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Abstract
Temporal social networks of human interactions are preponderant in understanding
the fundamental patterns of human behavior. In these networks, interactions occur
locally between individuals (i.e., nodes) who connect with each other at different
times, culminating into a complex system-wide web that has a dynamic composition.
Dynamic behavior in networks occurs not only locally but also at the global level, as
systems expand or shrink due either to: changes in the size of node population or
variations in the chance of a connection between two nodes. Here, we propose a
numerical maximum-likelihood method to estimate population size and the
probability of two nodes connecting at any given point in time. An advantage of the
method is that it relies only on aggregate quantities, which are easy to access and free
from privacy issues. Our approach enables us to identify the simultaneous (rather
than the asynchronous) contribution of each mechanism in the densification and
sparsification of human contacts, providing a better understanding of how humans
collectively construct and deconstruct social networks.
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1 Introduction
Individuals are interacting in unprecedented ways due to advancements in communica-
tion technology, which has granted access to human contact data in a variety of social con-
texts (e.g., mobile calls [1–5], texts [6, 7], email [8], face-to-face [9–13]). Our understand-
ing of fundamental human behavioral patterns have benefited considerably from these
rich data sources in which individuals (i.e., nodes) establish and break existing connec-
tions (i.e., edges) with each other, thus driving the evolution of a complex network struc-
ture. To capture the dynamics of these systems in which the contacts between nodes occur
intermittently, social networks are often modeled using a temporal representation [14, 15].

In social systems, contacts tend to occur intermittently not only because individuals
have a choice on how and when to engage with others, but also because there are vari-
ous external factors that affect human activity, such as spatial constraints (e.g., size and
allocation of meeting rooms), time constraints (e.g., prespecified schedules in schools,
workplaces and conferences), and a circadian rhythm; hence, at a given point in time, the
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number of active nodes (N ) and the number of edges (M) in the system are changing. Fur-
thermore, many empirical networks exhibit a relationship between total edges and net-
work size that is consistent with a densification scaling property [16–18]: M ∝ Nγ with
γ > 1, in which aggregate edges increase superlinearly in network size. In temporal social
networks, this dynamical property between N and M is influenced either by (i) fluctu-
ations in population size [17, 19, 20], (ii) changing probability of node connection [19],
or (iii) both [20]. Given a fixed connection probability and changing size of population,
the conventional superlinear scaling emerges i.e., M ∝ Nγ with γ > 1 [19]. Conversely, for
constant population size and varying connection probability, M exhibits an accelerating
growth pattern where M increases with N much faster than the conventional superlinear
scaling would suggest [19].

However, many human contact networks exhibit a dynamical N-M relationship that is
a mixture of the two behaviors, each appearing either as a growth in M along a straight
line or an increasing M along an upward sloping trajectory on log-log scale [19, 20]. This
type of mixed densification scaling usually appears when individuals are free to enter and
exit the system, and opportunities to connect are clearly defined (e.g., during lunch in a
work setting) or activities are strictly regulated by a schedule (e.g., events at a conference).
At a conference, for instance, it is expected that attendees will limit socialization during
times designated for a keynote talk because they are attentive to the speaker. During coffee
break, in contrast, they are free to interact with others. The emergence of a mixed scaling
relationship in temporal social networks suggests that the mechanism that describes the
dynamical growth of M in N may be alternating occasionally [20]. From this standpoint,
a Markov regime-switching model [21, 22] is employed in a previous study to estimate
the probability that the dynamical source of densification and sparsification is attributed
either to changing population size or fluctuating intensity in activity level at a given time
[20].

Here, we develop an alternative approach to identify the extent to which changing pop-
ulation and connection probability concurrently influence the dynamics of densification
and sparsification in human contact networks. The proposed method, based on numeri-
cal likelihood functions, enables the simultaneous estimation of population size (= # active
nodes +# isolated nodes) and connection probability in different social networks using a
series of (N , M) observations, each corresponding to a given temporal snapshot. By taking
this approach, we can gain insight not only into the independent contribution of the two
mechanisms but also into how their co-movement influences the emergence of a mixed
scaling. While contact lists (or event sequences) usually allow us to observe the number
of active individuals who made at least one contact, the number of inactive individuals
who were present but have never interacted (i.e., isolated nodes) is often unknown. Our
approach also provides an estimate for the number of isolated nodes by relying only on
the total numbers of active nodes and edges at a given point in time.

2 Methods
2.1 Data
We use the following four temporal human-contact networks collected by the SocioPat-
terns collaboration [23]:

• Hospital [24]: Contacts between patients, nurses and doctors at a hospital in Lyon,
France on December 7, 2010.
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Table 1 Summary of properties for the datasets

Data N M No. of snapshots Reference

Hospital 48 455 165 Vanhems et al. [24]
Workplace 185 821 114 Génois & Barrat [25]
IC2S2-17 243 11,125 109 Génois et al. [26]
WS-16 113 3858 103 Génois et al. [26]

• Workplace [25]: Contacts between employees at an office building in France on June
27, 2015.

