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Abstract
Change point detection has many practical applications, from anomaly detection in
data to scene changes in robotics; however, finding changes in high dimensional
data is an ongoing challenge. We describe a self-training model-agnostic framework
to detect changes in arbitrarily complex data. The method consists of two steps. First,
it labels data as before or after a candidate change point and trains a classifier to
predict these labels. The accuracy of this classifier varies for different candidate
change points. By modeling the accuracy change we can infer the true change point
and fraction of data affected by the change (a proxy for detection confidence). We
demonstrate how our framework can achieve low bias over a wide range of
conditions and detect changes in high dimensional, noisy data more accurately than
alternative methods. We use the framework to identify changes in real-world data and
measure their effects using regression discontinuity designs, thereby uncovering
potential natural experiments, such as the effect of pandemic lockdowns on air
pollution and the effect of policy changes on performance and persistence in a
learning platform. Our method opens new avenues for data-driven discovery due to
its flexibility, accuracy and robustness in identifying changes in data.

Keywords: Change point detection; High-dimensional data; Regression
discontinuity design; Causal effect

1 Introduction
The explosive growth of Big Data has transformed the study of human behavior [1]. Yet
one critical use case, inferring the effect of policies and interventions, has proven chal-
lenging. To address this challenge, researchers are developing causal inference methods
to quantify the effects of actions within heterogeneous observational data [2–5]. One ap-
proach to causal inference leverages “natural experiments,” fortuitous occurrences that
serve to segment a population into a treatment group that was affected by a change and
a control group that was not. Agrist [6], for example, examined the impact of military
service on individual’s lifetime earnings using the Vietnam War draft lottery to separate
individuals who performed military service (the treatment group) from those who did not
serve (the control group). Comparing these populations allowed Agrist to estimate the ef-
fect of military service on earnings. Since this pioneering study others have used abrupt
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changes—raising the legal drinking age [7], changing the minimum wage [8], or modifying
a website’s user interface [9]—to infer the effects of policies [10, 11].

Identifying natural experiments requires creativity and luck, which has made this an un-
derutilized tool in the social sciences. One of the main difficulties is to identify exogenous
events that may significantly affect a population. This task, however, can be made easier
with change point detection, a method that detects events that suddenly modify a feature
distribution. Once these change points are found, researchers can look within a narrow
time range for events that contributed to these changes and use regression discontinuity
to measure their effects. Change point detection, however, is challenging because social
data is typically massive (many people) but sparse (few observations per individual), high
dimensional (many features), dynamic, and noisy.

A growing body of research has proposed methods to detect change points, from sim-
ple approaches based on cumulative summation [12, 13] to more sophisticated meth-
ods based on Markov models [14, 15] and Bayesian statistics [16]. Many of the existing
methods, however, are bespoke to problem domains or are only meant for time series.
Bayesian approaches, for example, usually need data to follow a particular set of distribu-
tions. Moreover, while these methods will identify where the change occurs, many are not
able to quantify estimation error or their confidence in the change. Despite the strengths
and successes of existing change point detection methods, there is a critical need for an
accurate and general purpose method that can be applied to various data, including high-
dimensional sparse data like video, audio, and EKG sensor signals.

Our contribution We describe Meta Change Point Detection (MtChD), a self-supervised
method for detecting changes in high dimensional data. The method extends on a
confusion-based training meta-model used to detect phase transitions in matter [17] by
introducing a mathematical model of classification accuracy to more precisely infer both
when the change occurs and the fraction of data affected by change [18]. The method
labels data as occurring before (0) or after (1) each candidate change point and trains a
classifier to predict the labels. A mathematical model is then trained to estimate classifica-
tion accuracy as a function of a feature, t. The model parameters provide an estimate of the
expected change point as well as the fraction of data affected, which is a proxy of change
confidence: we trust the change point more if a large fraction of data is affected [18].

We apply MtChD to a range of data, both synthetic and real-world, to demonstrate that it
has low bias under a wide range of conditions and accurately detects changes in noisy and
high-dimensional data, including images and text. Our method uses standard classifiers,
such as a random forest or a multilayer perceptron (MLP), to outperform state-of-the-
art change detection methods, even on sparse, noisy, and incomplete real-world data. We
show that our method accurately infers events in real-world data that are useful for dis-
covering regression discontinuities that represent potential natural experiments. We show
examples our method uncovers, including the impact of COVID-19 lockdowns on air pol-
lution and website policy changes on student performance in a learning platform. Due to
MtChD’s flexibility, accuracy and robustness, the proposed framework significantly ad-
vances the state-of-the-art in change point detection, thereby opening new opportunities
for data-driven discovery.

