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Abstract
Urbanization and inequalities are two of the major policy themes of our time,
intersecting in large cities where social and economic inequalities are particularly
pronounced. Large scale street-level images are a source of city-wide visual
information and allow for comparative analyses of multiple cities. Computer vision
methods based on deep learning applied to street images have been shown to
successfully measure inequalities in socioeconomic and environmental features, yet
existing work has been within specific geographies and have not looked at how
visual environments compare across different cities and countries. In this study, we
aim to apply existing methods to understand whether, and to what extent, poor and
wealthy groups live in visually similar neighborhoods across cities and countries. We
present novel insights on similarity of neighborhoods using street-level images and
deep learning methods. We analyzed 7.2 million images from 12 cities in five
high-income countries, home to more than 85 million people: Auckland (New
Zealand), Sydney (Australia), Toronto and Vancouver (Canada), Atlanta, Boston,
Chicago, Los Angeles, New York, San Francisco, and Washington D.C. (United States of
America), and London (United Kingdom). Visual features associated with
neighborhood disadvantage are more distinct and unique to each city than those
associated with affluence. For example, from what is visible from street images, high
density poor neighborhoods located near the city center (e.g., in London) are visually
distinct from poor suburban neighborhoods characterized by lower density and
lower accessibility (e.g., in Atlanta). This suggests that differences between two cities
is also driven by historical factors, policies, and local geography. Our results also have
implications for image-based measures of inequality in cities especially when trained
on data from cities that are visually distinct from target cities. We showed that these
are more prone to errors for disadvantaged areas especially when transferring across
cities, suggesting more attention needs to be paid to improving methods for
capturing heterogeneity in poor environment across cities around the world.
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1 Introduction and background
Inequalities are on the rise globally and increasingly recognized as a social, political, and
ethical problem [1–3]. Cities are fundamental in addressing inequalities as they account
for 55% of the global population, and 81% in high-income countries where rich and poor
are side by side (United Nations, 2019). The COVID-19 pandemic and recent extreme
weather events have exposed spatial and environmental inequalities in cities and their im-
pacts on health and wellbeing [4–6]. For example, poor and wealthy areas of a city can
differ in access to green spaces and tree canopy, walking and cycling infrastructure, safety,
density, overcrowding and quality of housing, and types of services and shops [7–12]. City
governments have the tools to influence such features to help provide solutions to spa-
tial and social inequalities. Many of these features are visible yet, there are no data on
similarities or differences in the urban environments, and their visual representation, ex-
perienced by the wealthiest and poorest city dwellers around the globe. Such comparative
understanding is crucial to cities globally to design effective interventions suited to local
needs.

Visual information from streetscapes have been used to study urban inequalities at least
as far back as Charles Booth’s ‘Inquiry into the Life and Labour of the People in London’
in the 1880s [13]. Urban ground-level visuals provide a rich perspective on the environ-
ment that people experience: they contain information on types, materials and condition
of buildings; extent and safety of roads and sidewalks; types and density of vehicles, peo-
ple, cyclists, shops, public spaces, and other amenities; green and blue space; and sources
of pollution [7, 9, 14, 15]. Photography projects have also captured stark visual differences
of rich and poor neighborhoods [16–18] and change associated with gentrification [9].

Booth and much of the early work on visual features of cities relied on in-person site
visits which restricted the areas of the city that they could study. Large scale street-level
images are a source of city-wide visual information and allow for comparative analyses
of multiple cities [19]. Computer vision methods can infer socioeconomic and environ-
mental features from a large number of street images [7, 9, 20–22]. Work to date in using
images to infer socioeconomic measures has been within specific geographies and have
not looked at how they compare across different cities and countries. In this study, we
aim to understand whether poor and wealthy groups live in visually similar environments
across cities and countries using deep learning methods applied to street-level images.
A comparative understanding of streetscapes, and their inequalities, in cities around the
world can also guide how we envision, develop, and design equitable, inclusive, and re-
silient cities. This is also crucial for evaluating whether image-based measurements using
deep learning methods, that have become increasingly popular over the past few years
[7, 9, 20–22], are biased when trained on data from cities that are visually distinct from
target cities.