• IC2S2-17 [26]: Contacts between conference attendees at the International
Conference on Computational Social Science 2017 at GESIS in Cologne, Germany on
July 11, 2017.

• WS-16 [26]: Contacts between participants at the Computational Social Science
Winter Symposium 2016 at GESIS in Cologne, Germany on December 1, 2016.

For each data set, interactions between individuals occur in a physical location, and Ra-
dio Frequency Identification (RFID) sensors detect a contact when one person is within
1.5 meters of another [24–26]. Contacts are recorded at 20-second intervals. Such high-
resolution data have been frequently used to discover temporal patterns in human behav-
ior [13, 14, 27–29] or to explore how infectious diseases spread through human contacts
[30–32]. The validity of data recorded by RFID sensors is also examined [33] and network
reconstruction methods based on the observed data are studied [34].

We take advantage of the time-resolved data to explore the temporal dynamics of den-
sification and sparsification in the data sets, by converting them to temporal networks
with unweighted and undirected edges. We segment a data set into a snapshot sequence
(i.e., a series of networks that are ordered in time [35]), which we construct as sliding time
windows. A time window has a duration of 10 minutes and consecutive windows have a
5-minute overlap between them. Then, we connect two nodes if they have at least one
contact within the time window, and we extend this to all other time windows to obtain
a sequence of snapshots. A node is considered to be active if we detect that it is involved
in one or more contact events for a given network snapshot. The numbers of active nodes
and edges in a snapshot are denoted by N and M, respectively (Table 1). The observed N
and M are shown in Fig. 1 (see Fig. S1 in Additional file 1 for different days).

2.2 Estimation
2.2.1 Dynamic hidden-variable model
To explore the densification and sparsification dynamics in temporal networks, we employ
a hidden-variable (or a fitness) model with a temporal dimension [19, 20, 36, 37]. The
probability that two nodes i and j are connected in time interval [t, t + �t] (henceforth, we
refer to as time interval t) is given by

pij,t = 1 – e–κtaiaj , i, j = 1, . . . , Np,t , t = 1, . . . , T , (1)

where ai is node i’s intrinsic activity level, assumed to be uniformly distributed on [0, 1].
We define the range of Np as 2 ≤ Np ≤ 230 for all except Workplace data, for which we
allow Np to span the interval 2 ≤ Np ≤ 130 (increasing by 1 for all data sets). For κ , we
consider the interval 0 ≤ κ ≤ 0.75 (incremented by 0.01) for Workplace and 0 ≤ κ ≤ 4
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Figure 1 Evolution of number of edges M and active nodes N in face-to-face networks. The following days
are shown for each data set: (a) Hospital on December 7, 2010, (b) Workplace on June 27, 2015, (c) IC2S2-17
on July 11, 2017 and (d) WS-16 on December 1, 2016. Timeline below panels c and d identify time windows
for scheduled events. Gray shading highlights unrestricted sessions i.e., registration, break, lunch, poster
session and closing remarks

(incremented by 0.025) for all others. A smaller grid size for κ (i.e., 0.01) is used to imple-
ment the method in Workplace data set, thus resulting in more combinations given the
same parameter space employed for Hospital and the conference data sets. To reduce the
computational time, we therefore elected to restrict the parameter space for Workplace.
Note that the dynamical source of networks is decomposed into two factors: Np,t and κt .
In time interval t, the overall activity of nodes is captured by κt > 0, which encapsulates
changing activity levels due to prespecified schedule, circadian rhythm, etc., while the to-
tal number of nodes (i.e., combined sum of active and inactive nodes) is denoted by Np,t .
It should be noted that the number of active individuals N , at a given time, can be directly
observed from contact lists, but the potential number of individuals (i.e., population) in a
system is not usually known because contact events naturally exclude non-interacting in-
dividuals. Due to the lack of information on population, it is generally not obvious to what
extent variations in N and M could be explained by changes in population or activity. Our
model takes into account the two possible factors, population and overall activity level, in
explaining the observed behaviors of N and M, that cause densification and sparsification
of temporal networks.

Note that for a given observed pair of (N , M), the estimates for (κ , Np) would generally
differ if we consider a different functional form of pi,j. As an alternative to the connecting
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probability in Eq. (1), we also show the results for the following specification:

pij,t = κtaiaj, i, j = 1, . . . , Np,t , t = 1, . . . , T . (2)

This specification is employed in previous studies [19, 20]. Here, the interval for Np re-
mains as 2 ≤ Np ≤ 230; however, κ spans the range 0 ≤ κ ≤ 1 in increments of 0.01. It
should be noted that while the possible range of values for κ in Eq. (2) is different from
that in Eq. (1), the essential role of κ in the two specifications are the same (i.e., κ captures
the overall activity level).