The rest of the paper is organized as follows. First, we review research on change point
detection. Next, we present details of our confusion-based training method and derive the
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mathematical model of accuracy. We thoroughly evaluate the performance and robustness
on an array of synthetic and real-world datasets, and then apply RDD on the discovered
real-world events.

2 Related work
2.1 Change point detection
Change point detection has a long history. An early method, called CUSUM [12], can
detect changes in univariate time serie data but assumes the data follows a normal distri-
bution with known parameters and the method only detects changes in the mean. A major
improvement over CUSUM are the general likelihood ratio (GLR) test-based algorithms
[19–22]. The GLR-based algorithms seek to reject a null hypothesis that observations be-
fore and after a proposed change point follow the same parameterized distribution. Wher-
ever this null hypothesis is least likely compared to a two-distribution hypothesis is the es-
timated change point. With the help of advanced search algorithms [23–27], new change
point detection algorithms based on cost functions can detect multiple (rather than sin-
gle) change points. A collection of cost functions and search algorithms is available as a
Python library called ruptures [23].

Alternate methods for change point detection include hidden Markov model (HMM)
and alternative code function approaches. Change point detection can, for example, be
formulated as a state transition in a HMM [15]. There are also Bayesian change point
detection methods [16, 28–30]. Moreover, apart from cost function-based change point
detection, there exists penalized quasi-likelihood [31] and kernel methods [32]. Unsuper-
vised Change Analysis is a method most closely aligned with ours [33] as it uses a similar
labeling method. But the paper focuses on explaining changes and not quantifying the
change point.

Existing methods have significant drawbacks. First, methods are not generalizable. For
example, kernel-based support vector machine methods do not perform as well as deep
learning methods on image datasets [34]. Moreover, the computational complexity of
segmentation-based methods and Bayesian methods scale quadratically with data length,
which makes these methods ineffective for long datasets. Although some methods, such
as PELT segmentation [27], scale linearly, certain assumptions must be made about the
data and cost function.

Our method improves on previous methods in several ways. First, it can estimate the
fraction of data affected by change, a proxy of change confidence. Moreover, our method
can handle many data forms and be applied to many supervised learning models. Finally,
our method scales almost linearly with respect to the length of data. This is because our
method requires a small number of training rounds (usually no more than 20) for the
candidate change points.

2.2 Natural experiments
Natural experiments have become a popular tool to measure the effects of treatments and
policy changes. Agrist’s pioneering study [6] used Vietnam War draft lottery as a natu-
ral experiment to measure the effect of military service on individual’s lifetime earnings.
The lottery created a quasi-random assignment, putting some individuals in the treatment
group (drafted) and others in the control (not drafted). Other studies have since leveraged
abrupt exogenous changes unrelated to an outcome to separate the population into treated
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(after the change) and untreated (before the change) groups and compare outcomes for
these groups. Regression discontinuity design (RDD), a framework for measuring effects
of changes, is a subcategory of natural experiments [35]. Studies used natural experiments
to explore the effect of raising the minimum drinking age on traffic accidents [7], the ef-
fect of minimum wage on employment [8], and impact of the prenatal environment on
individual’s future health [36]. However, identifying natural experiments requires creativ-
ity and insight on the part of researchers to connect some random event in the natural
world to their research question. Our method offers a systematic approach to sift through
observational data to identify candidates for causal inference, such as RDDs.

3 Methodology
Problem statement Assume we have data of the form (Xi, ti), i = 1, . . . , n, where X is an
arbitrarily high dimensional vector and t is a different data dimension, such as time. We
refer t as the indicator and look for a change point in t. Assume there is a change at t0 such
that some data before the change and some after the change have different distributions. In
many datasets, however, only a fraction of data, 0 ≤ α ≤ 1, may show observable changes.
Our goal is to infer the change point, t0, and the fraction of data that undergoes the change,
α, given the observations (Xi, ti).

Step 1: Confusion-based training Similar to [17], we assume a candidate change point
t = ta and label the observed data before ta as belonging to class ỹi = 0, and the data after
ta as class ỹi = 1.