We studied similarities of visual features and distinctness of urban environments of the
most and least advantaged communities across 12 cities in five countries, home to more
than 85 million people: Auckland (New Zealand), Sydney (Australia), Toronto and Van-
couver (Canada), Atlanta, Boston, Chicago, Los Angeles, New York, San Francisco, and
Washington D.C. (United States of America), and London (United Kingdom) (Fig. 1).
These cities are located in “English speaking” high-income countries where income in-
equalities are pronounced [23, 24]. We obtained images and data on household income at
census tract level for all cities for comparative analyses. We divided census tracts into
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Figure 1 Overview of cities used in the analysis. Maps of deciles of income, with red indicating poorer areas
and blue indicating more well-off areas, along with examples of street images are shown for selected cities.
We used images from Google for our analyses; images shown here are courtesy of Mapillary

deciles of household income, with decile one corresponding to the worst-off 10% and
decile ten to the best-off 10% of each city.

We analyzed a total of 7.2 million publicly available street images where we sampled
a fixed number of street image locations for each census tract from Google Street View.
Images were geotagged and assigned to the decile class of the corresponding census tract
(See Materials and Methods for further details). We evaluated similarity in visual features
between cities by measuring how well a model trained in one city performed when making
income decile predictions using images from other cities [25]. We use the mean absolute
error (MAE), defined based on the difference between predicted deciles and ground truth
deciles, to measure the performance of the models.

We used a deep learning method to automatically recognize, i.e. learn, visual features
from street images that are associated with different levels of income [7, 9, 20, 22, 26–31].
First, we trained our network using all image-label pairs from one ‘source’ city and the
remaining cities were withheld. We then used the withheld images from ‘target’ cities to
evaluate the transferability of the model. Mean absolute error (MAE) values were com-
puted separately for each target city. We repeated this process 12 times using a different
city as the ‘source’ each time so that we included all pairs of cities. In addition to inter-
city comparisons, we tested the network within each city. For intracity performances, we
trained networks separately for each city using five-fold cross validation. In each fold,
image-output pairs for 80% of census tracts from one city were used for training our model
and the remaining 20% were withheld. (samples stratified by deciles). Repeating this pro-
cess five times holding out a different 20% of tracts each time, we computed the average
MAE across the hold-out samples to evaluate intracity performance. We evaluated pre-
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diction performances for the best-off 10% and worst-off 10% tracts for each city, which
represents extremes of inequality.

2 Data and methods
2.1 Definition of city boundaries and census tracts
Countries differ in how city boundaries are defined based on population size and den-
sity, as well as city history, urban function, and administrative and political organization.
We used definitions by national statistical offices in each of the respective countries as
follows (see Additional file 1 for detailed definitions). For Auckland, we used urban area
(UA) boundaries as defined by Statistics New Zealand. For Sydney, we used significant
urban area (SUA) boundary as defined by Australian Bureau of Statistics. For Toronto and
Vancouver, we used census metropolitan area (CMA) boundaries as defined by Statistics
Canada. For US cities in this study, we used urbanized area (UA) boundaries as defined
by the US Census Bureau. For London, we used built-up area (BUA) (previously called
urban areas) boundaries as defined by UK Office of National Statistics. Figure S2 shows
each boundary with an underlying base map for each city.

For each of our study cities, we used the smallest standard geographic area i.e., census
tract definition for which income data was available. We use Census Blocks for US, Lower
Layer Super Output Areas for UK, Dissemination Areas for Canada, Statistical Areas Level
1 for Australia, and Statistical Area 1 for New Zealand (see Additional file 1 for detailed
definitions). Average census tract population and the number of census tracts for each city
are presented in Table S1.

