored into the final score assigned to
each student. Given the biases that surveys have [29, 30], we expect objective measures
of social interaction to be more indicative of performance. Therefore, in this analysis we
considered a model of these peer–evaluations as a baseline in comparison to a model of
automatically inferred collocation patterns.

4.1.1 Participants
Recruitment The recruitment took place in Spring 2019 in collaboration with the course
instructors. The research team advertised the study during the lectures and online out-
reach through the instructors. Upon enrollment, participants provided consent for the
researchers to access their anonymized WiFi AP log data as well as their course data af-
ter completion of the semester. During enrollment, participants also completed an entry
survey where they reported their group ID along with describing when, where, and how
often they interacted with their group members face-to-face for class purposes. Partic-
ipants were remunerated with a $5 gift-card for enrolling. In total, we received consent
from 186 students, which was about 51% of all students enrolled (Table 2). Of these, 170
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Table 2 Participants in the study with complete data

Section Part 1 Part 2

A 22 21
B 24 27
C 18 31
D 20 12
E – 11
Total 84 102

Figure 7 Distribution of group sizes. Among the students recruited, at least one other member of their group
must consent

students were in the age range of 18-24 years, and 16 were of age 25 and above. Among
these students, 59 reported female (32%).4

Privacy Participant privacy was a key concern for us. The two core streams of data,
course outcomes and WiFi AP logs, are both de-identified and stored in secured databases
and servers which were physically located in the researchers’ institute and had limited ac-
cess privileges. The study and safeguards were approved by the Institutional Review Board
of the authors’ institution.

4.1.2 Course data
The course instructors provided course-related data for 186 consenting students along
with course lecture times (Table 2). Among these students, 23 students did not have any
other member from their group in our study and thus were dropped from this analysis.
These remaining 163 students were in 54 separate groups (Fig. 7).

Final score This is a numerical score between 0 and 100 that informs the eventual let-
ter grade based on the instructor’s grading scheme. This final score is dominated by
the project outcomes but students are assessed individually. These variations are intro-
duced by participation as well as the instructor’s subjective assessment of peer evaluation.
Among the recruited group members, the range of scores between members could be as
large as 6.5 points. Differences of this magnitude can be the difference between the grades
of students. This final score represents the ground truth for academic performance.

4As per the official headcount 25% of the students within the CS major have been recorded as female
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Table 3 Peer-Evaluation Scales (1-5); Psychological Safety (1-7)

Construct Mean Med Std

Member Effectiveness 4.36 4.45 0.51
Team Satisfaction 4.44 5.00 0.76
Conflict (Task) 1.64 1.67 0.62
Conflict (Relation) 1.26 1.00 0.51
Conflict (Process) 1.41 1.00 0.59
Psychological Safety 6.12 6.29 0.80

Figure 8 Logs over time. The number of connected students reduces during the spring break (week of 15th
March) and with weekends (vertical red lines)

Peer evaluation Students completed an extensive peer-evaluation battery at the end of
the semester (Table 3). This battery comprises of validated survey instruments to quantify
aspects of social interactions that are expected to be related to individual performance:

• Team Conflict [41] — Conflict represents the perception of incompatible goals or
beliefs between individuals that cannot be trivially reconciled. Less conflict leads to
more motivation and satisfaction and therefore associated with performance
enhancement [42, 43].

• Team Satisfaction [44] — Satisfaction reflects the contentment in terms of
expectations. Dissatisfaction with one’s team can lead to lower levels of task
performance [43, 45].

• Psychological Safety [46] — This captures a “shared belief held by members of a team
that the team is safe for interpersonal risk taking” [46]. It is associated with individual
learning progress as they are more amicable to experiments and feedback [46].

• Team Member Effectiveness [47] — This measure encompasses five dimensions5

related to “team member effectiveness”
We used a participant’s responses to these surveys to build a gold-standard baseline

model to infer their final score.

