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Abstract
To the human eye, different images appear more or less complex, but capturing this
intuition in a single aesthetic measure is considered hard. Here, we propose a
computationally simple, transparent method for modeling aesthetic complexity as a
multidimensional algorithmic phenomenon, which enables the systematic analysis of
large image datasets. The approach captures visual family resemblance via a
multitude of image transformations and subsequent compressions, yielding
explainable embeddings. It aligns well with human judgments of visual complexity,
and performs well in authorship and style recognition tasks. Showcasing the
functionality, we apply the method to 125,000 artworks, recovering trends and
revealing new insights regarding historical art, artistic careers over centuries, and
emerging aesthetics in a contemporary NFT art market. Our approach, here applied
to images but applicable more broadly, provides a new perspective to quantitative
aesthetics, connoisseurship, multidimensional meaning spaces, and the study of
cultural complexity.
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1 Introduction
The quantification of visual aesthetics and artistic expression goes back to Birkhoff [1]
and Bense [2], inspiring several computational approaches [3–16]. Research drawing on
information theory has shown repeatedly and in parallel that visual complexity can be
estimated with some accuracy using compression algorithms such as zip or gif [17–29].
While some previous proposals were tested against perceptual human judgments, results
diverge as to which compression algorithm or approach would be optimal. Elsewhere in
cultural research, measures of compression length have been used at face value to compare
the complexity of visual inputs [30–32]. Related information-theoretic approaches have
also used entropy to quantify artistic styles and conceptual groupings [8, 12, 33].

Considering quantitative analysis of visual art, it makes sense to adopt algorithmic ap-
proaches, as creative processes themselves also follow a set of procedures — or algorithms,
in the broadest sense — in which artists may be similar or differ [2, 3, 34]. Algorithmic
complexity is best understood via information theory [35, 36], defining the Kolmogorov
complexity of a string or dataset as the length of the shortest algorithm reproducing the
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data. Kolmogorov complexity is uncomputable, but can be approximated using the com-
pression size of a dataset as its upper bound. In the case of images, the more compressible
one is — i.e. the larger the difference between a bitmap and a compressed version e.g. gif
— the visually simpler it is. This notion in turn can be extended to measures of algorithmic
distance, one example being normalized compression distance (NCD) [37]. This however
requires a separate compression for each comparison event, and has been rarely applied
to visual materials [38]. Pairwise image comparison frameworks [19, 22], suffer from the
same computational bottleneck. Furthermore, visual media such as art or photography
can, intuitively, differ in various dimensions of complexity, such as color, composition and
detail. A single value of complexity would likely fail to capture this multiplicity.

1.1 A method proposal
We introduce “compression ensembles”, an efficient and explainable algorithmic compar-
ison framework for images. Instead of attempting to find a single algorithm or metric to
best match human judgments or perform on downstream tasks, we argue for an ensemble
approach of concurrently using multiple measures. This consists of two steps: multiple
transformations and subsequent compression. For a given input image, a set of alternative
images is produced by applying a number of different image processing transformations,
including various filters, blurs, distortions and color manipulations (see Fig. 1.A, Methods
section, and Additional file 1, for details).

These new images are compressed (possibly with multiple compression algorithms), and
the resulting file sizes are divided by the compression size of the original bitmap; the un-
filtered original input is also compressed but divided by the size of the bitmap input. This
yields a vector of compression ratios. Further statistical transformations such as color-
fulness metrics and fractal dimension [5, 16, 39, 40] (compressions in a broader sense)
can also be added to these vectors, and rescaled if the magnitudes differ, which we do
(see Methods). Given the perspective of artists as (or as executing) algorithms — in the
very broadest sense — our approach aims to capture the residual signal of the generating
process, the “algorithmic fingerprints” of an artwork, through the operationalization of
various aspects of visual aesthetic complexity, as estimated by compression ratios of the
visual transformations. This approach can, however, currently only assess the visual com-
plexity apparent in the image. This may or may not correlate with production complexity,
i.e. the time, effort, expertise, etc. that goes into producing an artwork.

As demonstrated below, compression ensembles can be used for estimating relative vi-
sual complexity as a multidimensional phenomenon; inferring specific aesthetic aspects
of complexity where any two images or artist oeuvres differ; and as input to any predictive
downstream tasks where image complexity (and by proxy aesthetic or stylistic) profiles
matter. We also show its use as a “computational art historian” or “curator” algorithm
to quantify and systematically explore the dynamics of art artistic careers in very large
datasets. While we focus our showcase here on art, it is suitable for comparing any sort of
images, and as described in the Discussion, straightforwardly extendable to other types of
media to estimate their inherent aesthetic complexity.

1.2 Relation to other image embedding approaches
Compression vectors can be rapidly compared, clustered, or used in image recognition and
comparison tasks, as demonstrated below. Our method is comparable, but largely orthog-
onal to deep learning models of computer vision that also embed images in numeric vector
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Figure 1 An ensemble of multiple image transformations allows for meaningful quantitative comparison of
artworks. (A) Selected transforms for the example of Mondrian’s “Windmill in the Gein” (1906-1907; see Table
S1 and Figure S1 in the Additional file 1 for the full ensemble). (B) UMAP projection of the full compression
ensemble space of 112 variables and 74k artworks. Each dot is an artwork, reduced to a single pixel. Examples
(1-8) including the “Windmill”, are highlighted along with their cosine-nearest neighbors in the ensemble.
Proximity in this space indicates multidimensional similarity in aesthetic complexity, and often by proxy, style
or more general family resemblance. For example, images with few colors and simple structure are close
together, and distant from complex ones (Examples 1 vs 5). Nearby images often contain similar subjects or
themes, due to conventional commonalities in the aesthetics of depicting certain scenes and objects (cf. 2 vs
8). (C) Compression values of individual transforms mapped onto the same UMAP, colored according to the
compression ratio mean in a given area, brown low to blue high. The inset map in (B) bottom-right reflects
average artwork creation date, same colors for earlier to later. While the nearest neighbor sets in (B) intuitively
make sense, these heatmaps strikingly clarify the underlying polymorphic complexity, promising a rewarding
territory for future research

spaces. Typically pre-trained on very large image databases, the latter excel at inferring im-
age similarity (in the feature space), and can be tuned to predict discrete classes such as
objects on the image, historical style, or authorship [9, 41, 42]. Compression ensembles
can also be used to estimate similarity (in the complexity space), and nearby images often
depict similar subjects — albeit incidentally, due to shared stylistic commonalities in how
certain subjects are depicted (Fig. 1.B). However, the main function of the ensembles is
to operationalize visual complexity as such. Our approach infers meaningful values for an
input without requiring any costly pre-training, and therefore also entirely bypasses the
“training set bias” problem inherent to pre-trained machine learning models. Fitting new
images to an already generated vector space here does not require retraining or realign-
ment of the space either, just a matching set of transformations.