2.2.2 Numerical maximum-likelihood estimation
We estimate the parameters (κt , Np,t) for a given (Nt , Mt) in time interval t, using a numer-
ical maximum-likelihood method. Let �κ ≡ {

κ (1), . . . ,κ (Lκ )} and �p ≡
{

N (1)
p , . . . , N (Lp)

p

}
be

the sets of all possible values for κ and Np, respectively. The Cartesian product of two sets
�κ and �p is given as

� =
{

(κ , Np)|κ ∈ �κ , Np ∈ �p
}

. (3)

We define θ � ∈ � as the �-th element of the set � for � = 1, . . . , |�|, where |�| = LκLp is
the cardinality of �, i.e., the total number of combinations (κ , Np).

Our maximum-likelihood estimation proceeds as follows:
1. For a given θ �, generate an unweighted and undirected network based on

probabilities {pij} for i > j. By repeating the network generation S times, one can
obtain a sequence of combinations

{
(N (s), M(s))

}S
s=1, where N (s) and M(s) respectively

denote the number of active nodes and the number of edges observed in the s-th
simulation. We set S = 104.

2. Count the number of appearances of each unique combination in
{

(N (s), M(s))
}S

s=1
and express as a fraction of the number of runs S to get the joint distribution
f (N , M|θ �), i.e., the likelihood function for a given θ �.

3. Repeat steps 1 and 2 to obtain a set of likelihood functions
{

f (N , M|θ �)
}|�|

�=1.
4. Select � = �∗(≤ |�|) such that f (Nt , Mt|θ �∗

) yields the highest probability for a given
empirical observation (Nt , Mt). The maximum-likelihood estimators κ̂t and N̂p,t are
thus given by

(
κ̂t , N̂p,t

)
= θ �∗

, (4)

where �∗ = arg max� f (Nt , Mt|θ �).
5. Repeat steps 1–4 for all time intervals t = 1, . . . , T .

A schematic of the estimation method is presented in Fig. 2. Note that the pre-estimation
part of the above procedure (i.e., generating a sufficiently large number of network snap-
shots and obtaining likelihood functions from them) does not need to be re-executed
when implementing estimation on multiple datasets. One can apply the obtained likeli-
hood functions to any temporal network as long as the generated values of (N , M), repre-
sented by

{
(N (s), M(s))

}S
s=1, are still valid for those datasets (i.e., the generated (N , M) space

includes the empirical observation of {(Nt , Mt)}t). Simply stated, once likelihood functions
are calculated, one essentially obtains a function that takes empirical (Nt , Mt) as input and
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Figure 2 Schematic of maximum-likelihood estimation of κ and Np . The top panel shows contact data that
gives a combination (Nt ,Mt ). The sequence {(Nt ,Mt)}Tt=1 is plotted in the N-M space, in which a particular
combination of (11, 8) is highlighted in red (bottom left). The joint distributions of (N,M), or likelihood
functions, are generated using the hidden-variable model for different combinations of (κ ,Np) = θ , with each
indexed by �′ and �∗ (bottom right). A likelihood function gives the probability of observing a network with N
nodes and M edges, for a given combination of (κ ,Np). The maximum-likelihood estimators, denoted by κ̂t
and N̂p,t , are given by a combination of κ and Np associated with the maximum-likelihood function

f�∗ = f (Nt ,Mt|θ�∗
)

returns
(
κ̂t , N̂p,t

)
as output. We provide a Python implementation of such a function in

Github [38].

2.3 Validation analysis
We perform a validation analysis to assess the accuracy of our numerical maximum-
likelihood method in estimating the model parameters. For each combination of the true
values (Np, κ), we generate synthetic networks based on the baseline model (Eq. (1)) and
apply the estimation method to obtain N̂p and κ̂ . Then we take the average of the respec-
tive estimated values over 1000 runs.

