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Abstract

Cities have been extensively studied as complex adaptive systems over the last 50
years. Recently, several empirical studies and emerging theory provided support for
the fact that many different urban indicators follow general consistent statistical
patterns across countries, cultures and times. In particular, total personal income,
measures of innovation, crime rates, characteristics of the built environment and
other indicators have been shown to exhibit non-linear power-law scaling with the
population size of functional cities. Here, we show how to apply this type of analysis
inside cities to establish universal patterns in the quantity and distribution of urban
amenities such as restaurants, parks, and universities. Using a unique data set
containing millions of amenities in the 50 largest US metropolitan areas, we establish
general non-linear scaling patterns between each city’s population and many
different amenities types, the small-area statistics of their spatial abundance, and the
characteristics of their mean distance to each other. We use these size-specific
statistical findings to produce generative models for the expected amenity
abundances of any US city. We then compute the deviations observed in given cities
from this statistical many-amenity model to build a characteristic signature for each
urban area. Finally, we show how urban planning can be guided by these systemic
quantitative expectations in the context of new city design or the identification of
local deficits in service provision in existing cities.

Keywords: Land use; Service provision; Spatial statistics; Urban analytics; Planning
support systems

1 Introduction
A city is a complex and dynamic system of interactions between people and a rich ecology
of organizations, mediated by physical infrastructure and built spaces [1].

Jane Jacobs was the first to define cities as problems of organized complexity [2], adopt-
ing Warren Weaver’s definition of complex systems [3] as problems dealing concurrently
with many variables which are interrelated and in constant simultaneous change. Jacobs’
characterization of the “kind of problem a city is” marked a new start to the quest of un-
derstanding cities in more holistic and people-centered ways.

This framework for thinking about cities was then embraced by many architects and
urbanists, such as Christopher Alexander [4] who started outlining cities as complex net-
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works of overlaping uses in space and time. More recently these general qualitative ex-
pectations have gained even more support as well as detail via empirical and theoretical
studies which have successfully shown that cities manifest universal and quantifiable fea-
tures, spanning across time, cultures and nations [1, 5-12].

The recent unprecedented availability of urban data is revolutionizing a number of sci-
entific disciplines as well as the practice of policy and planning in cities. In the case of ur-
ban studies, data-driven approaches have been increasingly successful in identifying uni-
versal patterns in the behavior of cities. Specifically, several non-linear scaling laws have
been observed and predicted, connecting the city’s population size with a variety of urban
indicators, such as economic activity [1, 5, 6], road network length [1, 7], crime rate [8, 13],
traffic congestion [9, 14], shared means of transportation [15], and polycentric cities [11].

In this work, we investigate the existence of general statistical patterns, which may apply
across cities, in the quantity and spatial distribution of different urban amenities. These
include a wide variety of public spaces and institutions as well as businesses, which all pro-
vide different services to urban populations. Examples are restaurants, parks or universi-
ties. The diversity, location and quality of urban amenities play a crucial role in shaping
urban environments as they have a critical impact on the quality of life and opportunities
experienced by urban dwellers. Neighborhoods with scarce access to amenities lose their
attractiveness, typically causing the selective relocation of people to more attractive loca-
tions. The correlated mobility of many amenities and households that follows, and the pat-
terns of spatial (dis)advantage that may result, is one of the mechanisms generating racial
segregation and economic inequality in American cities [16]. Since primarily poor resi-
dents who cannot afford to relocate remain in under-served neighborhoods their access
to important resources often lowers their access to opportunity and potential for upward
mobility [17, 18]. Amenities are also central for generating and supporting economic ag-
glomeration effects. They do that by attracting investment to developing neighborhoods,
promoting economic growth, supporting innovation clusters and facilitating businesses
linkages in specific urban areas [19].

These spatial heterogeneities in cities are almost always mirrored by amenity distribu-
tions, which also constitute one of the most important instruments for public policy to
both foster economic development and/or generate more equitable livelihoods and op-
portunities.

But these general observations have mainly stemmed from local observations and case
studies, and rarely by systematic quantitative analysis with the necessary diversity and
spatial detail. Until recently, data availability has been the main barrier to comparing the
detailed quantities and spatial distribution of amenities in and across cities and conse-
quently, the inequality of access for local populations. Here, we analyze a large new data
set containing millions of amenities across the 50 largest metropolitan areas in US to find
evidence for general scaling relations between the city’s population and its amenities. In
particular, we start by showing that the quantity of amenities scales as a power-law with
population size across US metropolitan areas. We then move to a finer-grained level of
spatial resolution to show that the way amenities are distributed among neighborhoods
(proxied by census tracts) scales with the way population is distributed. Finally, we find
that within a single census tract the distance to the closest amenity scales with the den-
sity of amenities. This allows us to characterize local “amenity deserts” and deficiencies in

service provision.
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The scaling laws identified here provide the basis for a generative model of amenities
in any typical US city given its population size. Thus, such a model proves the expected
abundance and composition of the amenity set a city should manifest in the absence of
any other local features. While this model is interesting as a baseline expectation, it is
precisely these local unique features that affect the relative attractiveness of urban areas,
making a particular urban environment more desirable than others. Therefore, we use
the deviations from the average amenity scaling model to generate urban signatures that
uniquely highlight each actual city’s characteristics. This allows us to identify interesting
and unexpected abundances of special amenities in some places, and potential deficits in
others.