We are less interested in discrete classification (although we do run tests on these tasks,
see Methods), and more in efficient exploration and curation of large image sets in the
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continuous complexity space. We show that this is also a good proxy for aesthetic com-
plexity, and by extension, indeed notions of artistic style (see Figs. 1.B, 3). The issue with
discrete style classification [5, 42] is that it inevitably requires training on some “ground
truth”, which in the case of historical style periods is highly debatable. Our approach goes
beyond limited discrete categories to operate in a continuous aesthetics space.

To contrast another related body of literature, some previous research has tried to build
statistical and machine learning models to explicitly predict what humans participants in
psychology experiments perceive as intuitively complex, “aesthetic”, or “beautiful” [14, 20,
25, 43–45]. We did test our approach on a set of human complexity judgments and show
that it performs very well (see Methods), but our goal, to provide a general framework,
is broader. We use complexity as a practical comparative algorithmic measure, and, to
be very clear, “aesthetic” not as a value judgment. Besides “beauty”, here we also do not
attempt to quantify complexity in terms of iconography, semantics nor number of depicted
subjects (but see Discussion for possible extensions).

Our approach is also conceptually related to “ensemble methods” in statistics and ma-
chine learning [46], but instead of a single aggregated prediction, the useful output here
is the full vector of complexity estimates. Approaches using ensembles of various metrics
have also been proposed in linguistics for language complexity [47] and economics for tax
system complexity [48].

1.3 Explainable vector spaces
Importantly, unlike all of the aforementioned machine learning based image embeddings,
the dimensions or variables in a compression ensemble remain interpretable: a compres-
sion ratio difference between two images for a given transformation indicates that they
differ in this aspect. Applying a black-and-white transformation to a colorful image in-
creases compressibility relative to the original (compression ratio � 1), but has no effect
on an already black-and-white image (ratio ≈ 1). Applying coarse pixelation to Piet Mon-
drian’s abstract paintings (Fig. 1.B.1) barely changes their compressibility, while it greatly
increases compressibility for the highly detailed works of Hieronymus Bosch (Fig. 1.B.6).
Therefore, images similar in multiple aspects end up close together in multidimensional
compression space, while dissimilar ones stay far apart. Though our approach does not
include any visual similarity or object recognition features in the machine learning sense,
certain genres do appear more popular within certain regions of the space, depicting fea-
tures yielding a similar complexity profile (e.g. human half-figures on dark background;
Fig. 1.B.2).

The model used in this contribution consists of 112 transformations (see Fig. 1.A for
examples; Table S1 and Figure S1 in the Additional file 1 for the full list; we use lossless
gif, and also png and lossy jpeg on a smaller subset). The exact nature and number of
transformations is unimportant yet subject to optimization. More features increase com-
putation time, but provide more information, i.e. the approximation honing in on the true
uncomputable Kolmogorov complexity (see Methods). As demonstrated in the classifica-
tion experiments in the Methods section, different transforms are informative for differ-
ent tasks, and, given a specific task, a handful of well-chosen features can yield accuracy
close to using a large ensemble. Some transformations, like blurs of various magnitudes,
may well correlate. In applications where multicollinearity must be avoided or a lower
number of dimensions is desired, methods such as Principal Component Analysis (PCA)
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or UMAP [49] can easily be applied. In this work we use both, as PCA is directly inter-
pretable due to linear relationship with original variables, while UMAP arguably offers
better low-dimensional representations [49].

Dimension reduction like UMAP can be used to produce a complementary “field of sim-
ilarity” [50] where similar images cluster together intuitively, while remaining subject to
the “curse of dimensionality” (Fig. 1.B). We can break the curse by repeatedly mapping
individual transformations onto the common UMAP, effectively using it as a reference
topography (Figs. 1.C and S2). The resulting “small multiple” of visualizations provides
intuition why an ensemble of multiple transformations is necessary towards a fuller un-
derstanding of visual aesthetic complexity. It also relates to the explainability aspect: im-
ages being in different ends of a given transformation variable (colored brown to blue in
1.C) indicates they differ in the aspect of complexity represented by the given distortion.

In this contribution, we define and test the compression ensemble approach in a number
of experiments from human complexity judgments to example downstream classification
tasks (see Methods section). In the Results section, we showcase the utility of the approach
for the exploration of art collections, quantifying global trends in historical art over the
past six centuries in a large dataset, and the first half a year of a non-fungible token (NFT)
art marketplace. On historical timescales, we introduce a temporal resemblance model
to quantify artistic career trajectories, grouping them into qualitatively distinct types. We
reveal artists that were well embedded in the historical tradition of their time, those who
simultaneously experimented with different areas of the aesthetic complexity space, artists
with transitory success, and those who were later seen as ahead of their time. Finally, we
discuss the broader relevance of the approach to digital art history, cultural evolution, and
extensions to other media and modalities.

2 Results
We make use of two large art corpora to proof the application of the compression ensemble
approach for visual data, while exemplifying the exploration of historical and contempo-
rary dynamics of visual art. The first dataset which we denote as “Historical” (henceforth
capitalized when being referred to) is illustrated in Fig. 1.B. It is sourced from the art500k
project [42], filtered to only include two-dimensional art with a retrievable year of creation.
Our subset contains 74028 (primarily Western) artworks representing 6555 artists from
the years 1400-2018 (older art exists in the dataset but is sparsely distributed). This filtered
dataset ends up consisting mostly of items art500k had in turn sourced from Wikiart.org.
The latter is an online, user-editable, encyclopedic collection of mostly Western art im-
ages, also frequently used in computer vision research.