2.2 Image data
A total of 7,233,320 images from 15 cities were accessed using the Google Street View Ap-
plication Programming Interface (API). We first created a 50 m grid for each of the cities
using city boundary shape files. We then used the API to retrieve the unique panorama
ids (‘panoid’) of images near each grid point acquired by Google for the years 2007-2019.
A fixed number of panoids for each census tract were used prioritizing images taken in
recent years. Census tracts are defined to have a similar population size for each coun-
try, yet their sizes vary across countries depending on how they are defined by statistical
agencies in respective countries. We wanted our sampled number of images to be roughly
proportional to the census tracts’ population. Therefore, we used 20 images from census
tracts with smaller population sizes (i.e., Auckland, Sydney, Toronto, and Vancouver) and
30 images from census tracts from all other cities that have larger census tract populations
(see Additional file 1, Table 1). We used 30 images per census tract for all other cities that
have larger census tract populations. Census tracts within the city boundaries that did not
have the required numbers of images, constituting 1% of all tracts, were excluded from
our analysis. For each sampled panoid location, we used four images representing four
orientations of a 360° panorama (0°, 90°, 180°, 270°) to estimate all directions within view.
Table S1 shows the number of and average populations of census tracts for each city as
well as the number of images obtained per census tract and in total.

2.3 Data on income and education
Detailed data sources and metadata from national statistics offices for income and educa-
tion for each of the cities are given in Additional file 1. For each outcome for each city, we
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calculated deciles of census tracts, with decile 1 corresponding to the worst-off 10% and
decile 10 to the best-off 10%.

2.4 Deep learning-based assignment to deciles
Following [22], we used pre-trained VGG16 [32] weights (trained on ImageNet [33] for
object detection and classification i.e., not focusing on street images) as a fixed feature
extractor to convert street view images to 4096 dimensional codes. We use the same net-
work structure and loss function used by [22], where the inputs to the network are four
images from one location and the output is an outcome decile (Figure S7). We trained for
the weights of the fully connected layers using image-label pairs described in the previ-
ous section in all cities in our sample. The true labels used during training were the decile
classes associated with the census tracts from which the images were sampled from. The
network was trained using PyTorch in Python. For all experiments, we used the Adam
optimizer with a learning rate 0.0001 and a batch size of 20 training the network for 30
epochs. The network that yielded the best validation error was kept as the final model.

2.5 Measurement of prediction performance
For transferability performances, i.e., multicity experiments, all data from the source (i.e.,
training) city were used for training. We measured how well the trained network uses
images to predict outcomes in all other target (i.e., prediction) cities that were not used in
training [22]. We evaluated the performance using mean absolute error (MAE).

For evaluating how well models performed when making predictions for communities
within the same city, i.e., single city experiments, we used five-fold cross validation. The
census tracts of a city were randomly allocated to five equally sized groups of 20%. In each
fold, 80% of census tracts (all images in these tracts) were used for training the network and
the remaining 20% were withheld. We then measured how well the trained network uses
images to predict outcomes for census tracts that were not used in training. We repeated
this process five times for each of the cities holding out a different 20% of census tracts
each time.

2.6 Data on population density and distances to the city center
For a comparative measure of population density, we computed the number of people per
km2 for each census tract. For distances to CBDs, we used coordinates for the CBD for
each city from OpenStreetMaps and computed distances between the centroid point of
each census tract and the CBD in kilometers.

Distributions of the wealthiest and poorest census tracts over space were substantially
different for Canadian cities and most American cities compared to London, Sydney, and
Auckland. Figure S5 and Figure S6 show comparisons in population density and distances
to the CBD in each city between the highest and lowest income neighborhoods. North
American cities are characterized by highest income groups living in car-dependent low-
density suburbs whereas the lower income groups live near the center with high popu-
lation density. The poor tend to live close to the city center as highlighted by the right-
skewed distributions in Figure S5. Most of the highest income groups live farther away
from the center as they have access to cars and ability to afford costs of private transport,
and hence can afford to live farther from the center. Population density distributions (Fig-
ure S6) for high income groups are much narrower, which is intuitive as they have more



Suel et al. EPJ Data Science           (2023) 12:19 Page 6 of 14

opportunities to choose their neighborhoods to live in their preferred density. This is con-
sistent with the suburbanization and car-oriented development history of American and
Canadian cities, where high income people who can afford cars chose to move outside the
city to consume more land [34] alongside the so-called “white flight” phenomenon ([35]).