Our findings have the potential to benefit the process of urban planning in general, and
detailed land-use planning in particular. They provide objective quantitative measures to
evaluate the current performance of a city, benchmark that performance to other cities in
the same nation and assess the potential value of alternative planning choices. Specifically,
we demonstrate how the scaling laws identified from rich local amenity data can be used
in the construction of new cities, and how the deviations from the expected behavior can

guide the development of growing cities with certain desirable profiles.

2 Materials and methods

Population data was extracted from the 2010 decennial Census, including the geographic
boundaries and respective population counts for the 50 most populated metropolitan ar-
eas in the US and all census tracts included in their boundaries. We chose Metropolitan
Statistical Areas (MSAs) as our main geographical unit of analysis because they are defined
as coherent functional urban regions in terms of the flow of people, goods and information
(also known as integrated labor markets). As a finer-grained unit of analysis inside cities,
we chose census tracts due to their consistent definition across the nation, which allows
for comparative analysis in terms of similar population sizes (between 1200 and 7500 res-
idents). For this reason urban census tracks are often used as proxies for neighborhoods.

Amenities data was extracted from Google Places API (2012). The resulting data set
consists of the geographical location (latitude and longitude) and land use type (e.g., bar,
restaurant, park) for approximately 2.5 million amenities within the boundaries of our 50
MSAs. This data set includes all land uses specified in the original source (except residen-
tial and industrial) with a standardized index of 78 types that are globally consistent. For
more details on the data extraction process see Additional file 1, Sect. 1.

Unlike the administrative data provided by local governments, which typically includes
six to ten land use types that vary between cities, the Google Places data set provides a
unique opportunity to study land use patterns at high spatial resolution using a consistent
index across cities.

In the Figures, we color code the 78 amenity types using five main groups: commer-
cial (red), e.g., grocery stores, restaurants, bars, shopping malls; services (orange), e.g.,
banks, doctors, beauty salons, real estate agencies; offices (yellow), e.g., accounting of-
fices, lawyers; open spaces (green), e.g., parks; public facilities (blue), e.g., police stations,

museums, universities, hospitals, libraries.
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3 Results

3.1 Scaling relations for urban amenities

3.1.1 Quantity of amenities

In their work, Bettencourt et al. [1, 5, 8] show that important demographic, socioeco-
nomic, and behavioral urban indicators are, on average, well described by non-linear scal-
ing functions of a city’s population size, expressing both increasing returns and economies
of scale. The existence of such scaling has also been shown to be quantitatively consistent
across a large number of different nations [13, 20—24] and times [25-27].

In this work we investigate whether similar general scaling relations applies to urban
amenities. If so, given the population size of a city, we would be able to predict the ex-
pected quantities for different amenity types. We recognize from the outset that amenity
type specifications are, to some extent, dependent on local and contextual factors such as
a nation’s level of economic development, its technologies and culture. Moreover, the var-
ious types and quality of amenities (as restaurants, museums, etc.) differ between coun-
tries. The present study is focused on empirical information for US cities from Google
Places. Because this type of technology is being expanded globally, there is a real prospect
that the present analysis can soon be expanded globally to many different national urban
systems and that these apparent differences can be better assessed in the near future.

To set the stage, we apply standard scaling analysis [5] to find that the total number of
amenities is indeed well described on average by power-law scaling with city population
size (adjusted R? = 0.75, Fig. 1A). More formally, this power-law scaling function can be

written as a linear equation on a double logarithmic scale:
log Y.(2) =log Yo(£) + B - log(nc(t)) + e(t), 1)

where ¢ labels the city (MSA), Y.(¢) is the total number of amenities in that city, observed
at time £. n, is city ¢’s population size, log Yy(t) is the overall intercept (in logarithmic scale)
for the fit across cities and g is the scaling exponent. The quantities e(¢) are residuals or
deviation from the general scaling fit; their average over cities is zero: ) €.(¢) = 0. These
residuals capture local factors in each city, beyond the general tendency for amenities to
vary with city size across urban areas. All these quantities are in general time dependent,
so that the scaling fit applies cross-sectionally across cities at the same time (same year).

The scaling exponent S represents the average elasticity of amenities to city population
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Figure 1 Scaling of quantities of amenities and population. The total population size (x-axis) and total number
of amenities in a city (y-axis) show a good linear fit on a double logarithmic scale (A). The same is true for

single amenity types such as universities (B) and take-away restaurants (C)
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_ dlogY,
~ dlogn,
concerned with analysis at a single time, so we will drop the time dependence of scaling

size, , is expected to not vary much in time (see [14]). In general, we will be
parameters for simplicity of notation.

The above equation can be written as a power-law function, where Y;(¢) is the normal-
ization constant or prefactor and f is the scaling exponent, reflecting the pattern common
to all cities (the choice of the log base is arbitrary, but here we use log,, as the standard):

Y, = Yo(£)10% - n# = Y (n,)10%, 2)

where Y (n.) = YonclS is the scaling law, shown as the solid line in Fig. 1.