Based on the comparison of estimated values with their respective true values, the
maximum-likelihood estimators perform well in recovering the true population size and
overall activity (Fig. 3). It should be noted, however, that κ̂ is sensitive to small values of
the true population size (i.e., Np ≤ 50), in that κ̂ overestimates true κ (Fig. 3, bottom). For
larger population sizes (e.g., Np > 50), the performance of the estimation method improves
considerably, with deviations, if any, being much smaller. The reason for the low accuracy
when Np is small is that our method relies on N and M to identify the most likely com-
bination of the model parameters; a particular combination (N , M) does not necessarily
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Figure 3 Validation of the maximum-likelihood estimation method. (a) Estimation of Np ranging from 5 to
200 (incremented by 5) for a given κ annotated at the top. (b) Estimation of κ ranging from 0.05 to 2.5
(incremented by 0.05) for a given Np annotated at the top. The estimates N̂p,t and κ̂t are obtained based on
the connecting probability specified by Eq. (1). (c) The same experiment as in panel b for smaller networks.
The estimation may not work well when Np is quite small. In all panels, the error bars denote one standard
deviation computed over 1000 runs. Solid line represents the true value (i.e., 45-degree line)

have a one-to-one correspondence with a particular (κ , Np)-combination especially when
the network is small, thereby making it possible to see large deviations as exhibited in
Fig. 3 (bottom). We also show another validation in which both parameters are changing
(Fig. S2).

3 Results
3.1 Evolution of κ and Np in temporal social networks
Estimation results for Np and κ are shown in Figs. 4 and 5, respectively. Fluctuating N̂p,t

and κ̂t in the four data sets indicate that, quite often, both are changing simultaneously.
Similar findings are seen in other days for the model based on Eq. (1) (Figs. S3 and S4) and
also for the alternative probability based on Eq. (2) (Figs. S5–S8). As an alternative to the
uniform distribution of individual activity level, we also implement the method based on
a (skewed) beta distribution (Figs. S9 and S10) and find a tendency for both parameters to
fluctuate simultaneously. Furthermore, we highlight that the method is flexible and appli-
cable to any temporal network given its reliance on basic network measures. To this end,
we examined a well-known data set on interbank trading (e-MID [18]) and two biological
networks (Insect-Ant-Trophallaxis [39]) (see Figs. S11 and S12).
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In social networks, a source of shifts in κ and Np would be stemming from situational
conditions that may affect human behavior in each location. One example is a prespecified
schedule in an academic conference that rules the behavior of participants [20, 40–42].
For the IC2S2-17 and WS-16 data, we can compare the shifts in the estimated values with
the official programs that are available publicly [43, 44]. In contrast, a strict schedule of
activities is not stipulated in the Hospital and Workplace data, thus precluding a similar
kind of assessment.

3.1.1 Dynamic behavior of estimated population size N̂p,t

The fluctuations of N̂p,t in Hospital and Workplace (Figs. 4a and b) stand in contrast to
those of IC2S2-17 and WS-16 (Figs. 4c and d), in which N̂p,t exhibits more systematic
variations. Prior to the first keynote talk of IC2S2-17, N̂p,t increases steadily as expected
during a period when participants are arriving at the venue; however, it declines during
poster session (Figs. 4c). The poster session precedes the final keynote talk; hence the
decline in population size (Fig. 4c after 15:00) may reflect the exit of participants who,
based on the subsequent rise in N̂p,t shortly after (Fig. 4c, 17:00), reconvene for the keynote
speech (Fig. 4c, 17:30). In WS-16, population size is also high during oral and keynote
sessions and a noticeable decline is seen during the closing remarks, which is the final
event of the day (Fig. 4d, 17:00). In Fig. S3d, WS-16 has a similar schedule to that of IC2S2-
17 (Fig. 4c) and similar movements in N̂p,t , which grows during registration but subsides
during poster session before increasing again prior to the start of the final keynote speech.

Figure 4 Estimated size of network population, N̂p,t , number of active persons, Nt , and total isolated nodes,
N̂p,t – Nt for (a) Hospital, (b) Workplace, (c) IC2S2-17, and (d) WS-16. Timelines at the bottom identify time
windows for conference schedule. Gray shading highlights unrestricted sessions i.e., registration, break, lunch,
poster session and closing remarks
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In most of the data sets, total active individuals Nt follows closely the population size,
which is the maximum possible value of nodes that can be active at a given time (i.e,
Nt ≤ Np,t). From the estimated population size, we can compute the number of resting
nodes as N̂p,t – Nt (Fig. 4, broken line). Resting nodes reflect a realistic but generally un-
observable feature of dynamic networks, that of isolated individuals who are not in di-
rect contact with any other individual in the system [19]. In conference data, total isolated
nodes exhibit a systematic correspondence with activities; few individuals are isolated dur-
ing registration, break, lunch, and poster session, while elevated levels are seen for keynote
talks and oral sessions (Figs. 4c and d, broken line). In Hospital data, total isolated nodes
is fairly small (close to zero in many instances); however, this is not unnatural in such
high-contact environments where hospital staff are frequently engaging each other and/or
attending to patients (Fig. 4a, broken line). In contrast, the number of isolated nodes in
Workplace data is generally high, up to three times Nt (Fig. 4b). Further investigation into
the impact of contact duration in conference data indicate that, for longer time windows
(e.g., 15 minutes or 30 minutes) the number of isolated nodes is smaller relative to the
baseline results (see Fig. S13 vs. Fig. 4c–d). In contrast to the 10-minute time windows,
a longer snapshot length allows us to observe individuals over an extended period; thus
increasing the chance of an initially isolated node getting at least one contact.