These patterns, which will also have visual signs captured by street-level images, are
reversed for London, Sydney, and Auckland where it is mostly the high-income groups
that live closer to CBDs and the lower income groups father away from the center. Land
near CBDs is valuable, and it is mostly the rich who can afford to live there as affordable
housing in the center of these cities are scarce. The distributions of population density for
the best-off 10% and worst-off 10%, as shown in Figure S6, are mostly overlapping where
both income segments live in similar areas with respect to their density. In these cities,
especially for London, dense, walkable, transit-oriented neighborhoods are also attractive
for high-income segments of the population. San Francisco and New York had somewhat
different patterns from other US cities, and similar to London, where instead many high-
income neighborhoods are located near the center, populated by people who prefer to live
near well-paying jobs and urban amenities.

2.7 Regression analysis for predictors of similarity
We tested whether within city differences in population density and distance to city center
as experienced by the wealthiest and poorest deciles would explain poorer transferability
performance between city pairs. To do this, we needed a quantitative metric to summarize
‘the difference in differences’, comparing the difference in density and distance to CBD
between the richest and poorest deciles for each city. We used the test-statistic of a two-
sample t-test for each city and each metric; large positive or negative values of the test-
statistic indicate strong evidence of a difference between richest and poorest deciles in
that city, smaller values indicate weak or no evidence for a difference.

We then carried out a regression analysis (Eq. (1)) using the absolute difference between
the test-statistics in the two cities for each of the metrics as covariates. We also included
city-specific intercepts (constants) as well as an indicator variable for intra-country trans-
fer. We ran separate estimations for the best-off and worst-off deciles (Table 1).

MEAst = CSCt + β1 ∗ Iintra + β2 ∗ ddensityst + β3 ∗ ddistancest , (1)

where s and t are source and target cities respectively. CSC is the city specific constant to
be estimated, β are parameters to be estimated. ddensity is the difference between source
and target city t-statistics computed for population density. ddistance is the difference be-
tween source and target city t-statistics computed for distance to CBD. Iintra is the indicator
variable for intra-country transfer.

3 Results
3.1 Visual similarity between wealthiest areas compared to poorest areas
Tolstoy famously said “Happy families are all alike; every unhappy family is unhappy in
its own way [36].” In the context of different neighborhoods in cities, higher-income res-
idents have more opportunities to choose their neighborhoods to live in their favored
neighborhoods aligned with their preferences across many dimensions (e.g., proximity to
services, access to green space and parks, density, quality of infrastructure). Conversely,
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lower-income residents face significant trade-offs when deciding where to reside, often
having to make do with what is available and affordable, which can vary greatly between
cities. As a result of these influences, we hypothesized that well-off residents would live in
visually similar neighborhoods, while deprived neighborhoods would be more heteroge-
nous. Indeed, when we use street-level images, we found that well-off neighborhoods look
relatively alike while deprived neighborhoods are more distinctive, especially in different
cities using a similarity metric based on transferability performance of our deep learn-
ing model. Specifically, mean absolute error values were consistently lower when predict-
ing the best-off 10% than predicting the worst-off 10% as shown in Fig. 2 and Table S2
(67% of transfer city pairs). This was consistent for within-city and across city transfer-
ability experiments, being more pronounced in the latter. There was a significant differ-
ence in across city MAEs for best-off (mean = 2.44, median = 2.19) and worst-off (mean =
2.69, median = 2.68) deciles using the t-test on two related samples of scores (p < 0.001).
When we only look at within city comparisons using cross-validation, the MAEs of best-off
(mean = 1.10, median = 1.10) were lower than MAEs of worst-off (mean = 1.26, median =
1.18) deciles, but this difference was not significant. Significant differences between cross-
city MAEs suggest that visual features associated with poorer areas are distinct and unique
to each city compared to wealthier areas that share more visual features across countries.