4.1.3 Network data
The WiFi access point log data for consenting students was obtained from the institute’s
IT management facility. This data is richer compared to the sample data for the process-
ing pipeline (Sect. 3.1.2) — it includes more individuals and a larger set of APs. The data
spans a time frame of 95 days between January 1 2019 and April 5 2019 (Fig. 8). On aver-
age, the time between the first log entry for any one of a participant’s devices and the last
is approximately 90 days. The logs in this study included 204 unique buildings with 4865

5While the other scales were self-evaluations, this score is the average of how their peers evaluated a team member
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unique APs. We only found multiple APs to be in the same room for 803 rooms. Addi-
tionally, the 204 buildings were manually categorized to best express the purpose of that
space [5, 13] — for example, “academic”, “dining”, “green spaces”, “recreation”, and “residen-
tial”. Two researchers referred to campus resources to independently assigned categories
to these buildings. Only two of the building labels disagreed, which was resolved by a third
researcher. The raw logs of the consenting students was processed as described in Sect. 3.3
to obtain periods when students were dwelling and collocated. Over the semester, the me-
dian collocation duration was about 70 hrs.

4.2 Feature engineering
The low spatial resolution of the collocation makes it insufficient to assert from isolated
instances if collocation of group members were connected to their performance. However,
processing multiple collocation periods over the semester can approximate collocated in-
teractions. For instance, members of the same group might collocate regularly at a specific
type of building. Therefore, we engineered features that captured such patterns.

4.2.1 Feature descriptions
We extracted relevant information at a week-level based on various semantically labelled
behaviors (Table 4). For feature crafting we used the schedule of lectures provided by the
instructors to distinguish behaviors during class from those outside class. Moreover, ev-
ery AP in our dataset was manually annotated to describe the intended purpose of the
building. Therefore, we could outline if a student was dwelling or collocated in either an
academic space, a residential one, or a recreational space. We first extracted a set of “In-
dividual features” that characterized behaviors which are not explicitly social, but could
impact performance (e.g, attendance.). Then we separately characterized “Group features”
or “Collocation features” captured the behaviors of individuals related to their group, such
as time spent collocated with other group members. This dissociation of features helps
provide discriminant validity. Essentially, it helps us assert that coarse collocation-based
features are not confounded by an individual’s general behavior, such as the time spent
in academic spaces. Fundamentally, all features measure the duration of various dwelling
and collocation activities. Since this study was primarily inteneded to showcase feasibility
we only focus on these basic measures. However, the dataset can be used to craft more
nuanced features (such as punctuality or timeseries characteristics). To craft the collo-
cation features, we used computed both absolute duration and a relative percentage (of
collocation time spent by all members of the group).

Table 4 Raw features derived from the collocation data at a weekly level

Type Description Spatial Variants

Any Academic Residential Recreational

Individual Features
Attendance Present at lecture room during scheduled time © © ©
Dwell Time spent at a place while stationary

Collocation Features—Measured as absolute duration and relative to the group
Scheduled Time spent with group members during

reported weekly meeting times
Class Time spent with group members during class

hours
© © ©

Other Time spent with group members at other times



Das Swain et al. EPJ Data Science           (2023) 12:22 Page 15 of 25

For collocation, we delineated three types of behaviors based on when the student was
collocated with others from their group:

1. Scheduled: Groups reported their regular meetings in a free-form response field
during enrollment (Sect. 4.1.1). Responses typically indicated a primary building
(e.g., learning commons) along with a potential backup (e.g., library). However,
teams also expressed meetings could take place at undetermined locations on
campus. Moreover, groups often provided multiple tentative meeting times and
places for a week. To accommodate all possibilities, this feature captured the
collocations between group members that occurred during any of the reported
periods.

2. Class: This captured collocations with group members during class times. This is
different from the attendance feature because it considered collocation outside the
assigned lecture room. For instance, students in Part 2 were expected to meet
during class time, and not necessarily in the scheduled room for the class. Based on
student reports, Part 2 teams did not necessarily use all class times in a week for
meetings.

1. [3] Other: This is a catch-all bucket to capture all other ad-hoc collocations. Only 4
groups in our study reported interacting with group members for non-academic
reasons (e.g., “lived together”). Students could be found to be collocated outside of
class and scheduled meetings due to various factors. On one hand, this could
indicate extra effort as meetings could occur outside schedule. On the other hand,
students could collocate to complete course work together, or be serendipitously in
the same space. In that case collocation can serve to improve social bonds and in
turn improve performance [17, 28]. Thus we include this bucket of features to
represent social interactions beyond structured and anticipated meetings.