Next, we disaggregate amenities by type and location in order to characterize their de-
tailed spatial statistics. When considering each amenity type separately, only about 70%
show good power-law scaling patterns (R? > 0.6, see full regression results in Additional
file 1, Table S1). The remaining 30%, which include types such as embassies, RV parks,
cemeteries and airports do not show a good fit with population size. The majority of these
non-scaling amenity types are public facilities (with the exception of health and educa-
tion), which are controlled by government agencies. Their development is costly in terms
of both resources and time, they are mostly land-intensive, and their demand is relatively
indifferent to market forces, as they provide essential services to the urban community.
Additionally, large retail facilities, such as shopping malls, department stores, lodging and
car services, also do not show a good fit with population size, possibly due to being very
elastic and heterogeneous in terms of their size and quality, which is not captured by sim-
ply counting their numbers.

More specifically, we observe that the total number of amenities in a city shows a sub-
linear scaling (8 = 0.93, 95% CI = [0.89,0.97], where the 95% CI of 8 is entirely below 1)
with population size. This kind of sub-linear scaling suggests a phenomenon known as
economies of scale. For amenities, it means that as the population grows, a city requires
fewer new amenities per capita because the existing amenities can be shared to some ex-
tent. This may not be typical of all amenity types, and will depend on their size and capacity
to serve larger populations with similar resources.

These variations in use per capita with city population size can be assessed by the
type specific scaling exponents, which are the elasticities of demand relative to popula-
tion. When examining amenity types separately we find that only 22% show sub-linear
scaling with population size, for example universities (8 = 0.88, 95% CI = [0.78,0.98],
Fig. 1B), movie theaters (8 = 0.88, 95% CI = [0.79,0.97]), and libraries (8 = 0.91, 95% CI =
[0.85,0.97]). In contrast, approximately 74% of amenity types show linear scaling (95%
CI of B intersects with 1) and another 4% show super-linear scaling (95% CI of 8 is en-
tirely above 1). Amenity types with linear scaling usually provide services related to in-
dividual needs that grow proportionally with population size, as grocery stores (8 = 1.01,
95% CI = [0.85,1.17]) and restaurants (8 = 1.05, 95% CI = [0.90, 1.20]). On the other hand,
super-linear scaling behavior may be the result of network effects and related services
that support changes in lifestyles in terms of constraints on the use of time and higher in-
comes. This may also correspond to situations when the city is better established and en-
trepreneurs and developers can invest in amenities that are not daily necessities. Examples
of amenities with such super-linear behavior include, among others, take-away restaurants
(B = 1.24, 95% CI = [1.07, 1.41], Fig. 1C), gyms (8 = 1.18, 95% CI = [1.02, 1.34]) and travel
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agencies (8 = 1.29, 95% CI = [1.07,1.51]). For the full regression values see Additional
file 1, Table S1.

These results constitute a general multidimensional baseline for the quantity of ameni-
ties in US urban areas that can now be tracked over time and better understood in terms
of their uses and dynamics, as previously observed for example by using a census of busi-
ness types [28]. However, the distribution of amenities inside cities is very heterogeneous
spatially, an issue to which we now turn.

3.1.2 Spatial distribution of amenities

We now leverage the rich location information in our data sets to analyze the spatial distri-
bution of amenities within cities. We will want to relate this information to demographic
variables, which are available from the US Census for small areas. To do this, we will work
at the level of Census tracts, which are small areas that tile the entire territory of the US,
with an average population of 4000 people. These units are often considered reasonable
proxies for neighborhoods. In large urban areas, there will be typically several hundred or
even thousands of such tracts. For reference, the New York City MSA (the largest in the
country) has 4784 census tracts.

We first examine the correlation between the spatial density of amenities (number of
amenities in a tract divided by its area) and the corresponding population spatial density.
We use densities instead of bare counts because the construction of census tracts varies
their area (and thus their density), while attempting to keep their population within a nar-
row range. This analysis results in a relatively weak correlation (R*> ~ 0.41). This finding
suggests that an explicitly statistical approach to the variation of these densities is neces-
sary, which can take into account the differences in abundance across tracts.

The most general distribution (maximum entropy) consistent with a city’s average
amenity density per tract (x) (in units of amenities/km?) is an exponential distribution
of the form [29]:

fx) =2re™, 3)

where x is the spatial density of amenities (or people) across census tracts, calculated by
dividing the number of amenities (or people) within a tract by the tract’s land area. Thus,
up to an overall normalization, f(x) is proportional to the number of census tracts with
density x. The quantity A, estimated through the maximum entropy procedure as A = 1/(x),
is the exponential rate quantifying the decay in probability with higher amenity densities.
It has units of inverse x (area per amenity), giving us the average territory size of each
amenity type in each city. The higher this rate (larger territory), the steeper the decay,
meaning that there will be many more tracts with low amenity density x and that those
with larger amenity density x will be exponentially rare.