In the case of art collections or databases like Wikiart and art500k, it is important to be
clear that these consist of small, curated, often biased samples of art of some place and
period. As such, they represent the historiography of art first and the actual history of art
second [12] (see Data Limitations in the Methods section for further discussion). When
we make claims here about the history or dynamics of visual art, we are only referring to
information derived from the sample — but we make the assumption that the sample is
reasonably representative and as such informative of the population of Western art in the
time periods we cover. This means that the figures depicting historical changes may look
different if more data would be available. However, our quantitative method could also be
used for systematic study of data set bias.
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The second dataset, denoted “Contemporary”, is mined from Hic et Nunc, a Tezos
blockchain-based NFT art marketplace, representing the first 175 days of its existence
(March to August 2021; 51640 artworks, 7284 artists). It contains 31% of all the objects
added to the marketplace during our observation period. We only include static images
(jpeg, png), as the currently presented approach does not yet extend to multi-frame ob-
jects such as animated gifs and videos. We also exclude low resolution images (such as
icons), and a subset for which the data collection process failed to retrieve the image. Un-
like the Historical dataset which consists of digitized art, the vast majority in the Con-
temporary set are born-digital images. For an overview of the NFT-driven “crypto art”
market, see references [51, 52].

The obvious question is whether simple vectors of file size ratios are provably informa-
tive about visual complexity or artistic aesthetics. We carried out two sets of experiments
to verify that the compression ensembles are fit for this purpose, and show that they al-
low us to meaningfully track the evolution of complexity in historical art. As detailed in
the Evaluation subsection under Methods, we first tested the approach against two sets
of human visual complexity judgments, where it performed very well, aligning with what
people would judge to be visually simple or complex. This indicates the method is cogni-
tively plausible as a visual complexity estimator. Secondly, we devised a set of classifica-
tion experiments to determine if there is enough information in a compression ensemble
to meaningfully delineate aspects of interest in visual art such as style, genre, authorship
and medium. The model yields reasonable accuracy in all cases (and its mis-classifications
make sense from an art historical point of view). This indicates the method is fit for pur-
pose for the exploratory tasks showcased in the next section.

2.1 Tracking historical and contemporary art dynamics
Given the explainable nature of compression ensembles, and its demonstrable cognitive
and technical plausibility, we proceed to use the method to investigate and interpret aes-
thetic trends over time. We do this for both the Historical and the Contemporary NFT
datasets. To simplify this task, we apply Principal Component Analysis: compression vec-
tors for both the Historical and the Contemporary datasets are fitted in the same PCA
space for comparability. An alternative would be to map change over each individual trans-
formation variable, but PCA conveniently allows for focusing on decorrelated latent as-
pects with most variance, while remaining interpretable through the transformations that
load onto each component. Figure 2 depicts change over time in the two first most infor-
mative components. The Historical dataset is limited to 1500-2000 on the graph, as both
ends outside of that range are quite sparse. The “trend lines” are estimates from a rolling
window of ±10 (years of Historical data, days of Contemporary Hic et Nunc). Where there
is insufficient data, the window is stretched up to size 50 to include at least 1000 artworks
where possible; these broader estimates are reflected by decreased line opacity. We do
not engage in statistical testing here, as this exercise is explorative (for dating and style
classification testing, see Evaluation in the Methods section).

Changes in the trends of the half-millennium Historical dataset correspond broadly to
art historical style classifications. PC1 in this model corresponds to texture and detail com-
plexity (loading onto blurs, despeckle filters, and the Canny edge transform). A set of the
more frequent style period labels are shown in Fig. 2.A, arranged by the median year of
the respective artworks. Visible in the right half of (A), there is a visible median complex-
ity decrease between the period of detailed paintings of Realism and Impressionism and
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Figure 2 Aesthetic dynamics over 500 years in the Historical dataset 1500 to 2000 (left, (A) & (B)), and over
the first 175 days of the contemporary NFT art market Hic et Nunc from March 2021 (C), (D). Each dot is an
artwork, reduced to a pixel. The vertical axes are values of the first principal components of a joint PCA,
interpretable through the transformations that load onto them (see text for details). The axes of (A)-(C) and
(B)-(D) are comparable, but the displayed ranges differ to save space: Historical is constrained to a much
smaller area in the aesthetic complexity space (note black side brackets). The trend lines correspond to the
median (black) and quartiles (dark gray); 95% of the data lies between the outer light gray lines. The heatmap
insets (E), (F) indicate areas of the complexity space conductive to NFT sales (as a percentage, from 0 sales
blue, to 100% sold if dark red in a given bin). (G) shows typical NFTs sold on the Hic et Nunc marketplace, as
images closest to the median (across all PCs) for each day. Various avatar or portrait series eventually rise to be
among the most commonly minted objects — visible as tight colorful groupings at low complexity in PC1—
but not all such series are successful, as indicated by the blue areas in the corresponding inset panels. This
example demonstrates how the same method can be used to make sense of both very long and very short
timescales, in art history and contemporary art

the second half of the 20th century where (in this dimension less complex) styles such as
Abstract Expressionism and Pop Art become more prevalent.

PC2 corresponds to overall compressibility (loading onto compression of the original
unfiltered image but with different compression algorithms). The median in the Histori-
cal dataset is somewhat lower where the dataset contains many Rococo style portraits (in
the middle of Fig. 2.B), which typically contain plain (easily compressible) backgrounds
— not unlike the pixel-art portraits of Hic et Nunc (cf. days 100-150 in Fig. 2.C-D). PC2
values in Historical (Fig. 2.B) go up around the onset of Impressionism, and the bounds
are pushed once more with Cubism, Expressionism, Surrealism, and the general diversifi-
cation of classic modern “-isms”. As demonstrated in the Evaluation section in Methods,
given a sufficient number of transformations, such differences are consistent and diverse
enough to predict style periods with reasonable accuracy.

The Historical and Contemporary sets are combined in the same space, but the ranges of
the vertical axes representing the components in Figs. 2.A-B versus C-D are intentionally
different, as the two datasets occupy markedly different ranges in the complexity space,
with much higher variance in the Contemporary Hic et Nunc dataset compared to the
more conventional Historical dataset. This does not necessarily mean that art in the last
500 years has been less creative or explorative. The relative boundedness instead is more
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plausibly rooted in a combination of material affordances and limits of curation and schol-
arship. The latter is a function of cultural selection, as collectors, audiences, and art histo-
rians put a bound on what has been and is considered worthwhile of adding to collections
from the time of creation to current retrospectives.