3.1.2 Dynamic behavior of estimated overall activity κ̂t

The estimated activity parameter, κ̂t , is high during unrestricted sessions at both confer-
ences, signaling intense interactions between participants (Figs. 5c and d, shading). How-
ever, during keynote talks and oral sessions, κ̂t fluctuates around much smaller values. This

Figure 5 Estimated overall activity level, κ̂t . (a) Hospital, (b) Workplace, (c) IC2S2-17, and (d) WS-16. Timelines
at the bottom identify time windows for conference schedule. Gray shading highlights unrestricted sessions
i.e., registration, break, lunch, poster session and closing remarks
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suggests that attendees have a greater chance of making contact with each other during
registration, coffee break, lunch and poster session than during the oral sessions. Although
κ̂t declines and remains very low for the duration of keynote talks and oral sessions, our
method still detects slight variations, suggesting that N̂p,t is not the only dynamical pa-
rameter at play. Figure S6 shows estimated overall activity for the same days based on an
alternative probability, Eq. (2). For larger temporal snapshots, we find a similar tendency
for estimated κ̂t to fluctuate around smaller values during keynote talks and oral sessions
relative to larger values during open sessions (Fig. S14).

In contrast, κ̂t changes more erratically in Hospital and Workplace data. A discernible
pattern that corresponds with coordination in movement or activity, as seen in conference
data, is not exhibited (Figs. 5a and b). Nevertheless, for Hospital data, κ̂t is highest at the
end of the day (Fig. 5a) when there is also a diminution in population size (Fig. 4a), while for
Workplace data, κ̂t is highest at the beginning of the day (Fig. 5b) when N̂p,t is increasing
(Fig. 4b). At these times, the behaviors of N and M reflect the dual impact of a sharp rise
in κ̂t as individuals leave the Hospital network (thereby reducing N̂p,t) or individuals in
Workplace join the system (thereby increasing N̂p,t).

3.2 Time-varying contribution of Np and κ to the emergence of densification
scaling

We now examine the dynamical relationship between the number of active nodes N and
the number of edges M in empirical data to identify the source of densification scaling in
social networks. Figures 6 and 7 demonstrate the relationship between N and M based
on a series of temporal snapshots for each data set, and the respective color scales de-
note changing levels of population size N̂p,t and overall activity κ̂t . All data sets exhibit
a superlinear scaling, or “densification power law” [17, 45], i.e., M grows in N more than
proportionally. This behavior is also evident in other days which we analyzed for each data
set (Figs. S15–S16). However, the scaling pattern emerges as a mixture of two distinct be-
haviors [19, 20]; the straight-line scaling pattern indicates a constant exponent γ > 1 of
M ∝ Nγ , and it emerges for small to intermediate values of N . However, for larger values
of N , total edges M grows along an upward bending trajectory, implying an accelerating
growth of M in N . The two patterns are easily distinguished in the conference networks
but to a lesser extent in Hospital and Workplace data.

In all data sets, a linear pattern tends to emerge within a specific range of values for
population size N̂p,t and activity level κ̂t . Population size gradually expands from small
to moderate values and, along with this, Nt is also increasing (Fig. 6). At the same time,
activity level is high in small networks with the number of edges M at its upper bound
N(N – 1)/2 in some instances, implying that a considerable proportion of the individuals
present are engaged (Figs. 7a and S16a, c–d). However, as the population grows, activity
level declines rapidly and M continues to grow at a constant rate (e.g. Fig. 7a blue-green-
yellow transition). During this phase, therefore, the dynamics between M and N are dom-
inated by the gradual expansion of N̂p,t which allows an increasing number of individuals
to become active.

Given that population size of face-to-face networks is finite, N̂p,t will eventually become
constant but M may continue to grow as the number of active nodes N gradually ap-
proaches N̂p,t , yielding an upward bending slope towards M’s upper bound N(N – 1)/2
(dotted line in Figs. 6 and 7). The plots for IC2S2-17 and WS-16 in Figs. 6 and 7 suggest
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Figure 6 Densification scaling and changes in estimated population size in face-to-face networks. N-M
scaling plots are shown for (a) Hospital on December 7, 2010 (b) Workplace on June 27, 2015 (c) IC2S2-17 on
July 11, 2017 and (d) WS-16 on December 1, 2016. Each dot represents a snapshot of the network and colors
denote estimated population size N̂p,t based on the respective color bar. Gray dashed and dotted lines show
theoretical lower (M = N/2) and upper (M = N(N – 1)/2) bounds. Estimates are based on Eq. (1)