Poor areas in all cities display signs of disrepair and poor condition of pavements, roads,
homes, and gardens, but differ in other features such as building design. As examples,
Fig. 3 shows images from poorest and wealthiest communities in different cities. Images
of poorly maintained social housing and tower blocks are symbols of overcrowding and
poverty in London and Toronto (MAE of 2.22 and 3.10 where Toronto and London are
target cities respectively), in contrast to Atlanta’s poor living in low-density suburbs (MAE
of 4.6 and 3.72 for Toronto and London as target and Atlanta as source cities). Cars are
the dominant mode of travel for all segments of population in cities such as Auckland and
Atlanta with low population density, in contrast to cities like San Francisco and London
where public transport is widely accessible. Trees and green space are visible in images of
low-density neighborhoods of cities like Atlanta but are also of different character (e.g.,
large areas of greenspace containing gravel roads and nature paths) compared to urban
parks and trees visible in higher density neighborhoods of London or New York (average
MAE of 4.06 and 3.67 respectively for London and New York as target and Atlanta as
source cities).

Wealthier residents can afford to live in neighborhoods with better amenities [8], as
a result of which higher quality spaces look visually similar even in different countries.
Another potential driver for higher similarity of higher-income neighborhoods may be
related to there being a generic aspirational vision of what a well-off neighborhood looks
like (e.g., new and well-maintained homes, low disorder) that may be in part shaped by
media. There is nonetheless between-city heterogeneity, albeit to a lesser extent, in what
constitutes a wealthy neighborhood. For example, wealthy communities where people live
in apartment buildings in London and New York contrast to houses in most other Amer-
ican cities. Luxury apartment buildings in financial districts of New York and London
with access to urban parks are visually distinct from the luxury mansions of Los Angeles
with well-maintained private gardens (See Figure S4 for prediction maps for London when
transferring from different target cities).
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Figure 2 Measurement performances for all city pairs. Mean absolute errors (MAE) achieved when predicting
worst-off and best-off deciles by (A) income and (B) educational attainment for all source (training) and target
(prediction) city pairs. Diagonal entries show results using data from a single city as described in the text.
Random allocation of census tracts to deciles in the target city would result in an MAE value close to 5 (dark
red), whereas perfect prediction would correspond to a MAE value of 0 (dark blue). Shades of blue depict
better prediction performances compared to shades of red

3.2 Comparisons between cities within the same country and across different
countries

Poor and rich communities looked more similar to their counterparts in other cities in the
same country, than to those in cities in different countries. Models trained on data from
an US city made better predictions in other US cities than in non-US cities, as was the case
for Canadian cities. The same pattern was observed between Sydney and Auckland, which
are in the pacific region although not in the same country. These cities share similarities
in their climates, cultures, social and political history, and architecture. We also hypothe-
sized that neighborhoods in big cities with populations of more than 5 million each (New
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Figure 3 Example images. Street-level image examples from (A) poorest and (B) wealthiest communities in
each city. Images courtesy of Mapillary

York, Los Angeles, London, Chicago, Toronto, Sydney) would be more similar. However,
we did not observe this from our results.

In addition, poor prediction performances for Auckland, Sydney, London, and Atlanta
when transferring from other source cities (average MAE of 3.42, 3.10, 2.87 and 2.85 re-
spectively as target cities) are consistent with observed differences in spatial patterns de-
scribed in Sect. 2.7. It mirrors local differences, for example, that the well-off residents of
London live in areas characterized by high building density and are hence visually distinct
from the well-off suburbs in Los Angeles.

3.3 Predictors of similarity
We considered differences across cities between the highest and lowest income deciles in
two well-defined and quantifiable features described above: their population density and
distances to the city’s central business district (CBD), as predictors of inter-city similarity.
Both features have direct visual signs, such as more buildings, cars, and less sky view,
that are captured by street images. To summarize and quantify the role of differences and
similarities observed in Figure S5 and Figure S6, we conducted regression analyses (Fig. 4).
Indeed, we find that the magnitude and direction of differences in population density and
distance to city center between poor and wealthy neighborhoods partially explain their
visual similarities between cities.