In contrast, anybody who is able to pay the fairly low “minting” fee can upload an artwork
to blockchain art market places such as Hic et Nunc, making their creations public in an
attempt to get attention and sell. The Historical broadening of the parameter space goes
in lockstep with the fraction of noted creatives growing faster than world population in
the last five centuries [53]. It is broadly established knowledge in art history that new tech-
nologies and concepts, from pigments to theories of perception [54], were harnessed by
said creatives. Examples include the emergence of more affordable blue pigment alterna-
tives to the rare and expensive azurite and lapis lazuli, or (color) photography, which put
traditional pictorial conventions of depiction into question. Another striking difference
between the Historical and the Contemporary NFT dataset becomes visible in Figs. 2.A-
B versus C-D when we focus on the range of colors in the single-pixel reductions of the
artworks. The digital NFT images appear darker and more saturated, as they are using the
full RGB color space, while the dominant color of Historical artworks tends to remain in
the range of “natural” pigments, which one could buy in a physical art supply store.

Since we have information on transactions in the Hic et Nunc dataset (as of the data
collection time, 22 August 2021), successful sales are shown as inset heatmaps (E, F) in
Fig. 2.D. The heatmaps show the fraction of sales across the first and second principal
components respectively. About half the objects in the Hic et Nunc sample in total were
sold off by their authors during our observation period, with some areas — dark red in the
insets — being clearly more conductive to sales, while others do not sell at all.

Even qualitatively, one can see revealing patterns, such as the mass-minting of ini-
tially non-selling NFT portrait images starting around day 110 in mid 2021. These can
be described as simple, typically procedurally generated, mugshot or portrait-style im-
ages depicting various human, humanoid or cartoon characters. At the height of the NFT
boom, the perhaps more widely known examples of this trend on other platforms included
the “CryptoPunks” and “Bored Ape Yacht Club” series [51]. On Hic et Nunc, such se-
ries are titled for example “AI Pokemon”, “Dino Dudes”, and “NFT-People”. An emergent
quality of these mass-produced images is that their texture and detail complexity (PC1,
Fig. 2C/E, day 100-150) is substantially lower than the all preceding art, putting them
more in the realm of icons or brand logos. At the same time their overall compressibil-
ity (PC2, Fig. 2D/F) is not only systematically lower, but also subject to less variance. This
could potentially indicate low effort attempts at production of these simple images with
hopes of fast monetary gain in the marketplace. The narrowness of the mass-produced
NFT series also expresses itself in their skew towards highly saturated primary dominant
colors. In at least one case, this indeed seemed to work, where sales follow in the wake of
a strong minting burst, mostly consisting of the “NFT-People” and “NFT Kids” series (cf.
the rightmost vertical blue line in Fig. 2.E, followed by a light red wake).

These initial observations could of course be augmented with more systematic statisti-
cal or predictive modeling in future research. As an example, we trained a simple classifier,
Linear Discriminant Analysis (see Evaluation section under Methods) on the sales data,
predicting whether an NFT art piece was sold or not, based on the values in the com-
pression vectors. Using training sets of size 20k per class and separate test sets of 5k (and
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replicating the model 500 times), the model predicts sales at an average accuracy of 58%
(or a 17% kappa, given the 50-50 baseline). This is despite containing no information on
the prestige or reach of the artists, past sales, the depicted content, nor trends of the mar-
ket of the respective time. A linear regression model fitted to 23370 sold items predicting
log price (excluding zero-price giveaways) by all the compression variables describes about
6% of variance (adjusted R2); allowing for interaction with the time variable improves this
to 8%. While these are all fairly low scores in absolute terms, we consider this a promis-
ing result for future research, likely improved by combining our aesthetics model with the
aforementioned variables of author properties, sales history and past trends [44, 52], to
predict future trends in evolving art markets.

2.2 Quantifying temporal resemblance in artistic careers
In the previous section, we took a look into art history as a whole. We can also use com-
pression ensembles to investigate how the oeuvres of individual artists progress and are
situated in their eras. Tracing “the lives of the artists” has been a foundational and central
direction in the historiography of art since the 1550 book by Giorgio Vasari which initi-
ated the genre [55], followed by a great number of artist monographs and critical catalogs.
More recently, multidisciplinary science has tackled the issue using methods of network
science and quantitative measures of success, making use of data such as demographic
and migration records [53, 56, 57], museum, exhibition and art market price information
[58, 59], but also visual aesthetic aspects using information theory or machine learning
[7, 12, 60].

We introduce “temporal resemblance”, a simple metric to summarize and compare artis-
tic careers (Fig. 3). This could be applied to any numeric space (including deep learning
embeddings) that includes temporal metadata, but its interpretation of course depends
on the space. Here, it represents resemblance in the compression ensemble approximated
aesthetic complexity space.

Figure 3.A provides an illustration, using the oeuvre of Piet Mondrian: the rows are
transformations; the columns his works, arranged diachronically. For this example, the
compression ratio values are z-scored using the mean and standard deviation of his era.
This means that the blue to red scale is interpretable as “higher or lower than contempo-
raries”, and white as being close to the mean. Mondrian’s departure from the era’s main-
stream is quite clear from the increase of darker reds and blues. The transformations pro-
vide insight as to which areas are most contrasting (labels on the dendrogram in 3.A).

The temporal resemblance method generalizes this comparison. Given the vector space
of the Historical set (decorrelated using PCA), we can calculate the nearest neighbors for
each artwork vector (like the columns in 3.A). We use cosine similarity and the top closest
100 neighbors (excluding works by the same artist). The median temporal distance be-
tween these neighbors and the target work indicates if it resembles the past or anticipates
some yet unseen future. This allows us to group artists who are traditionalist or historicist,
those who stay current, and those ahead of their time. It is necessary to adjust the median
time distances to account for the boundedness and density bias of the dataset: the met-
ric reported here is derived from the residuals of a generalized additive regression model
(GAM), still on the same yearly timescale (see Additional file 1 for technical details of the
adjustment). Figure 3.B again depicts Mondrian’s works, with temporal resemblance now
on the vertical axis.
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Figure 3 Several qualitatively different artist career types emerge from quantification through the lens of
aesthetic complexity and applying the temporal resemblance model. (A) Compression expression matrix.
Each column is a work by Piet Mondrian, arranged 1895 left to 1944 right; rows are transformations. The
matrix values indicate difference from his era (from lower blue to higher red; see text for details). Mondrian
starts out on average traditional, but eventually develops his iconic style, departing from the mainstream.
(B) Temporal resemblance values of Mondrian’s works. Points < 0 correspond to works resembling art in the
past, points > 0 anticipate art that has not yet been created, as their closest neighbors in compression space
lie in the future. The curved line is a GAM fit. The strip of larger thumbnails are examples close to the curve.
Panels (C)-(F) depict 20 example careers grouped as 4 arguably distinct types of career trajectories. We find
outstanding artists similar to Mondrian, versatile innovators like Cezanne, mainstream artists like Bierstadt, and
that move ahead and then behind the mainstream like Whistler