Different cities are characterized by different values of A, meaning that in some cities
amenities are more evenly distributed (lower A) than in others (higher 1). For example,
Fig. 2A shows that if you were to walk around Houston, you would have a hard time finding
arestaurant in most areas, unless you are in the city center or in a few other very specific ar-
eas were they are distributed more densely. Hence, the distribution of restaurants in Hous-
ton is highly uneven (higher rate of decay, A = 0.26 km?/restaurant). In contrast, if you
were to walk around the neighborhoods of San Francisco, you would have a better chance
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Figure 2 Spatial distribution of amenities, by census tracts. (A) The fitted exponential distribution of restaurants
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of finding a restaurant in more areas of the city (smaller territory A = 0.04 km?/restaurant).
Thus, a higher density of amenities also means that statistically there will be more places
(tracts) in which to find a substantial number of services, whereas a lower density inten-
sifies amenity deserts, i.e. many areas in which there are none or very few.

Next, we test whether the spatial distribution of population in a given city can explain
its spatial distribution of amenities. To do so, we fit the two rates for all 50 metropoli-
tan areas. We find a clear power-law scaling between the two rates of decay (adjusted
R? =0.73, Fig. 2B). The strong correlation between the spatial distributions of population
and amenities at the city level, put together with the weak correlation at the tract level, sug-
gest that if a city has a highly populated district, it will also have a highly dense commercial
district, but they will not necessarily coincide in space (many US cities have Central Busi-
ness Districts, with high amenity density but low resident population). In other words,
areas that are packed with activities, such as city centers, are usually not the highly dense
dwelling neighborhoods, but these commercial areas serve multiple urban neighborhoods
including the highly dense ones. This finding suggests that even after years of promoting
mixed-use urban development across the US, cities can still show high rates of segregation
between residential and commercial districts.

When examining each amenity type separately, we find that the spatial distribution of
approximately 80% of the 78 amenity types shows a good fit with population distribution
(R? > 0.5), for example ATMs (R? = 0.82, Fig. 2C). The remaining 20% that do not scale
(R? < 0.5) mostly include public facilities and open spaces such as airports, museums, hos-
pitals and parks (for full regression values, see Additional file 1, Table S2). Indeed, some of
these public facilities can be few and concentrated in specific areas of the city, and there-

fore not track at all the spatial distribution of the city’s population.

Page 7 of 19
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3.1.3 Distance between amenities
We conclude our empirical analysis by examining how amenities are located with respect
to each other within census tracts. As a measure of amenities co-location, we calculate the
average shortest distance from one amenity to another in that tract.! We then compute
the mean shortest distance by iterating over all amenities in the tract, finding the distance
to the closest amenity, and computing the mean.

On purely dimensional grounds we expect the mean shortest distance, dmyin, between

amenities to relate to the spatial density as dpi, = ¥~/

, so that it should scale with a neg-
ative sub-linear exponent of the density of amenities. Indeed, as shown in Fig. 3A, when
analyzing our real-world dataset, we observe a very strong correlation between the den-
sity of amenities (of any type) in a census tract and the mean shortest distance between
amenities (R? = 0.70, on loglog scale). Moreover, we observe an estimated exponent of
—0.48, which is very close to the general —1/2 expectation.

This sort of expectation generalizes to specific amenity types. Specifically, when we ex-
amine the correlation between the density of amenities of type T and the mean shortest
distance between an amenity of any type and an amenity of type T, we again find a clear
scaling relationship. For example, the mean shortest distance from amenities of any type
to restaurants scales with the density of restaurants (R? = 0.77) as shown in Fig. 3B. Such
scaling holds for almost all amenity types (adjusted R? > 0.5, see Additional file 1, Table S3).

However, in all considered cases, the observed exponents deviate somewhat from the
theoretical exponent of —0.5, and vary between amenity types (ranging between —0.37
to —0.48). For example, the estimated exponent for amenities of any type is —0.48 (99%
CI [-0.49,-0.48]), the exponent for restaurants is —0.48 (99% CI [-0.48,-0.47]), and the
exponent for pharmacies is —0.42 (99% CI [-0.43,-0.42]). This suggests that for tracts
with lower density, the mean shortest distance is shorter than expected from a random
placement at fixed density, possibly suggesting spatial clustering, and for tracts with high
density the mean shortest distance is longer than expected in the same sense. This phe-

nomenon is more extreme for certain amenity types, such as pharmacies. These exponent

!Geographic distance between two points was computed in kilometers as great-circle distance, or surface distance, repre-
senting the shortest path between the two points on the surface of a sphere. For that purpose we assumed a static radius
of the earth of 6367 km.
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deviations therefore express how the location of different amenity types is determined by
considerations beyond overall density and composition, including zoning, road network

layout limitations and agglomeration effects.

3.2 Deviations from scaling as urban signatures

We have now described three different scaling patterns for urban land uses relating to
quantities of amenities, their spatial distribution across census tracts, and the distances
to the closest amenity within a census tract. These scaling relations represent the average
behavior a city would manifest if it were to follow the common pattern shown in urban
systems across the US. This provides a generative statistical model for amenity allocation
for any US city with a given population and their spatial location. We can compare the
local characteristics of each actual city by measuring how they deviate from these scaling
patterns. This provides a multidimensional benchmark in “amenity space” to assess the
performance of a city versus the expected average behavior across the nation.