that this accelerating growth in M occurs as κ̂ increases while N̂p,t remains high and rel-
atively constant. As the number of active individuals N gets closer to N̂p,t , few isolated
nodes (if any) remain, thus resulting in denser networks in which M is almost at the max-
imum number of edges that can exist between active nodes. To enable these previously
isolated individuals to make at least one connection, overall activity level increases, and
this drives the continued growth in aggregate edges. We also show in Additional file 1 the
corresponding figures based on the alternative probability of connection in Eq. (2), and
the results are consistent with that of the baseline model (Figs. S17–S20). Additionally,
we investigate the effect of contact duration (Figs. S21 and S22) and the implication of
assuming a broader distribution of individual activity level (Fig. S23 and S24); the results
substantiate the role played by N̂p,t and κ̂t in how densification scaling emerges.

4 Discussion
In this study, we proposed a method to identify the driving force of the dynamical rela-
tionship between total active nodes N and total edges M in temporal networks. Changes
in population size Np and overall activity κ have both been identified as the mecha-
nisms behind this dynamical relationship, each contributing to the emergence of different
densification scaling patterns [16, 17, 19, 20, 45]. Our main contribution is a numerical
maximum-likelihood method that is able to estimate simultaneously, population size Np
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Figure 7 Densification scaling and changes in overall activity κ̂t in face-to-face networks. N-M scaling plots
are shown for (a) Hospital on December 7, 2010 (b) Workplace on June 27, 2015 (c) IC2S2-17 on July 11, 2017
and (d) WS-16 on December 1, 2016. Each dot represents a snapshot of the network and colors denote
estimated population size N̂p,t based on the respective color bar. Gray dashed and dotted lines show
theoretical lower (M = N/2) and upper (M = N(N – 1)/2) bounds. Estimates are based on Eq. (1)

and activity rhythm κ at given times, extending previous works in which one parameter is
estimated by assuming the other is constant [19, 20]. We found that changes in the mech-
anisms of densification and sparsification reflect explicit periodic transitions in networks
that have rigid time constraints. Furthermore, our findings remain consistent with previ-
ous studies which explain the emergence of a constant scaling exponent as the result of
an increasing population size, while the accelerating growth pattern is being impelled by
intensification of overall activity [19, 20].

Although we have focused on social temporal networks in face-to-face contexts, the
method is adaptable to practically any dynamical system that can be modeled as a time-
varying network of nodes and edges [14, 28, 46]. This is one advantage of our method
because of the accessibility of N and M in most networks without having privacy issues.
Of course, there are some limitations which need to be addressed in future research. First,
we employed a dynamic hidden variable model in generating networks, in which each
node is randomly linked to another based on their individual activity [36, 37]. This means
that although the model can reproduce the global quantities of N and M, more realistic
structural features that are known to exist in social networks (e.g. community structure,
triadic closure) are absent in generated networks. However, our focus in this work is to
understand the variation in these global quantities of networks which does not require
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knowledge of structural properties. Our method also facilitates the use of network gener-
ating models that incorporate such properties observed in empirical networks.

Second, we assume that the distribution of node fitness (i.e., intrinsic activity of a node)
in the network generating model is uniform. Although an empirical fitness distribution is
preferred, the challenge exists in obtaining the individual activity level of nodes that are
part of the population but are dormant (i.e., having no edges). Such nodes are generally
not observable, because they are not explicitly stated as nodes that have interacted with
others in the contact data set.

Third, due to the numerical nature of the likelihood function, it is generally difficult
to obtain confidence intervals and p-values. To quantify the statistical significance, we
would need to rely on other approaches such as nonlinear least squares [19] and Bayesian
estimation [20]. However, in those previous studies, it is assumed that either κ or Np is
fixed at each point in time to consider environments in which the contact dynamics are
driven by changes in activity or population.

The relevance of this work lies in the simplicity of the method for understanding the
dynamical relationship between fundamental global quantities of temporal networks, and
the adaptability of our method to include more realistic features of empirical networks.
The dynamics of network growth and shrinkage is central to how systems work, and it
would also be one crucial factor in how information and infectious diseases spread in
networks. Given the pervasiveness of complex systems and our reliance on them in our
daily lives, greater understanding of the dynamics of networks would improve how we
interact with, and even control such systems.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1140/epjds/s13688-022-00365-3.

Additional file 1. Supplementary information (PDF 4.6 MB)

Acknowledgements
Not applicable.

Funding
T.K. acknowledges financial support from JSPS KAKENHI 19H01506, 20H05633 and 22H00827.

Availability of data and materials
The data and Python code are available in GitHub [38].

Declarations

Competing interests
The authors declare no competing interests.