This metric is relative to the point in time of each work, and all measures are relative to
all other works. Therefore, curves that stay close to the zero line in Figs. 3.B/C should be
interpreted as artists who produce works that are similar to other artworks made in the
same years, in terms of aesthetic complexity (and thus aspects of their style — but we are
not quantifying the subjects they depict). That does not preclude changes in their style, if
the changes in the artist and their era correlate. Staying around the zero may also indicate
that a given artist is surrounded by a handful of prolific contemporaries with very similar
output, who as a group may not be representative of the mainstream. Descending curves
can indicate an artist who becomes more traditional, the world catching up to an artist’s
style, or the world adopting other new styles.
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Figure 3.C depicts the careers of 20 artists, grouped by career trend similarity, revealing
different modes of artistic existence, similar yet not identical to the narrative types of Von-
negut [61]. To trained art historians (as represented among the authors of this paper) these
results are intuitively correct — but of course the career comparisons discussed here only
refer to artworks that are present and dated in our dataset. Some such as Piet Mondrian or
Mark Rothko, “rise above the flock”, starting out in the mainstream, growing into their own
distinct style, with works that could be considered ahead of their time. Paul Cezanne and
Mary Cassatt instead become “constant innovators”, starting out by producing conven-
tional, retrospective works, but growing and remaining innovative throughout the rest of
his careers. Albert Bierstadt and Camille Corot represent “mainstream artists”, appearing
more narrow in their practice, and remaining consistent with the current of their peers.
There are also those who “rise and fall” (see James Mcneill Whistler or William Merritt
Chase), growing to their moment in history, then becoming more conventional again over
the course of their careers. The metric highlights Eastman Johnson, who was predomi-
nantly drawing inspiration from the past, even at the height of his career. But even innova-
tive careers may include revivals on occasion; e.g. Paul Cezanne also has works resembling
the complexity profiles of art preceding his own by 100-200 years.

As a static graph, Fig. 3 just exemplifies how compression ensembles (or other embed-
dings) can be used to filter and cluster artistic trajectories. Figure S5 provides an alterna-
tive version of Fig. 3.B/C with larger thumbnails. Interactive versions of such plots could
function as a research instrument for qualitative experts, to investigate the quantitative
model and dataset biases, and compare artists between different datasets. In a related
project [62], we developed an interactive web interface titled Collection Space Naviga-
tor, which allows for on-the-fly visualization of large collections, and operations such as
zooming, filtering, and hovering for more information. Its online demo also features a
large subset of the Historical dataset used here, including functions to operate with com-
pression ensembles (link in the Availability of data and materials section below).

3 Discussion
Products of human culture, such as art, language and music are all subject to ongoing
change, complex dynamics, and cumulative evolution [63–66]. And even though com-
plexity could emerge from a simple generating mechanism in principle, a single unidi-
mensional measure would likely prove insufficient to capture the polymorphic complex-
ity of human cultural interaction and cultural products [67]. Here, we have demonstrated
the utility of explainable compression ensembles to quantify polymorphic visual aesthetic
complexity. We showed how the approach can recover and reveal meaningful patterns in
datasets of historical and contemporary art, and, in the methods section, we evaluated the
cognitive plausibility of our approach, tested its viability at author, date, style, genre, and
medium detection tasks. Given the increasing availability of cultural datasets in machine-
readable form, this operationalization opens up new avenues to study the dynamics of
visual art aesthetics at scale, over long time spans and almost in real time. As such, the
approach may help to transcend the still considerable specialization and bifurcation (by
artist, period, style, etc.) of qualitative art historical scholarship. Our approach could be
used to fill a similar niche in art history as computational corpus linguistics does in relation
to the qualitative study of literature.
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3.1 Cultural evolution and aesthetic value
While we focus on complexity, the same approach could be used on other related phenom-
ena. For example, Sinclair et al. [68] raise the concept of “aesthetic value” or “attractive-
ness” of a given cultural product, to discuss whether art and music indeed could be consid-
ered as products of cumulative cultural evolution [66] or not, as “cumulative” would allude
to objective improvement over time [69]. From the art historical perspective, a style that
builds on or grows out of another style may not be necessarily objectively better, but may
better meet the preferences of its consumers in a given time, place, or ecological niche.
This is not unlike the concept of communicative need in language: a structure or lexical
configuration might not be better in some absolute evolutionary terms, but can be more
optimal or efficient given the usage tendencies or needs of a given language community
[70, 71].

Our method goes beyond discrete categories and facilitates studying visual culture using
a continuous form of aesthetic representation to examine such questions, as exemplified
in the temporal resemblance section above. Naturally, the extent that need or preference
can be studied depends on available data. E.g. the Historical set represents only a rough
estimate of a (primarily Western, biased, somewhat dated) preference consensus, while the
Hic et Nunc data includes artist, collector, trade and price info, which could be (carefully)
interpreted as preference, as well as linked with the (social) media activity of the sellers
and buyers.

3.2 Family resemblance and connoisseurship
The vector space of the ensemble allows for flexible operationalization and visualization,
e.g. a single figure (e.g. 3) can summarize careers of several artists. This is not entirely dis-
similar to the intuition of an human connoisseur trained on a given corpus of art. As each
transformation in an ensemble represents a tangible visual aspect e.g. abundance of detail
or colorfulness, as a whole, it constitutes an estimate of the philosophical and cognitive
concept of polymorphic family resemblance, originally used to characterize similarity of
games such as chess and soccer, later extended to polymorphic visual perception [72–74].
The recognition of visual family resemblance is arguably foundational and intrinsically
mastered by trained human art connoisseurs, yet “exists at an unarticulated level, easy to
invoke but difficult to explicate” [3]. Such recognition skills are also required of other vi-
sual experts e.g. radiologists, detecting health issues in medical imaging. Deep learning
models have made headway in solving the latter among other object recognition tasks,
but are not very good at explaining why or how they recognize something either (though
cf. [29]).

Our explorations of the Historical dataset yield results that meaningfully reflect the
art historical scholarship underlying the dataset (Figs. 2, 3). The model captures enough
family resemblance to cluster together similar styles or works by the same artist (as veri-
fied in Methods), demonstrating the explanatory power of using an ensemble of multiple
transparent transformations, effectively addressing what Friedländer in his foundational
art connoisseurship book [75] called “the visible in its manifoldness and unity, bristling
against conceptual segmentation, so that the boundaries between the species of images
get into flow” or get “blurred” (p. 60; our translation).