We then train a classifier to predict the labels ỹi from the features Xi. We plot the accu-
racy of the classifier as a function of ta for the entire range of indicator t. In case a true
change point exists in the observed range of t, the accuracy vs. ta curve will significantly
increase over the baseline accuracy, which is the majority class ratio of labels ỹ. The shape
of the curve will be affected both by the actual change point, t0, and the fraction of data
points affected by change, α. Any classifier can be used — we use random forest and MLPs
in applications described in this paper. For each candidate change point ta, classifiers are
trained on random splits of 50% of data, validated on 30%, and tested on 20%. The test
set is used to judge the accuracy of the learned models for each ta. This step is known as
confusion-based training.

Accuracy varies significantly with ta: near the beginning and end of the dataset, accuracy
is nearly 1 (we get high accuracy since a large portion of data is labeled “0” or “1”), but
accuracy drops when we move away from these extremes. If ta is near t0, the accuracy will
again be high because in this case, the created labels ỹ matches the true change in data.
Thus an accuracy versus ta plot will have a “W” shape [17].

Step 2: Modeling accuracy vs. ta curve We show that by modeling this accuracy curve
we can better infer t0 and, in contrast to Step 1 alone, we can also estimate α. We assume
that the change happens instantaneously to simplify calculations. We model the CDF of
t, F(t), using a cubic spline of the emperical CDF, F̃(t) = 1/T

∑
i 1(ti ≤ t). (Other options

should not significantly affect the results.) Data X can fall into three categories (or three
distinguishable distributions): (a) a distribution that does not change, Su, which comprises
1 – α of all data; (b) a distribution before the change (t ≤ t0), S0; (c) a distribution after the
change (t > t0), S1. We do not know these distributions a priori but we assume the trained
classifier will be able to distinguish these distributions using data X.
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Assume that the distribution of t is independent of the event X ∈ Su, X ∈ S0 or X ∈ S1.
With real change point locate at t0, given any t, we assume that among α fraction of data
affected by change, θ (t – t0) fraction of data belongs to S1 and 1 – θ (t – t0) fraction of
data belongs to S0. Here θ (·) is the Heaviside step function, repesenting an instantaneous
change, but a gradual change can be modeled using a sigmoid-like function. We can esti-
mate the fractions of data in Su, S0, and S1 as

PSu = 1 – α, (1)

PS0 = αF(t0), (2)

PS1 = α
(
1 – F(t0)

)
. (3)

Recall we label data as “0” if ta ≤ t and “1” otherwise. Given candidate change point
ta, PSu,0 = (1 – α)F(ta) of data in Su is labeled “0” and PSu,1 = (1 – α) – PSu,0 is labeled
“1”. On top of this, for a data point in Su, the expected predicting accuracy should be

1
1–α

max(PSu,0 , PSu,1 ). Similarly, we can calculate the ratio of data labeled as “0” or “1” in
S0 and S1, respectively. We can calculate for S1, which has fraction PS1 = α(1 – F(t0)), the
fraction of data labeled “1” as

PS1,1 = max
{
α
[
F(ta) – F(t0)

]
, 0

}
. (4)

And the fraction of data labeled “0” is

PS1,0 = PS1 – PS1,1 = α
(
1 – F(t0)

)
– PS1,1 . (5)

The expected predicting accuracy for S1 is thus 1
α(1–F(t0)) max(PS1,0 , PS1,1 ). Finally, S0 has

a fraction of PS0 = αF(t0). The total fractions of data labeled “0” in both S0 and S1 is

PS1,0 + PS0,0 = αF(ta). (6)

This gives PS0,0 = αF(ta) – PS1,0 . Therefore the fraction in S0 incorrectly labeled as “1” is

PS0,1 = PS0 – PS0,0 = αF(t0) – PS0,0 . (7)

The expected predicting accuracy for data point in S0 is then 1
αF(t0) max (PS0,0 , PS0,1 ).

We then utilize the results above to estimate the accuracy as a function of ta using the
average predicting accuracy in Su, S0 and S1 weighted by the fraction of these three sets.
Namely,

Ãcc(ta) = max (PSu,0 , PSu,1 ) + max (PS0,0 , PS0,1 ) + max (PS1,0 , PS1,1 ). (8)

These variables only depend on empirically estimated CDF, F(t), and the free parameters
t0 and α. We therefore do not need to know the distributions of S0, S1 and Su. To estimate
t0 and α, we can do a grid search and use a mean squared error cost function to fit the
observed accuracy. The standard error of α and t0 are estimated via multiple random splits
of data. The source code to is available on our GitHub repository.1