Author contribution
TK conceived the research and defined the model. STF performed the analysis. STF and TK discussed the results and
wrote the manuscript. All authors read and approved the final manuscript.

Author details
1Graduate School of Economics, Kobe University, 2-1 Rokkodai, Nada, 657-8501 Kobe, Japan. 2Department of Economics,
Center for Computational Social Science, Kobe University, 2-1 Rokkodai, Nada, 657-8501 Kobe, Japan.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 24 January 2022 Accepted: 26 September 2022

https://doi.org/10.1140/epjds/s13688-022-00365-3
https://doi.org/10.1140/epjds/s13688-022-00365-3


Ferguson and Kobayashi EPJ Data Science           (2022) 11:52 Page 14 of 15

References
1. Jo HH, Karsai M, Kertesz J, Kaski K (2012) Circadian pattern and burstiness in mobile phone communication. New J

Phys 14:013055
2. Onnela JP, Saramäki J, Hyvönen J, Szabó G, Lazer D et al (2007) Structure and tie strengths in mobile communication

networks. Proc Natl Acad Sci USA 104:7332–7336
3. Kovanen L, Saramaki J, Kaski K (2011) Reciprocity of mobile phone calls. Dyn Sociol Econ Sys 2:138–151. Also available

on arXiv:1002.0763
4. Schläpfer M, Bettencourt LMA, Grauwin S, Raschke M, Claxton R, Smoreda Z, West GB, Carlo R (2014) The scaling of

human interactions with city size. J R Soc Interface 11:20130789
5. Ghosh A, Monsivais D, Bhattacharya K, Dunbar RI, Kaski K (2019) Quantifying gender preferences in human social

interactions using a large cellphone dataset. EPJ Data Sci 8:9
6. Opsahl T, Colizza V, Panzarasa P, Ramasco JJ (2008) Prominence and control: the weighted rich-club effect. Phys Rev

Lett 101:168702
7. Panzarasa P, Opsahl T, Carley KM (2009) Patterns and dynamics of users’ behavior and interaction: network analysis of

an online community. J Am Soc Inf Sci Technol 60:911–932
8. Klimt B, Yang Y (2004) The Enron corpus: a new dataset for email classification research. In: Machine learning: ECML

2004. Springer, Berlin
9. Isella L, Stehlé J, Barrat A, Cattuto C, Pinton JP, den Broeck WV (2011) What’s in a crowd? Analysis of face-to-face

behavioral networks. J Theor Biol 271:166–180
10. Starnini M, Baronchelli A, Pastor-Satorras R (2013) Modeling human dynamics of face-to-face interaction networks.

Phys Rev Lett 110:168701
11. Barrat A, Cattuto C (2013) Temporal networks of face-to-face human interactions. In: Holme P, Saramäki J (eds)

Temporal networks. Springer, Berlin
12. Génois M, Vestergaard CL, Fournet J, Panisson A, Bonmarin I, Barrat A (2015) Data on face-to-face contacts in an office

building suggest a low-cost vaccination strategy based on community linkers. Netw Sci 3:326–347
13. Kobayashi T, Takaguchi T, Barrat A (2019) The structured backbone of temporal social ties. Nat Commun 10:220
14. Holme P, Saramäki J (2012) Temporal networks. Phys Rep 519:97–125
15. Holme P (2015) Modern temporal network theory: a colloquium. Eur Phys J B 88:234
16. Leskovec J, Kleinberg J, Faloutsos C (2005) Graphs over time: densification laws, shrinking diameters and possible

explanations. In: Proceedings of the eleventh ACM SIGKDD international conference on knowledge discovery in data
mining. ACM, Chicago

17. Leskovec J, Kleinberg J, Faloutsos C (2007) Graph evolution: densification and shrinking diameters. ACM Trans Knowl
Discov Data 1:2

18. Kobayashi T, Takaguchi T (2018) Social dynamics of financial networks. EPJ Data Sci 7:15
19. Kobayashi T, Génois M (2020) Two types of densification scaling in the evolution of temporal networks. Phys Rev E

101:052302
20. Kobayashi T, Génois M (2021) The switching mechanisms of social network densification. Sci Rep 11:1–11
21. Hamilton J (1994) Time series analysis. Princeton University Press, Princeton
22. Hamilton JD (2010) Regime switching models. In: Durlauf SN, Blume LE (eds) Macroeconometrics and time series

analysis. Palgrave Macmillan, London
23. SocioPatterns project. http://www.sociopatterns.org/. Accessed 29 May 2022
24. Vanhems P, Barrat A, Cattuto C, Pinton JF, Khanafer N et al (2013) Estimating potential infection transmission routes in