Many urban indicators are expressed as per capita measures, implicitly assuming that
the captured phenomenon grows linearly with population. However, a per capita mea-
sure fails in capturing the deficiencies as well as strengths of a city with respect to a phe-
nomenon that has a non-linear dependence on population size or density, making it an
unfit measure to compare between cities with different population size. A more appropri-
ate measure of this type of performance is the deviation from the expected behavior as
described by non-linear scaling relation across many places. This leads to the concept of
Scale-Adjusted Metropolitan Indicators, SAMI [8, 13, 30], which we now extend to local
amenities in cities.

More formally, the deviation of a city is computed as its residual from the fitted regres-
sion line

e =log;(Ye) —log,, (Y (n)) = 10g10<%>. (4)

0 e

Computing a city’s deviations across all amenity types results in its own “urban signa-
ture” (see for example, Fig. 4) in the form of a vector of performance indices. Such an urban
signature provides, in our view, meaningful insights about the characteristics of that city
with respect to the way it is serving its citizens, independent of its population size.

For example, the first scaling law we identified describes the relationship between popu-
lation size and the quantity of amenities in the city. The deviations for quantity of amenities
are positive when the number of amenities of a given type is higher than expected with
respect to a city’s population size and negative otherwise. Examining Boston’s evidence
(Fig. 4A and Additional file 1, Table S4), we see positive deviations from the expected av-
erage in parks, museums and universities, showing that Boston has more open spaces and
public facilities than the average US city of its size. By contrast, a sprawling city such as
Los Angeles (Fig. 4B and Additional file 1, Table S4) shows positive deviations in super-
markets and clothing stores, while showing negative deviations in all other amenity types.
Thus, the analysis suggests that Los Angeles shows wide deficits in terms of many public
facilities and services.

The second type of scaling relation describes the relationship between the spatial dis-
tribution of population and amenities across neighborhoods (census tracts). In this case,
a negative deviation (e.g., universities in Boston, Fig. 4C and Additional file 1, Table S5)
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Figure 4 Urban signatures. The deviations from the regression line in double logarithmic scale are visualized
as bars with the height of the bar being the value of the residual. Each color represents a different group of
amenity types. We selected 23 representative categories from the amenity types that show a good fit with the
population. (A), (B) Deviations from the expected quantity of amenities. Boston exceeds the expected
quantities of most public facilities (e.g., libraries and museums) and open spaces while Los Angeles shows
negative deviations in most amenity types. (C), (D) Deviations from the expected spatial distribution. Most
amenities in Boston are more evenly distributed than expected, whereas in Los Angeles, most amenities are
scattered around the city

indicates a spatial distribution of amenities with a lower rate of decay than expected, sug-
gesting that an amenity is more evenly distributed across a city than expected by the aver-
age generative model. By contrast, a positive deviation (e.g., cafes in Los Angeles, Fig. 4D
and Additional file 1, Table S5) indicates a higher rate of decay than expected, suggesting
that an amenity is less evenly located and is likely to be observed only in particular loca-
tions. These examples also convey some of the zeitgeist of each of these two cities, in out
view, a feature long sought after by social psychologists and urbanists [31].

Proceeding in this way to observe the deviations of spatial distribution for all cities (Fig. 5
and Additional file 1, Table S6), we find that in general, sprawling cities such as Las Ve-
gas and Detroit tend to demonstrate positive deviations in the distribution rate for most
amenity types, while denser cities such as San Francisco and Seattle tend to demonstrate
negative deviations for most types. These findings support the idea that amenities are typ-
ically distributed more unevenly in sprawling cities, usually only found within city centers
from where they serve the entire urban area. This of course creates more load on trans-
portation infrastructures and exposes urban communities of such cities to issues of differ-
ential spatial disadvantage. By contrast, in denser cities many amenities can also be found
in small commercial centers outside the core, serving small communities in the periphery,
often closer to their places of residence.

It is worth noting that deviations in spatial distribution are in general statistically inde-
pendent of amenity quantities. Hence, cities that show negative deviations in quantities
may show positive deviations in spatial distributions and vice versa (see Fig. 4).

The third scaling law we identified describes the relationship between the density of a
given amenity type and the mean shortest distance to that amenity. In this case, the de-
viations are positive when the mean shortest distance is larger than expected, and nega-
tive when the distance is smaller than expected. As an example, we plotted the deviations
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Figure 5 Ranking of cities by deviations of spatial distribution. Cities are ranked according to the value of
residual from the regression line, expressing the scaling relation of spatial distribution. Cities above the line
showing positive deviations (e.g., Las Vegas, Los Angeles) have a more uneven distribution of amenities with
respect to their population distribution. Cities below the line (e.g., San Francisco, Boston) show a negative
deviation, meaning that amenities can be found in more different areas of the city

BOSTON'S FINANCIAL DISTRICT BOSTON’S SEA PORT DISTRICT

0.2 -

s .. _I“ l-I *I I__-
:

<1
8

o
o

Residuals

Land Use 0.0 _F.
X - -
Shortest . l . I
Distances —
o1
-0.2-

5
8

-0.2-

cafe -
bank -
doctor -
atm -

meal delivery -

Commercial

Services

Offices

Open spaces
M pubiic faciities

clothing store
supermarket
restaurant
cafe
meal delivery
night club
& real estate agency
2 beauty salon spa
hair care
art gallery
bank
doctor
atm
accounting
lawyer
park
museum
university
church
library -
clothing store -
supermarket
restaurant -
night club -
real estate agency -
beauty salon spa -
hair care -
art gallery -
accounting -
lawyer —
park
museum -
university -
church -
library -

,_
Y
a

nd Use Category nd Use Category
Figure 6 Deviations from expected distance between amenities. (A) In Boston's financial district, for most of the
amenity types the mean shortest distance is shorter than one would expect given the density of amenities.

(B) On the contrary, in Boston's seaport district, many amenity types are farther than one would expect

of two specific neighborhoods in Boston: the financial district and the seaport district,
which are comparable in their day-to-day functioning. Figure 6 (full deviation values in
Additional file 1, Table S7) reveals that most amenity types in the financial district are lo-
cated at a shorter distance than expected by the density of the region (Fig. 6A). On the
other hand, most of the amenities in the seaport district (a region currently under de-
velopment) are farther away than expected, suggesting that there is still room for further
development (Fig. 6B) and synergy. In particular, we find that take-away restaurants—an
important amenity in a business district such as the seaport district—are not highly ac-

cessible and remain located farther away from each other than one would expect.
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3.3 Data-driven land use planning

Scaling relations across and within cities hold great potential as general statistical mod-
els that can benchmark and guide development processes and assist developers, policy
makers and city planners in assessing urban areas in detail. From real estate development,
to zoning and land use choices, to environmental policies and well-being metrics, our
findings can be applied in diverse planning and policy processes to measure, assess and
benchmark the performance of cities and their neighborhoods.

The most immediate and obvious implications of our findings is for the process of land-
use planning, one of the core functions of urban planning and design. Land-use planning
determines how many amenities will be built where, with the goal of servicing residents,
businesses, daily commuters and population groups that the city wishes to retain or attract.
The amenity quantities, spatial distribution and mix of types determined as part of a land
use plan play a key role in shaping the character of urban areas and cities as a whole.

The traditional land use planning process is typically structured in two main stages.
In the first phase, expected population and economic growth are estimated based on lo-
cal data and analysis of past trends. Then, the quantities and total area required for each
coarse land use category (e.g., residential, commercial) are assessed with the goal of suffi-
ciently servicing the current and expected population and businesses. In the second phase,
a zoning ordinance divides the city into relatively large zones, controlling the permitted
land use categories, their densities, and their coarse locations within each zone [32].

This procedure has two major limitations. First, quantities and spatial allocation are
determined at the macro-level using typically 6-10 coarse land use categories and rela-
tively large zones. Therefore, fine-grained choices are left entirely in the hands of market
forces [33], without giving a chance to policy makers to fulfill their objective of correct-
ing market failures and providing resources to under served communities [34]. Second,
in both planning phases, assessing the current performance of urban areas is a challeng-
ing task without the support of proper quantitative tools [35]. Consequently, the planning
process is left susceptible and exposed to arbitrary influences, often failing to reflect issues
of equity and general public interest.

Understanding how to deploy quantitative methods in the process of land use planning
is a task that has ignited the minds of scientists, urban planners and economic geogra-
phers for most of the last century [36—40]. Most of these efforts formally modelled the
urban environment given a set of constraints, and developed algorithms to find the op-
timal location for land uses in cities. However, when city data became available, it was
clear that such models suffered from limited empirical validation and they could not be
calibrated to represent the complexity of real cities [41]. Moreover, these tools did not
capture or support the iterative nature of the planning process [42]. Recent results which
identified universal patterns of cities can highly benefit the urban planning process by pro-
viding guidelines, baselines for reference, and performance estimates of proposed plans.
However, the process of land use planning has yet to capitalize on the predictive power
emerging from these universal patterns of cities as complex systems.

Our work can bring several significant advantages to the land use planning process.

+ Quantitative metrics: the identified scaling laws and deviations can support the

definition of quantitative metrics to evaluate the performance of cities, promoting a

more objective discussion around the urban development process. In the following
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subsections we explain how these scaling laws can be used to support the two phases
of land use planning.

« Granularity of analysis: the unique data set we use allows us to study land uses in
much finer grain levels. The data set contains 78 land use types, offering a richer
semantic than the usual 6-10 types offered by local government data. Moreover, it
captures the fine-grained location of amenities in urban areas, in contrast with
current coarse-grain zoning.

+ Global comparison: the index of land use types used in our data set is uniform for all
cities, allowing a consistent analysis and comparison of cities across the world, where
data availability permits.