4.2.2 Feature processing
The features described above were aggregated by week over the 14 weeks in the semester.
Table 4 shows green ticks to indicate the features we compute. Considering a unique fea-
ture for each week, we computed 5 × 14 for individual features and (9 × 2) × 14 for group
features. However, this creates a large feature space (196 dimensions) given our sample of
163 students. To reduce the feature space we calculate summary features to describe the
entire semester of the individual. Specifically for each feature extracted at a week level,
we computed the median, the mean and the standard deviation for the study period. In
addition to these, we also computed the approximate entropy of the feature per individual
[48]. This aggregation reduced the overall feature count to 20 and 36 for individual and
group features, respectively.

4.3 Training and estimation
We built multiple regression models to investigate how the collocation-based features es-
timate final scores in comparison to survey-based peer evaluation scores.

4.3.1 Model descriptions
MPeer denotes the model trained on peer-evaluation scores (Sect. 4.1.2) based on the self-
reported survey responses provided by the instructors. MIndi refers to the model trained
on individual features and MColloc describes the model trained only features that represent
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collocation among group members — potentially describing collocated social interactions.
We assessed the discriminant validity in predicting final course scores with each subset of
features without confounding effects from other features. Furthermore, we develop com-
bination models to comprehensively understand how a combination of automatically gen-
erated features estimate academic performance (MIndi+Colloc).

4.3.2 Estimators and validation
We evaluated all models through a 5-fold cross-validation process. Since the scores of
members in the same groups are likely to be closer to each other, we ensured that members
of the same project group remain in the same fold. This ascertained that no data leaked
inadvertently between training and testing. Specifically, we did not train on one student
and test on their group member who was likely to have a similar score. In this way, our
models were independent of which groups we trained on.. To estimate the target variable
(the final score), for each model described, we trained a Linear Regressor [49] to represent
linear relationships between features and a Decision Tree Regressor [50] for non-linear re-
lationships. Additionally, we also train a Gradient Boost Regressor [51], i.e., an ensemble
learner. To determine the relationship between model features and final scores, we mea-
sured the correlation between the predicted value and the actual values. The correlation
results we report are pooled over all the folds. Pooling ensures that our results are robust
to the heterogeneity between splits in the cross–validation process. Therefore, the pooled
correlation between values can provide a more generic relationship over the entire sample
of observations [52]. For internal validation, we compared these models to a rudimentary
baseline M0, which always estimated the median of the target variable from the training
set.

4.3.3 Feature transformations and selection
We performed the following transformations (fitted only on the training folds):

1. Scaling Final Scores by Instructor — Since the final score varies based on the
instructor, we standardized the final scores based on the distribution of scores for
each instructor in the training data.

2. Impute Missing Data — Some students had not have completed all survey
instruments, or a few project teams did not report their scheduled meeting times (7
students). We imputed these missing values with the mean of the feature.

3. Standardize the Features — Converted to zero mean and unit variance [53].
4. Mutual Information Regression — We used the mutual information between the

training features and the target variable for univariate feature selection [54]. The
number of features selected were varied from 1 to k, where k was the total number
of features in the model (Fig. 9). We selected the k that minimized the RMSE (Root
Mean Square Error) [55].

4.4 Results: model comparison
Table 5 summarizes the results with the best estimator for each model. For any set of
features, only the estimator that minimized the RMSE was considered for comparison
between models.To compare models we used Pearson’s r to describe the correlation of
each model’s estimate with the final scores of the students. This coefficient characterizes
the complete association by considering all observations and does not assume normality
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Figure 9 Mutual Information Feature Selection. Number of features (X-axis) based on minimizing RMSE (Y-axis)

Table 5 Model Performance. (‘-’: p < 1, ‘.’: p < 0.1, ‘*’: p < 0.05, ‘**’: p < 0.01)

Model Training Data Estimator Pearson’s R

MPeer Peer Evaluation LR 0.08 –
MIndi Individual Behavior GB 0.14 .
MColloc Collocation Behavior GB 0.24 **
MIndi+Colloc Individual + Collocation GB 0.25 **

[56]. All models exhibited an improvement over M0 — the rudimentary median estimator.
None of the models based on peer evaluation features (MPeer) were found to be significant,
but among them Linear Regression showed the most error reduction. For MIndi the best
estimator used Gradient Boost. Its estimates were more significant but with a weak corre-
lation of 0.14. In comparison, for MColloc the best estimator, which used Gradient Boost,
exhibited a very significant correlation of 0.24. We also compared the dependent over-
lapping correlations [57] of MColloc against MPeer and MIndi (with a confidence-interval of
90%). In both cases, the correlation of MColloc with the final score was significantly different
than that of MPeer (p = 0.02) and MIndi (p = 0.08) (Fig. 10). Additionally, incorporating both
individual and within–group behaviors showed minor improvement. This improvement
was not significant in comparison to MColloc [57].