As an interesting byproduct, the continuous multidimensional ensemble space of com-
pression ratios also allows for mathematical vector operations (not unlike in word embed-
dings [76]) and explainable latent space exploration. Adding the vectors of Example 4 and 6
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of Fig. 1.B, an etching or woodcut print plus the “Garden of earthly delights”, yields a vector
where the closest neighbors are fittingly prints of trees and nature (cf. Figure S3). Multi-
plying a Mondrian vector of Example 1 with an averaged vector of all landscape paintings
nets an abstract landscape. Exploring these operations could be an interesting venue of
future research.

3.3 A window to cultural meaning space
We used three kinds of vector spaces: the full multidimensional ensemble space of com-
pression ratios, the decorrelated multidimensional space of associated PCA components,
and a dimension-reduced UMAP space providing a proxy topography. These can also be
understood as subspaces of more general cultural meaning spaces, and interpreted though
or used in various other approaches to culture, briefly exemplified below, with potential
to be developed further in future work on quantitative aesthetics. In Cassirer’s most gen-
eral reference framework they would be “spaces of geometric intuition” [77–79], also later
referred to in art history as “iconologic” aspects, complementing the associated contex-
tual information including “iconographic” aspects [80]. They resonate with the concep-
tual spaces theory of Gärdenfors [81, 82], as well as with the notion of information space
[83]. Future work could also look into resonance between our and the recent deep learn-
ing driven “distributed information bottleneck” proposal [29] which also involves visual
transformations in the case of images.

3.4 Extensions to other visual media, audio, video and text
Here we focused on static, 2D art such as paintings and digital drawings. However, there
is no reason the same methodology could not be applied to quantify other visual media
such as photographs, maps [11, 17], websites [84] or natural patterns [27] to assess their
aesthetic complexity (and by proxy, style) in a transparent, explainable framework. Multi-
frame visual media such as film and animation could be split up by frame or shot, and
represented in a compression ensemble as ordered sets of vectors, or alternatively, trans-
formed using video filters and compressed directly using video compression algorithms.
Similarly, the aesthetic complexity of sound and music [85, 86] could be inferred by either
applying the same visual transformations to spectrograms, or by using audio filters as the
transformations followed by audio compression. 3D objects such as sculptures, architec-
ture, or clothing can be operationalized by systematically scanning them from multiple an-
gles, or using 3D versions of transformations and compressions (voxels instead of pixels).
For written text, an ensemble of byte pair encoding [87] models (with variable parameters
or trained on different genres) could be used as the transformations.

3.5 Combining compression ensembles with other vector spaces to study culture
at scale

For multi-modal media, multiple ensembles or embeddings can be concatenated, pro-
vided a principled way to weigh or normalize their contribution [88]. If both feature sim-
ilarity and aesthetic complexity matter in a given application, a compression ensemble
could be horizontally aligned and concatenated with a suitable deep learning embedding
[42], an approach shown to be fruitful in NLP [89]. A scene in a film or a recorded the-
ater play could be represented by the concatenation of a visual compression ensemble,
an audio compression ensemble, an image embedding, and a language model embedding
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[90] of the spoken dialogue. A compression ensemble could also be combined with the
larger apparatus of art history, in the form of socio-cultural context information from rel-
evant databases and knowledge graphs [91] or any other visual feature vectors [13, 16, 92].
Furthermore, features or objects (e.g. humans) could be extracted using a deep learning
classifier, followed by a compression ensemble of these sub-images, producing e.g. an aes-
thetic vector space of human pose, effectively a further operationalization of Aby War-
burg’s Mnemosyne [93, 94].

Understanding cultural products at scale is not only relevant just because of the growing
body of born-digital culture and digitization efforts of non-digitized culture. We stand at
the threshold of an AI revolution, where the fully automated generation of photo-realistic,
artistic and otherwise previously primarily human-produced visual content (and soon
likely multimedia too) has suddenly become feasible, accessible and affordable, using e.g.
models like Dall-E or Stable Diffusion [95]. This is likely to transform multiple entire in-
dustries, but the functionally near-infinite content quantity will require curation and un-
derstanding to be made efficient use of. Pretrained deep learning embeddings can be used
to calculate and cluster similar items in a feature space, or be trained to predict preset ob-
jects, styles or human preferences. Our explainable compression ensembles are however
well-positioned to make sense of such spaces and navigate aesthetics, without requiring
any “training” — indeed, consisting of already meaningful values, they are not constrained
by the need to predict anything specific to be functional.

4 Methods
4.1 Constructing a vector space of algorithmic distance
As discussed in the Introduction, compression as such has been used to estimate visual
and aesthetic complexity before. In some applications, it has also consisted of or included
combination with limited visual transformations [5, 24, 25, 27–29, 40, 44]. However, the
fairly large number of transformations is key to our approach, with the following rationale.

Consider two algorithmically similar uncompressed images A and B, for example two
versions of the same famous view of Rouen cathedral by Claude Monet (of which the artist
painted more than 30 in 1892/93). These two images will yield similar compressed sizes
for the same compression algorithm because the “algorithm” that generated them (being a
function of Monet’s perspective, style, and execution) is similar. Another artwork C, e.g. a
late, abstract work by Piet Mondrian will, due its lack of detail, likely have a much smaller
compression size. However it is entirely conceivable that a work D that is stylistically very
different to Monet’s Rouen cathedral, e.g. a surrealist painting by Salvador Dali, might by
chance have a very similar compression size. The “algorithms” used by Monet and Dali
differ greatly, and an equal compression size does not imply that they are of equal algo-
rithmic complexity either, as the efficiency of the compression algorithm itself will differ
depending on the detailed characteristics of the images.