hospital wards using wearable proximity sensors. PLoS ONE 8:73970
25. Génois M, Barrat A (2018) Can co-location be used as a proxy for face-to-face contacts?. EPJ Data Sci 7:11
26. Génois M, Zens M, Lechner C, Rannstedt B, Strohmaier M (2019) Building connections: how scientists meet each

other during a conference. arXiv:1901.01182
27. Cattuto C, Van den Broeck W, Barrat A, Colizza V, Pinton JF et al (2010) Dynamics of person-to-person interactions

from distributed RFID sensor networks. PLoS ONE 5:11596
28. Masuda N, Lambiotte R (2016) A guide to temporal networks. World Scientific, London
29. Karsai M, Jo HH, Kaski K et al (2018) Bursty human dynamics. Springer, Berlin
30. Salathé M, Kazandjieva M, Lee JW, Levis P, Feldman MW et al (2010) A high-resolution human contact network for

infectious disease transmission. Proc Natl Acad Sci USA 107:22020–22025
31. Stehlé J, Voirin N, Barrat A, Cattuto C, Isella L et al (2011) High-resolution measurements of face-to-face contact

patterns in a primary school. PLoS ONE 6:23176
32. Masuda N, Holme P (2017) Temporal network epidemiology. Springer, Singapore
33. Elmer T, Chaitanya K, Purwar P, Stadtfeld C (2019) The validity of RFID badges measuring face-to-face interactions.

Behav Res Methods 51:2120–2138
34. Dai S, Bouchet H, Nardy A, Fleury E, Chevrot JP et al (2020) Temporal social network reconstruction using wireless

proximity sensors: model selection and consequences. EPJ Data Sci 9:19
35. Cazabet R, Rosetti G (2019) Challenges in community discovery on temporal networks. In: Holme P, Saramäki J (eds)

Temporal network theory. Springer, New York
36. Caldarelli G, Capocci A, De Los Rios P, Muñoz MA (2002) Scale-free networks from varying vertex intrinsic fitness. Phys

Rev Lett 89:258702
37. Boguñá M, Pastor-Satorras R (2003) Class of correlated random networks with hidden variables. Phys Rev E 68:036112
38. Python implementation of the estimation method. https://github.com/shaunette/densificationscalingMLE
39. Quevillon LE, Hanks EM, Bansal S, Hughes DP (2015) Social, spatial and temporal organization in a complex insect

society. Sci Rep 5:1–11
40. Barrat A, Cattuto C, Szomszor M, Van den Broeck W, Alani H (2010) Social dynamics in conferences: analyses of data

from the live social semantics application. In: International semantic web conference. Springer, Berlin
41. Barrat A, Cattuto C, Colizza V, Gesualdo F, Isella L et al (2013) Empirical temporal networks of face-to-face human

interactions. Eur Phys J Spec Top 222:1295–1309

http://arxiv.org/abs/arXiv:1002.0763
http://www.sociopatterns.org/
http://arxiv.org/abs/arXiv:1901.01182
https://github.com/shaunette/densificationscalingMLE


Ferguson and Kobayashi EPJ Data Science           (2022) 11:52 Page 15 of 15

42. Kibanov M, Atzmueller M, Illig J, Scholz C, Barrat A et al (2015) Is web content a good proxy for real-life interaction?
A case study considering online and offline interactions of computer scientists. In: Proceedings of the 2015 IEEE/ACM
international conference on advances in social networks analysis and mining 2015

43. IC2S2 2017 program https://quanttext.com/wp-content/uploads/2018/09/IC2S2-2017-program.pdf. Accessed 29
May 2022

44. Computational Social Science Winter Symposium 2016 program.
https://www.gesis.org/en/css-wintersymposium/program/schedule. Accessed 29 May 2022

45. Bettencourt LM, Kaiser DI, Kaur J (2009) Scientific discovery and topological transitions in collaboration networks.
J Informetr 3:210–221

46. Holme P, Saramäki J (2013) Temporal networks. Springer, Berlin

https://quanttext.com/wp-content/uploads/2018/09/IC2S2-2017-program.pdf
https://www.gesis.org/en/css-wintersymposium/program/schedule

	Identifying the temporal dynamics of densiﬁcation and sparsiﬁcation in human contact networks
	Abstract
	Keywords

	Introduction
	Methods
	Data
	Estimation
	Dynamic hidden-variable model
	Numerical maximum-likelihood estimation

	Validation analysis

	Results
	Evolution of kappa and Np in temporal social networks
	Dynamic behavior of estimated population size Np,t
	Dynamic behavior of estimated overall activity kappat

	Time-varying contribution of Np and kappa to the emergence of densiﬁcation scaling

	Discussion
	Supplementary information
	Acknowledgements
	Funding
	Availability of data and materials
	Declarations
	Competing interests
	Author contribution
	Author details
	Publisher's Note
	References