4.5 Interpretation of results
We know from literature that collocation can provides opportunity for a variety of social
interaction that are linked to an individual’s performance [14, 16, 18, 19, 46]. Our model
trained on students’ collocation behaviors (MColloc) could estimate academic performance
with a significant correlation of 0.24. In the context of social sciences this would be consid-
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Figure 10 Model Comparison. Comparing the model estimates (X-axis) of an individual’s final score (Y-axis);
instructors are labeled by different colours

ered a moderate effect [58, 59]. Moreover, other work specific to the domain of academic
performance report similar magnitude of correlation [60] and consequently validate the
importance of our results. This implies that a managed WiFi network can be retroactively
leveraged to describe meaningful collocated social interactions.

We compared our model of collocation behaviors with other models for discriminant va-
lidity. The results show that the model trained on students’ collocation behaviors (MColloc)
outperformed the correlation of estimates obtained by modeling peer-evaluation (MPeer)
and individual behaviors (MIndi). The features in MColloc aggregate collocation behaviors of
students known to be socially connected over multiple weeks. This emphasizes that collo-
cation captures aspects of performance that cannot be captured by self-reported surveys
or individual variances. We believe this difference in models is because MColloc reflects
social interactions. While peer evaluation scores are expected to yield better correlations
[15, 43, 45, 61], the social desirability bias in manually reporting team experiences can
wash out the intricacies of actual team behavior [29, 30]. MIndi was also found to be some-
what better than the peer-evaluation model. This itself implies that dynamic objective
measures of individual behaviors can explain performance in groups better than surveys.
In the larger context of academic progress, individual behaviors could have a much larger
role in explaining performance. A study of a variety of students across different majors
over two years shows that attendance measures can explain final grades with a correlation
of 0.24 [60]. By contrast, our study is focused on a specific group–based, project–intensive
course for CS majors. Attendance to lectures was only required for students in Part 1 of
the course (about 45% of our participants). Our participants were expected to meet in
person to work on their project towards their final score. For the most part, students were
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expected to self-determine their meetings and work towards the course outside traditional
meeting times. Given the collaborative nature of the course, it is not surprising that MIndi

falls short of MColloc. Note, our passive inference of collocation does not explicitly dis-
cern what transpired when a student and their group members were in the same space.
Although it is not necessary that the collocated students verbally interacted, in line with
the concept of spatiality, even the presence of peers in the vicinity can affect individual
performance through non–verbal cues [17].

The coarse nature of this sensor makes it challenging to unpack the exact nature of col-
located social interactions. However, given the ubiquity of such managed WiFi networks,
we can now conceive this sensor as a complement to other methods of understanding
social interactions. By retroactively describing collocation patterns, researchers have the
opportunity to devise new hypotheses given their specific situated communities.

5 Discussion
We presented empirical results that even coarsely inferred collocation of related individu-
als is linked to their academic outcomes. This validates that we can characterize aspects of
collocated social interactions by retroactively studying group behaviors in student cohorts
on campus. Accessing network logs is not uncommon at universities and has no additional
overheard. In fact, this alternative provides an additional benefit to universities without
excessive spending.