Between city MAEs were regressed against an indicator for whether the predicted and
training cities were in the same country, and differences in population density and dis-
tances to city center between the corresponding two cities (Eq. (1)). The test-statistic cor-
responds to a two-sample t-test where large positive or negative values of the test-statistic
indicate strong evidence of a difference in the metric (e.g., population density) between
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Figure 4 Multivariable regression of prediction errors (MAE). Between city MAEs were regressed against an
indicator for whether the predicted and training cities were in the same country, differences in population
density and distances to city center. Separate regressions were carried out for the best-off and worst-off
deciles. Coefficients of ‘differences in distances to CBD’ and ‘differences in population density’ show change in
error for each unit of difference in t-values. (See Materials and Methods for further details of variables included
and how the difference in t-values were computed)

tracts in lowest and highest income deciles within the same city, and smaller values indi-
cate weak or no evidence for a difference. The absolute difference between the test statis-
tics computed for two cities were then used as the co-variate in the regression model as
a measure of relative difference in distribution of each metric across these two cities. The
differences in t-statistics computed between two cities ranged between 0.02 and 44.89.

Regression results revealed that a moderate share of variation in transferability errors
(R2 = 0.39 for best-off and R2 = 0.57 for worst-off deciles) is explained by variables included
as shown in Fig. 4 including city specific intercepts. The intra-country transfer indicators
coefficients were negative as it is harder to transfer across countries than within coun-
try. It showed that, compared to within-country transfer, cross country would have 0.32
and 0.27 more error on average (p-values = 0.04 and 0.06, respectively) for allocation to
the best-off and worst-off deciles. Coefficients for differences in population density and
distances to the center between rich and poor communities were positive: the bigger the
difference between source and target cities, the harder it is to transfer. Observed distribu-
tions of population density and distance to CBDs are related to how cities developed over
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time, physically and administratively, including decentralization patterns and car-oriented
development.

3.4 Comparison with similarities of communities based on educational
attainment

Correlations between educational attainment and household income (both measured at
the census tract level) varied across cities ranging from r = 0.17 for Vancouver to r = 0.81
for London and Atlanta (Figure S3). In Canada, many highly educated immigrants cannot
get high paying jobs as their credentials are not recognized (Picot et al., 2008). Similar yet
less pronounced dynamics are in play for both Sydney and Auckland. When we repeated
the same set of analyses with street images using educational attainment instead of in-
come, we found even higher visual similarity between areas with highest educational at-
tainment. Lowest educational attainment tracts were even more different from each other
(Fig. 2). For 80% of transfer city pairs, MAE were lower when predicting the best-off 10%
than predicting the worst-off 10%. Differences between MAEs of best-off (mean = 1.90)
and worst-off (mean = 2.83) deciles (p < 0.001) were larger.

Greater visual similarity between highest education neighborhoods is consistent with
evidence that amenity levels (which will have stronger visual signals) have more of an in-
fluence on high-skill workers’ decisions of where they live compared to low-income work-
ers where the priority is on rents and wages [37, 38]. Transferability performances were
particularly poor for predicting lowest education decile areas in New York. Higher dis-
similarity between lowest education neighborhoods is consistent with evidence of higher
segregation of high- and low-skill workers into different cities. Certain larger cities by
population (e.g., New York), for instance, attract both higher- and lower-skilled workers
increasing inequalities whereas smaller cities have thinner tails in skill distribution [39]
potentially leading to distinct visual features we observe in our work.

4 Discussion and limitations
Plato’s statement from more than 2300 years ago, that “any city, however small, is in fact
divided into two, one the city of the poor, the other of the rich,” still holds true today as
neighborhood experiences of the wealthiest and poorest residents differ widely even when
they live in the same city [40, 41]. To probe the characteristics of this feature in multiple
cities, we asked: do the environments of the rich (and the poor) look similar in different
cities across the world? Using transferable models, we showed that visual indicators of
wealth across cities are more similar than those of poverty.