However, now consider an image transformation T (e.g. Gaussian blur), which we apply
to the uncompressed versions of our four images A, B, C, and D before compressing them.
The compressed sizes of T(A) and T(B) are still likely to be very similar, as the algorithms
that generated the original images are very similar, and the transformation and compres-
sion algorithms are identical. T(C) is very likely to still be very different to T(A) and T(B).
While the compressed size of D was similar to A and B by chance, it is much more unlikely
that T(D) is also similar to T(A) and T(B), as the interaction between the transformation
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T and the generative algorithm of D would have to change the compressibility in the same
way as the interaction of T and A/B. Put more intuitively, a Gaussian blur is very likely to
affect the compressibility of a Monet very differently from the compressibility of a Dali.
Thus, more generally speaking, two images with similar compressed sizes are much less
likely to still yield similar compressed sizes by chance after a transformation unless they are
algorithmically similar to start with in which case the combined algorithms of generation
and transformation (and their interaction with the compression algorithm) remain simi-
lar. If we now consider the application of N different transformations of an uncompressed
image A, each applied before a subsequent compression, the compressed sizes (includ-
ing of the untransformed image) c(A), c(T1(A)), c(T2(A)), . . . , c(TN (A)) form a vector v(A)
of length N + 1. It follows from the above argument about coincidental proximity that it
becomes increasingly unlikely for two algorithmically dissimilar images to remain close
together as N increases. Thus the resulting vector space of compressed sizes provides an
indication of algorithmic distance between images.

4.2 Data processing
In practice, we use normalized compression lengths. The compression size of the original
image without transformations is divided by the size of the original bitmap image. Com-
pressions of transformations are divided by the size of the original compression. In most
applications discussed in this paper, it also makes sense to rescale the vector space com-
ponents (we use z-scoring), to put the compression ratios and the additional statistical
transformations (fractal dimension, colorfulness metrics, etc) on a comparable scale. For
more technical details on the processing pipeline, list of the transformations and imple-
mentation, see Additional file 1.

Both the Historical and Contemporary Hic et Nunc dataset are preprocessed the same
way, downscaling images to 160,000 pixel bitmaps (400 × 400 in the case of a perfect
square) while retaining aspect ratio. Smaller images up to 50% of that size are allowed (but
not upscaled), smaller images are discarded. Another option would be to resize all images
to identical squares, but that would distort the composition of wide or tall artworks. The
aspect differences, size differences resulting from integer division of the 160,000 and the
inclusion of smaller images, are all controlled for in the next step. The assigned file size
of a compressed image (or its transformation) is actually the mean of two compressions,
of the original and its 90 degree rotation. The compression ratios are calculated in terms
of the respective downscaled bitmaps. Furthermore, one of our visual transformations is
the Fast Fourier Transform; given its square-shaped output components, the transform
is applied twice, on the original and its rotation, and the resulting components are also
additionally rotated for compression.

4.3 Data limitations and biases
This approach to homogenizing the images is far from perfect, as the size of the originals
that these photographs and scans represent may well range from the size of a postcard to
that of an altar piece. Not only that, but the latter may well be represented by a lower reso-
lution image than the former, with better or worse color grading, etc. The dataset contains
sparse metadata on original size and we have no way to systematically quantify this issue
at scale, which remains a limitation of the current study. However, in a sense, our approach
is not very different from making art historical inferences by going through and looking at
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large visual resource collections, much like students of art history examining art histori-
cal survey literature, or an art connoisseur training their eye using a large comprehensive
35 mm slide collection of a library of photos, which historically served exactly this very
purpose.

Since we are interested in making comparisons over time, the Historical dataset was also
filtered for items with an identifiable creation date. We carried out some preprocessing
of the date metadata, retrieving four-digit years from descriptions that included them.
However, much of earlier art is tagged with heterogeneous and approximate descriptions
such as “early XVI century”. Discarding these made the earlier end of this dataset even
smaller, which is why we limit some analyses to the 19-20th century.

Our Historical dataset is also likely biased in a number of ways. It features primarily
Western art, most of the data is concentrated in the 20th century, the metadata quality
varies and is of unidentifiable origin, the sampling mechanisms are unknown but likely bi-
ased by archival and selection practices of the various museums and collections in which
these reproductions originate and the websites that house them. Still, from an art his-
torical standpoint the dataset provides a reasonable and sufficient proxy benchmark to
show the feasibility of our approach. Known biases of the Historical dataset include re-
liance on partially dated literature, including a corresponding gap of 18th century art, and
very likely some variation in terms of reproduction quality due to the broad variety of the
crowdsourced images, either found in the public domain or taken from a great variety of
literature and online sources on the basis of fair use. Digitizing larger amounts of visual
cultural heritage in high resolution, consistent quality, and minimal bias is a generational
challenge. While the Historical dataset is sufficient for our proof of concept, as more data
in better quality becomes available, descriptions based on our method are expected to also
become more precise and representative.

4.4 Evaluation
We evaluate the compression ensemble approach extensively using three datasets and two
methodologies, (1) examining correlations of our model predictions with human judg-
ments of visual complexity, (2) using the model to perform authorship and style attribu-
tion. We show that our model performs very well on the first task and with fair accuracy
on the second task (despite not being trained for the specific purpose). The second exper-
iment also demonstrates explicit connections between specific dimensions in the vector
space of compression ratios and particular aspects of the corresponding artworks. For ex-
ample, the compression ratio of edge-filter transformations are informative regarding the
genre of the work (portraiture versus landscape), while color-affecting transforms can help
predict the medium (drawing vs oil painting).

4.4.1 Human complexity norms
We assess the cognitive plausibility of the compression ensemble approach by comparing
its predictions of visual complexity with human judgment norms from two datasets. The
first dataset, MultiPic [96] consists of 750 colored pictures of concrete concepts, and hu-
man judgments on various aspects of visual perception, including complexity, based on
experiments with 620 participants from six language communities (British English, Span-
ish, French, Dutch, Italian, German; see Fig. 4.A). The dataset includes means for each
image for a given language sample. The second dataset, Fractals [26] consists of 400 ab-
stract fractals and related norms, again as mean judgments of visual complexity, by 512
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Figure 4 The compression ensemble approach is cognitively plausible and also performs well in algorithmic
prediction of artwork authorship, date, style, genre, and medium. (A) and (B) exemplify two human ratings
datasets, Multipic and Fractals (see text). (C) represents five art style period examples, Baroque, Realism,
Impressionism, Expressionism, and Surrealism via central images in the ensemble for each style. (D) illustrates
the difficulty of the artist detection task: while some artists produce very similar works, while also changing
over their careers (Lawrence, Romney) others are more unique and hence recognizable (O’Keefe). Panels (E)-(I)
illustrate mean testing accuracy given variable number of training items (light to dark blue) and number of
transformations used (horizontal axis; the total number of features varies between tasks, as zero-variance and
collinear ones are excluded). The dashed horizontal line is baseline chance accuracy for each task. Each dot
stands for one added transformation feature, always starting with GIF compression without transformation.
The next 5 are given on each panel. Different transformations, ordered by variable importance, are informative
in different tasks, e.g. color-related transformations in distinguishing paintings from drawings. Just
compressing the image without transforming already provides an above-chance result in all cases, even on
just a handful of training examples. Adding more transformations (dark blue dots) generally improves
performance (when there is enough examples to avoid overfitting). That being said, around 15-20
well-chosen transformations are usually already enough to get close to maximal performance

German-speaking participants (Fig. 4.B). Previous research has engaged in analogous ex-
ercises of evaluations against human complexity judgements [24, 28]. We use the datasets
described here as they are both publicly available while representing fairly large pools of
participants.