5.1 Applications of inferring collocations for academic experiences
Our system demonstrates the potential of a new analytical lens to understand social behav-
iors on campus. This enables instructors to provide data-driven insights to a new cohort
based on actual behaviors of successful teams. However, collocation is only beneficial for
certain kinds of projects [14, 17, 19], such as software development, or, as in our case,
design. To understand the transferability of our results to other forms of academic work,
researchers need to further inspect what occurs between the group members during collo-
cation. Identifying these activities can help define which characteristics of collocated syn-
chronous interactions [17] are actually associated with higher performance. For example,
project members might just be more dedicated to their tasks in the presence of others [19],
or collocation might improve their social bond and make them more comfortable about
feedback [16]. Interviews along with momentary assessments can guide researchers to
automatically infer the social importance of different collocations based on the location,
time, and history of collocated individuals. This knowledge could be used to augment the
static semantic labels of places and instead illustrate a more dynamic social blueprint of
campus. Moreover, since these logs can be retroactively obtained, it can provide data to
explore new questions that help determine student outcomes. For instance, how do mem-
bers of teams with prior collocations work in comparison to teams of strangers [62], or how
different are collocation patterns in a new cohort for a student from a marginalized com-
munity [63]. Practically, these results also have implications for remote learning as more
universities have embraced distributed classrooms. This helps universities consider the
trade-offs for using spaces for collocated group activities while also promoting the need for
remote collaboration technologies that can approximate collocation behavior — similar to
what has been advocated by research on dispersed information work [15, 17, 18, 26, 27].
Theoretically, our work begs to question the relationship between collocation of students
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and social relationships outside curricular activities. While collocation of team members
can build stronger social ties [28], it is yet to be determined if the same can be said for stu-
dents not associated through projects or academic outcomes. Subsequent research can
consider combining other kinds of archival data to gain a richer understanding of on cam-
pus social behaviors. Data logged in learning management systems can be incorporated
to examine more short term effects of collocation. Similarly, processing data from access
cards can help distinguish the purpose of certain campus collocation events (e.g., purchas-
ing lunch together). With appropriate procedures for consent, many such archival sources
of data on campus can be combined with collocation data to provide novel insights on so-
cial behaviors.

5.2 Privacy, policy and ethics
Any pervasive technology with the potential of large-scale passive sensing faces privacy
concerns [64]. The use of the WiFi association logs is confined to campus and does not
elicit anxieties related to a client-side applications leaking data from other sensors. How-
ever, automatic computation of where individuals are and whom they interact with can
be considered sensitive by students [65]. Therefore, when adopting such approaches to
infer interactions, stakeholders need to consider approaches like differential privacy to
obfuscate sensitive data [66].

Even when anonymous, predators can mine collocation patterns to identify individu-
als [67]. To protect against this, more data can be abstracted, i.e., the AP locations can
be anonymized as well (while retaining category, floor, and relative information). Yet, it
still needs to be established who has the privileges to query for information and what the
queries can be [68]. Moreover, campuses can adapt existing access policies for student
records to protect student collocation patterns.

Since accumulation of network association logs is not uncommon at universities, it does
not present any new surveillance infrastructure and instead posits reusing existing meth-
ods. As per the principle of proportionality, collocating on campus can be considered pub-
lic information [69]. However, it is not the localization that is sensitive, but the accumula-
tion and aggregation of such data that makes privacy negotiations challenging [70]. These
differing expectations of how this data is used can be considered concerning by the cam-
pus community. Therefore, for practical deployment, it is imperative for any community
that seeks to use this data to secure some form of consent. Opt–out procedures need to
provide explicit notice e.g., notify a change in terms of service.

However, choosing to opt–out can be considered an unfair choice that limits students
right to self-determine [71] — campus’ managed network provides access to key resources.
If instructors use this data for intervening with certain groups during midterms, those
not on the network would not have the same opportunity of improvement. Campuses
must establish safeguard policies that ensure no individual is penalized for their choices
[72] Further, while repurposing these logs is a form of data minimization, we propose
that stakeholders define paradigms for “use minimization” — when, what, and how much
of such data can be processed for applications. In many cases, this data should only be
accessed retroactively, only for public areas (which excludes housing), and span limited
periods.
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5.3 Limitations and future work
The most apparent limitation of using these association logs to determine collocation is
its low spatio-temporal resolution. This introduces reasonable uncertainty in determin-
ing the exact location of individuals [12, 47]. Moreover, since every connecting client de-
vices is unique in its connectivity management, it is non–trivial to establish exactly how
every device would be located. For our system we introduce various data–driven heuris-
tics to tackle this coarseness (Sect. 3). These heuristics were informed by a small set of
students (and their devices) as well as limited access points. Apart from idiosyncratic at-
tendance patterns, even the specific device make, and the physical obstacles around the
AP can impact how logs are updated. Since our heuristics are trying to model specific sets
of students at specific locations, their unique patterns could have downstream effects on
reliability and pattern modeling. Further research should consider reevaluating the system
reliability over a more diverse set of observations in terms of users, devices, and locations.