In previous work, visual elements in street images, including window and roof styles,
number and types of cars, store signs, trees, fire escapes, and road widths, were found to
be correlated with socioeconomic variables in city or country specific studies [7, 9, 20, 21].
Parallel to this, computer vision methods can also identify distinct architectural elements
for different cities (e.g. lampposts, doors, balconies, windows with railings) [42]. Taken
together, this body of work shows that poverty and affluence in different cities have dis-
tinct as well as related features. We did not extract pre-defined features so that we are
not limited by the type of visual features we can extract i.e., for which sufficient labeled
datasets or pre-trained models exist. Instead, we let the model learn visual features asso-
ciated with wealth or poverty in a city, and test whether it predicts the same social phe-
nomenon elsewhere. It enables the networks to make use of all features visible from images
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that potentially impact people including but not limited to types and conditions of build-
ings, vehicles, people, shops, pedestrian and cycling infrastructure, green and blue space,
aesthetics, and trash on streets. This approach is akin to how humans intuitively identify
where a poor or wealthy neighborhood may be, even in a city that they have not been to
before. The limitation with this approach, however, is that post-hoc analysis is needed to
identify which visual features, that are ideally policy amenable, are driving the differences.

We find that, only some visual elements associated with poverty or wealth in one city
only generalize to others. Similarities as well as differences across cities are driven by his-
torical factors, policies, and local geography. Car-oriented development often results in
lower density especially when geography allows for city expansion. Poor suburban neigh-
borhoods often have green space visible from images. However, in such cities, poor neigh-
borhoods often lack access to sufficient levels of urban amenities, affordable and sustain-
able transport options. On the other hand, cities that have higher shares of public transit
use are often higher in density. From what is visible from street-level images, high-density
poor neighborhoods lack trees or green space in proximity. In addition, residents in such
neighborhoods may be more exposed to hazards related to traffic such as higher levels
of pollution, and road collisions. They may also suffer from poorer municipal services in-
cluding waste collection. Further, residents of such neighborhoods may enjoy higher levels
of access to urban amenities, but the type and quality of amenities may be poor and in-
adequate for the population density (i.e., overcrowding). While we used the full dataset
containing all deciles from all cities during training, we used the best-off and worst-off
deciles for our evaluations relating to the wealthiest and poorest areas in each city in line
with the focus of the paper. Similarities or differences in other deciles and their transfer-
ability across cities and countries, which are arguably harder to interpret, are not part of
our analysis.

Cities are dynamic and their visuals change with poor and rich residents moving in and
out of neighborhoods, city investments and regulations. History of migration and gentri-
fication also affect visual similarities, where new social groups settle into existing neigh-
borhoods changing their social fabric and environmental quality. For example, land own-
ership changes over time where the wealthy migrate according to changing opportunities
(e.g., new developments near particularly attractive areas new waterfronts), sometimes
pushing out the poor [43]. Features like cars, buildings, shops, and aesthetics also change
over time. Such dynamics are not captured in our cross-sectional analysis yet are visible
from time-varying street images that are increasingly available.

Methodologically, we found that transferability errors were higher for poverty compared
to that of wealth. This finding raises the need for caution in using imagery for measure-
ments of socioeconomic status for data-poor geographies [44]. Specifically, greater error
when predicting deprived areas can have serious implications. For example, if used for re-
source allocation, there has to be effort in additional data to understand the real nexus of
where the poor are.

In high-income countries, inequalities are increasingly concentrated in urban areas
[6, 45]. While city governments have limited influence on national economic policies, they
can influence and change cities’ built environment to benefit disadvantaged residents. Ex-
amples of feasible actions include allocation of land for parks and nature, public spaces, car
free zones, higher quality homes, improving foodscapes, civic spaces for all age groups, im-
proving public transit networks and stops including public transit only lanes, better infras-
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tructure for walking and cycling. The focus on ‘building back better’ and post-pandemic
cities offers the chance to remedy our cities. Data-driven empirical findings enabled by our
work and methods will support generation of novel and strategically relevant hypotheses
to help identify urban policy and planning actions.
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