We generate the compression ensemble vectors separately for each of the two datasets,
then carry out repeated out-of-sample evaluation where we train a linear regression model
on a set of vectors to predict human scores, then test its accuracy on a separate test set.
The results are very good, with median absolute error ranging from 0.19 (Multipic English)
to 0.23 (Multipic Flemish) on a scale of 0 to 5. To put this in perspective, this is smaller
than the differences between languages in this dataset (the median standard deviation of
complexity scores per image across languages is 0.24). In Fractals, median absolute error
is 0.46 on the same scale of 0 to 5. The linear regression model with compression ratios
as predictors describes most of the variance (measured as adjusted R2) in human visual
complexity ratings: 73% (Multipic Italian) to 83% (Multipic Flemish), and 32% in Fractals.
By comparison, using gif compression alone describes just 37 – 44% (Multipic) and 10%

(Fractals). These results provide us with confidence that the approach is cognitively valid,
correlating with what the human eye would consider visually complex.
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4.4.2 Artist, date, style, genre, and medium classification
The second evaluation involves the Historical dataset, in the form of a number of re-
trieval or classification experiments. We generate the compression ensemble vectors for
the entire dataset, and extract the following subsets, where each included class has at least
1100 unique examples: 13 style periods as per metadata (5 of which are exemplified in
see Fig. 4.C), 7 centuries, drawings vs oil paintings, landscape paintings vs human por-
traits, and 91 artists with at least 110 artworks each (3 of which are exemplified in see
Fig. 4.D).

We perform out-of-sample evaluation where we repeatedly train a classifier for each
subset, on a randomly sampled set of vectors from each class in the subset to predict
the relevant class labels such as style period (n = 1000 per class, except 100 for authors
due to limited data), then test its accuracy on a separate test set (n = 100 per class, ex-
cept n = 10 per author). We use Linear Discriminant Analysis — a simple, computation-
ally lightweight supervised machine learning model that straightforwardly generalizes to
multi-label classification. To probe how well the ensembles work on this task given differ-
ent amounts of data and number of transforms, we carry this out in a step-wise manner,
as depicted in Fig. 4.E-I. Each classifier is trained on 10, 100 and 1000 examples of each
class, and employing an increasing number of transforms, starting from the baseline of
gif compression (ratio to raw bitmap file size). The rest of the features are ordered by a
rough estimate of variable importance (derived from repeatedly training binomial logistic
regression classifiers on all possible pairs of classes and averaging the t-statistics of the
variables).

Even with a handful of examples and a couple of the most informative transforms, the
simple classifier is able to detect above chance the creator, the date, style, genre, and
medium of a given artwork. With a 100 examples and the full ensemble of transforms,
author (n = 91) detection accuracy is 38%, which is much higher than the accuracy of
1.1% that random attribution would achieve by chance. Provided 1000 examples per class,
oil paintings are distinguished from drawings about 86% of the time, same for landscapes
vs human portraits (both have 50% random chance baseline), style period 34% (baseline
∼ 8%) and century 44% (baseline ∼ 14%).

The ranking of the transforms beyond the compression baseline (as depicted in Fig. 4.E-
I) is also informative. Some of the aspects represented by the transformations are more
useful than others for the prediction task; for example, gray-scaling distinguishes pencil
drawings from colorful oil paintings, because this is one of the primary aspects they differ
in. Turning this around, the explainable features of the compression ensemble can be used
to describe how any two images (or sets of images) differ, by looking into which transfor-
mation dimensions describe the most variance.

Inspecting the relevant confusion matrices reveals the errors are fairly systematic and
intuitive, as classification errors are more likely between adjacent style periods and artists.
In the set of 91 artists, Thomas Lawrence and George Romney are most often confused
with each other by the model — and indeed, both are portrait artists from roughly the
same period (see Fig. 4.D). Conversely, artists in a distinguishable style or genre are easy
to identify, for example the 19th century engraver Charles Turner is detected at 97%. Ro-
coco, also known as Late Baroque, is correctly labeled in 47% of the tests, while 16% of it
is misclassified as Baroque. Impressionism is easiest to identify (53% correct) — but con-
fused with Post-Impressionism (14%). Expressionism is by far the hardest to put a finger
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on at 12% (cf. Figure S4 for the confusion matrix of style periods). These error structures
are interesting in themselves, and could be investigated in future research.

It is important to be clear about the purpose of the experiments here: these are to verify
that the compression ensembles approach, given a sufficient number of transformations,
is capable of delineating art historically interesting aspects that may differ in aesthetic
complexity. The results indicate this to be the case, and lends confidence to explorative
findings in the Results section.

Deep learning models, which typically involve lengthy pre-training on large image
databases, can also be tuned to perform similar tasks [9, 42, 97]. Our method is primarily
a general zero-shot complexity estimation algorithm and does not involve pre-training;
but indeed its output is informative enough to perform some such downstream tasks with
reasonable accuracy. The purpose of this exercise here however is not to compete with
these approaches, but to show that a compression ensemble — despite consisting of no
features other than file size ratios and statistical transformations, and containing no pre-
trained baseline — still captures and disambiguates enough family resemblance to place
stylistically similar artworks close together and dissimilar ones apart, with a non-random
error structure.

Nevertheless, below are some analogous results, to give a sense of machine learning
accuracy in similar classification tasks using similar art corpora. These are however not
directly comparable to ours due to training and test set differences. Mao et al. [42] report
a 39% accuracy for style period and 30% for author retrieval; Tan et al. [41] report 55% for
style and 76% for artist (but that is between just 23 artists with the most training data). If
for example authorship attribution was the goal of a given application, we envision that its
accuracy could likely be improved by concatenating image embeddings with compression
ensembles, as mentioned in the Discussion.
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