We know from our system reliability tests (Sect. 3.4) that our system is more likely to
label false–negatives. Therefore, our system might be underestimating the actual collo-
cation incidents. According to the literature, collocation supports social interaction and
in turn is linked to performance. We studied this phenomenon on students in a group
project to test the feasibility of leveraging WiFi network logs to indicate collocated social
interactions. Taking into account missed instances of collocation, a more true measure
might indicate a stronger relationship to performance than what we found. On the con-
trary, our system also can generate false positives. One of the reasons for this could be the
challenge in distinguishing if a user is dwelling or disconnected. Within certain thresh-
olds, a user could go outside the network and return in between two phases of movement.
For instance, they went to get coffee outside the campus and returned. These episodes
can appear like collocation when non occurred. Overall, these incidents are unlikely and
only expected to happen in APs at the edge of campus. Yet, this could contribute to the
noise in our data which could get modelled erroneously. One way to mitigate this would
be to maintain a variable set of heuristics given different APs and their locations on cam-
pus. Extensively studying crowd behavior with some self–reported ground–truth can help
reduce this noise.

Some of the major challenges to leveraging WiFi is related to the infrastructure it is a
part of. Indoor setups present several challenges that can lead to unexpected device as-
sociations [40]. As a result, an individual could be in a room and not be associated with
the physically closest AP, but rather another AP node that found a stronger signal to the
client. This creates an opportunity to deal with this noise by modeling the probability of
displaced connections. and incorporating the size configuration of rooms and neighbor-
hood maps of the APs. Furthermore, advanced off-the-shelf methods to study archival
data can be developed to make AP nodes aware of other APs visible to a client — similar
to RTLS approaches [33, 34].

For identifying collocation of group members, we assume that students devices are con-
nected to the network during collocation. This is a reasonable assumption since our par-
ticipants comprised Computer Science majors enrolled in a design course. In contrast,
this might not be true for other forms of group work. For instance, projects at hardware
workshops could have extended periods where digital devices are untouched and appear
disconnected. Therefore, it is important to be aware of the expected device use during
collaboration in physical spaces to estimate if WiFi logs can approximate user location.
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Our study is aimed to demonstrate the feasibility of a managed WiFi network to retroac-
tively describe collocation behaviors that can approximate the effects of social interac-
tions. We showed this by focusing on a finite set of features to describe collocation behav-
iors over the semester. The scope of our study restricted us to a course that involved inter-
actions once a week. This informed us to aggregate our features by week (Sect. 4.2). While
this decision was apt for our study, it also reduced the number of longitudinal observa-
tions we had (14 data points for each week). Having said that, with the appropriate consent,
the managed WiFi network can help explain collocation across more frequently (examine
classes that occur every day) and over longer periods (full academic year). Depending on
the specific hypotheses, future work can craft more nuanced collocation features (e.g.,
seasonal change in the number of unique individuals collocating with the student).

Theoretically, our findings coincide with ideas of spatiality [17]. According to this, when
collaborators are present near each other, they are interacting through observations and
an increased sense of accountability. A key assumption to our study was that we exam-
ined behaviors of participants who were expected to have collocated social interactions.
However, it is possible for individuals to be collocated and yet unaware of each other’s
presence. These episodes could have other unseen relationships with their performance.
In our modelling we distinguish collocation instances by location (academic, residential,
or recreational) and schedule (class, meetings, or other). One might assume that colloca-
tion in “recreational” areas outside classes or meetings might be coincidental and unlikely
to foster any real social interaction. In the same vein, subsequent work can introduce addi-
tional dimensions to semantically categorize different collocation instances (e.g., colloca-
tion at a specific time or place that only occurred once could be ignored). As researchers
consider further studies in this space they can refine what can be learned from WiFi–
inferred collocation. For future studies in this direction, we encourage researchers to in-
clude other sources of data that can mitigate the blind spots of WiFi logs and also qualify
them better.

6 Conclusion
Collocated social interactions are valuable to the experience of students, workers, and
other communities that share a common physical space. The more we can understand
these social behaviors, the better we can support the community. This paper examined
the feasibility of expressing collocation from WiFi network logs. We established the reli-
ability of computing collocation of students on campus. Then we demonstrated that this
characterization of collocation behaviors can reflect individual outcomes of collocated
social interactions, particularly, success in a group project. Our work encourages future
opportunities to apply such a data source to support the campus community.
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