3.3.1 Phase 1: land use quantities

The first stage of each land use plan requires estimating the number of units of each
land use type essential to support planning goals. The identified scaling law of quantity of
amenities can support the planners in this task. More specifically they can be used when
constructing a new city, planning development of a growing city, or promoting changes in
a city’s performance levels through a new master plan. These cases are somewhat different
so that we discuss them separately:

(i) New cities. In new cities and new development projects, scaling laws can be useful
for calculating average population thresholds and type sequences, which are the mini-
mum number of people required to support the introduction of new urban activities (see
thresholds examples in Fig. 7B). For example, in a scenario when a new city is constructed
in a location where there are no accessible services or commercial establishments essen-
tial for everyday life, such as supermarkets, banks, gas stations or hospitals these will have
to be introduced. All these urban establishments need a sufficient amount of potential
customers to support their financial activity in a sustainable manner for the developers
to justify their initial investment. In this scenario, developers need a recommended mea-
sure of population thresholds to assess how many people their development project has
to house in order for it to sustain a type of urban activity.

(ii) Growing cities. Scaling laws can serve as a consistent planning guideline for growing
cities, as a tool to assess the rate of development: for the quantity and quality of amenities
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Figure 7 Guidelines for land use quantities. (A) Required quantity of amenities to serve the first 1 million
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and their spatial distributions viz a viz demographic growth trends; or to maintain their
current characteristics. More specifically, if a growing city wants to maintain the current
level of services, the required quantity of amenities for the new population size can be
computed as follows:

logyo(Ye(ne +g)) =1ogyo(Y (1 +g)) + €c (5)

where c is the city, n, is its current population size, #, + g is the new population size, e. is
¢’s deviation from the scaling law and Y.(n, + g) is the required quantity of amenities for
the new population size.

For a concrete example, consider Boston’s recent efforts to develop a 2030 master plan
[43]. Assuming planners are satisfied with the city’s performance in terms of parks (Boston
is ranked 4th in the US), as part of the planning process planners will need to calculate how
many additional parks are needed to support the expected population growth. Using the
scaling law found for parks (¢ = —3.88 and B = 1.03) and the equation above (Eq. (5)),
considering the population projection for 2030 of 4,547,611 people (nposton = 4,494,611
current inhabitants, g = 53,000 additional people) and the current quantity of parks of
YBoston = 2010 (with a deviation in parks of eposton = 0.33), the city of Boston will need to
add only 25 new parks to maintain its current performance and “feel”.

(iii) Adjusting a city’s character. Communities and planners may want to take actions
in order to change a city’s character in a way that would best serve its population or a
vision of future developments. In this case, the catalog of ‘urban signatures’ can support
planners by providing them a diverse set of city characters, they could use as role models.
Once the role model city is chosen, planners can use that city’s deviations to calculate the
quantity of amenities the city in question needs to have in order to adjust its character.
For example, if Los Angeles is interested in creating a new master plan for parks, planners
may decide to use Boston’s level of performance as their development goal. Los Angeles
planners can then quantify how many parks they would need to add to their city in order
to reach Boston’s performance standard by using the following equation:

Ytarget(nc) = Y(”c) : loétarget’ (6)

where target is the target city, c is the city in question, 7. is the population size of ¢, Y (n,) is
the fitted quantity of amenities for population size 7. and e(arge: is the deviation of the target
city. The metropolitan area of Los Angeles has a population of n; 5 = 12,801, 183, Boston’s
performance in parks is represented by a deviation of eposton = 0.33 and the fitted quantity
of parks required for the population size of Los Angeles is Y (n14) = 2758. Plugging these
numbers into the scaling relation indicates that Los Angeles needs to add a total of 5895
parks to reach Boston’s performance, which translates into 3961 additional new parks!

3.3.2 Phase 2: land use allocation

The second phase of land use planning addresses the spatial distribution of land use units
across the city. After land use quantities have been assessed and the number of units to
be added (or possibly subtracted) to a city has been set, planners need to tackle the issue
of land use allocation. Using our findings, given the spatial distribution of a city’s popula-
tion scaling can be used to estimate the spatial distribution of amenities. In our running
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example of Boston’s master plan, one of the plan’s stated goals is to improve accessibility
to parks. Indeed, our analysis shows that Boston’s rate of decay for parks is relatively high
(2.6 - 10°), supporting the plan’s claim of a current uneven distribution of parks. To reach
the plan’s goal, Boston will need to reduce the spatial concentration of its parks, which can
be done, for example, by adding new parks only to tracts that currently do not contain any.

Finally, the question of determining a fine-grained location for an amenity might be the
hardest and most influential of all in the process of city planning. Location is everything
with regard to cities, even in the globalization era [44]. The third scaling law, characteriz-
ing the distance between amenities, can provide some guidelines. As a concrete example,
looking at the case of the Boston’s seaport district (Fig. 6B), we already noted that take-
away restaurants have a very high positive deviation in their spatial rate, meaning that they
are not highly accessible and located farther away than one would expect. If planners wish
to improve the accessibility to such a high-demand amenity in a business district, it would
require reducing this positive deviation. This can be achieved by encouraging additional
take-away restaurants at a distance smaller than 1.25 km (the current mean shortest dis-
tance) from other amenities in the district, or facilitating relocation to more convenient
locations. A city should also benefit from such strategies as they can increase not only the
quality of services to its inhabitants but also higher tax revenues resulting from more suc-
cessful businesses. We like to think of this as amenity oriented development in analogy to
the virtuous cycles between land uses and transportation created by well known strategies
of transit oriented development.

4 Discussion

We have used a large new data source of urban amenities in US cities to establish a number
of new statistical patterns quantifying the abundance, relative composition and location
of services in cities and their non-linear dependence on city size. Our analysis reveals
the existence of three different types of scaling relations. First, echoing previous research
with different data sets [28], the quantity of amenities in a city shows a power-law scaling
with population size. Second, the distribution of amenities in a city scales with the distri-
bution of population across census tracts in a city, indicating that if residential areas are
distributed unevenly throughout a city, so are the amenity clusters and commercial dis-
tricts in that city. Third, the mean distance to the closest amenity scales with the density
of amenities.

These three scaling laws and associated deviations characterizing each city allow us to
build a generative multidimensional model of urban signatures and evaluate cities in terms
of their unique local characteristics. Such measures can be used to highlight the current
relative strengths and deficiencies of service provision in any given city and its neighbor-
hoods as judged by the same, city-size specific, quantitative standard. It is worth noting
that positive and negative deviations do not hold by themselves a judgment on the per-
formance of a city and that context and history are important in any value statement. For
example, in Boston, the positive deviation in the number of universities means that they
are serving more people than just the residents of Boston, whereas in Detroit, the positive
deviations in all amenity types are a manifestation of a shrinking city where people are
abandoning their homes faster than businesses and public facilities are closing down.

Our analysis is based on a unique new Google Places dataset, offering a uniformly de-
fined index of 78 amenity types for all US cities. This index allows for a more consistent
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analysis and comparison of amenity types than the usual 6-10 types offered by typical lo-
cal government land-use classifications. However, it also presents some major limitations
since the data are partly user generated and partly automatically extracted from Google
Street View [45—47]. While these methods are improving fast towards a universal census
of amenities and businesses, there are still potential inaccuracies and biases in the data
that may create partial misrepresentations of reality. For example, previous studies found
Google to over-represent health institutions and lawyers [48]. Nonetheless, when compar-
ing Google Places API to other large scale POI datasets (e.g., Facebook, OSM, Foursquare),
Google shows the most consistent point density across regions, the highest accuracy in ge-
ographical locations and significantly less falsified POIs, suggesting higher quality data in
Google as a result of its data curation efforts [48—50] (Google has a team dedicated to the
verification of the data and has set procedures in place to detect fake listings [51]). Future
work should repeat our analyses with other datasets of amenities in addition to Google
API (both user generated and official) to strengthen our findings’ validity and clarify their
limitations in light of potential biases in the data.

The data used in this study was extracted from Google Places API back in 2012 (i.e.,
almost 10 years ago). While we believe that most of our findings would be similar to-
day, re-extracting the data and re-conducting our analyses is not trivial. In 2018 Google
started charging for access to Places API (when exceeding a relatively small number of free
queries), making a data extraction process like ours costly. Nevertheless, we are aware of
steps Google is taking in order to support the scientific and policy communities’ work, so
we hope our methodology can be utilized to support such future work at scale.

In a similar context, datasets that can follow amenities over space and time, are expected
to grow in quality and scope and expand to more cities across the globe. These develop-
ments hold much promise for a future extension of the studies developed here, in terms
of their further validation and the observation of amenity dynamics, e.g. during crises and
recessions and in cities all over the world.

In this context we expect that our strategy will apply generally, but that new features will
become available for analysis. For example, scaling prefactors are typically time and urban
system dependent, so that baseline values for amenities will need to be reevaluated in dif-
ferent nations and times. In this sense, levels of economic development and consumption
habits in US cities are likely to be found to be quite different from those of cities of the
Global South, such as in South America or Africa. Moreover, American cities are rela-
tively young compared to cities in Europe and generally less dense, resulting in different
physical morphologies that should affect amenity location patterns and, of course, their
spatial concentration.

We used MSAs as the base unit of analysis. MSAs are the gold standard definition of
functional urban areas as integrated labor markets and have been defined consistently by
the US Census Bureau since the 1960s. The majority of work on urban scaling uses these
units of analysis as they more closely approximate theory describing cities as networks
that include places of residence and work. Previous research has also shown that scal-
ing results applied to other units of analysis may vary more widely [52, 53]. However, the
literature has shown that although scaling signals may be sensitive to urban definitions,
they tend to change in a consistent and similar way [53], supporting their significance for

policy decisions. Future research should continue to investigate these issues for amenity
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abundance and location, using urban units of analysis that are both relevant for theory
and policy applications.

Our findings hold, in our view, great potential to more seystematically support devel-
opment and planning practices in the construction of new cities, in growing cities and
in urban areas interested in rezoning to promote change. In particular, the task of land
use planning should benefit from the quantitative measures produced here, which enable
city planners to assess the functional configuration of an urban area as well as to bet-
ter understand the implications of their planning choices. Such a quantitative approach
has the potential to promote a more objective, open and flexible discussion around urban
development processes, reducing their exposure to the influence of stakeholders’ narrow
interests, power imbalances and inequitable market forces.
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