1https://github.com/yuziheusc/confusion_multi_change

https://github.com/yuziheusc/confusion_multi_change
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3.1 State-of-the-art
We compare our method against state-of-the-art change detection methods. These meth-
ods can be divided into two groups, optimal segmentation algorithms and Bayesian change
point detection. Optimal segmentation algorithms we compare against include dynamic
programming (DP) [24], binary segmentation [25], bottom up methods [26], and window
based methods [23] with L1, L2, normal distribution loss and RBF kernel loss functions.
These algorithms are implemented in the Python package ruptures [23]. We also compare
against GLR, which is equivalent to optimal segmentation with a normal distribution like-
lihood cost function. Bayesian change point detection requires a prior and likelihood func-
tion. We used uniform and geometric distributions as priors and applied Gaussian, indi-
vidual feature model [30], and full covariance model [30] as likelihood functions. We used
a Python implementation for Bayesian change point detection available from GitHub.2

4 Results
We demonstrate the accuracy and robustness of our method on data from a variety of do-
mains. We first apply it to synthetic data to evaluate method’s performance and robustness
with respect to noise, then apply it to real-world data to discover changes corresponding
to external events. Finally, we illustrate how leveraging regression discontinuities around
the newly-discovered changes enables us to estimate effects of events and policies.

4.1 Discovering changes in synthetic data
4.1.1 Synthetic “chessboard pattern”
In this experiment, we generate two-dimensional numeric data in a chessboard pattern,
with two features x1 and x2, each in the range [0, 1], as shown in Fig. 1. At a time t0, data
points spread uniformly at random within the blue squares of a nc × nc chessboard move
to the orange squares of the chessboard. Mathematically, for nc × nc chessboard, the data
generated satisfies the following condition,

(�nc · x1� + �nc · x2�
)

mod 2 = 1(t > t0). (9)

For first part of this experiment, we set t0 = 0.5 and the size of the data N = 8K . We use
different arrangements of the chessboard, nc = {2, 4, 6, 8, 10}. For higher nc, the data is

Figure 1 Illustrations of synthetic data (a), where observations have two features x1 and x2. In (b) and (c),
blue dots represent data points which satisfy t ≤ t0 and orange dots are for t > t0. (b) and (c) are for nc = 2 and
nc = 6, respectively. For fixed data size N, as nc increases, the number of data points in each square decreases

2https://github.com/hildensia/bayesian_changepoint_detection

https://github.com/hildensia/bayesian_changepoint_detection
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grouped into smaller chess squares with fewer data points per square. For second part
of this experiment, we fix nc = 6 (a six by six chessboard) and we vary t0 between 0.2 and
0.8.

We repeat our method and comparing algorithms for 6 times on random data splits. For
the optimal segmentation methods, we randomly sample 70% of data in each trial. Due
to computational limitations, we only sample 18.8% of data (around 1.5K) for Bayesian
change point detection.

The results are shown in Table 1. In the tables and figures, μ and σ are the estimated
mean and standard error of parameters, respectively. For our method, α represents the
fraction of data changed. We see that for small nc, optimal segmentation methods perform
as well as ours, but for nc ≥ 6, our method outperforms comparing methods. Of the two
classifiers used by our method, random forest performs better.

4.1.2 Synthetic images
Our method can also identify changes in diverse high-dimensional data, such as text [18]
and images. To illustrate this we generate a series of synthetic 64 by 64 pixel gray scale
images that qualitatively change at t0 = 0.5 from solid to hollow circles (Fig. 2). These
images can represent, for example, organisms that were originally alive and then died;
thus our task would be to determine the moment an organism died, a finding that is very
useful in the field of survival analysis [37]. The gray scale of the solid and hollow circles is
γ = 0.8 and the gray scale of the background is γ = 0.2. To create more realistic data, we
position the circles randomly within the image and inject different levels of Gaussian noise
to model poor quality data. After adding noise, pixel grey scale values are truncated to the
range [0.0, 1.0]. We also assign each image a random time t uniformly distributed between
0 and 1. For every noise level, we generated a dataset with 4,000 images respectively.

We check the robustness of the estimated change point against noise. Table 2 shows the
inferred change point and estimated value of α as a function of noise for the synthetic
image data. Due to spatial correlation of image data and the superior predicting power
of CNN classifier, the change point inferred is close (often not statistically significantly
different) to the true change point and α is close to 1.0, even for very noisy image frames.
Alternative methods were infeasible because of the high-dimension and large data size.

4.2 Discovering changes in real-world data
We now demonstrate the ability of MtChD to identify changes in real-world data.

4.2.1 Covid-19 air quality
We first apply our method to air pollution data to see if pollution drops around the time
the COVID-19 pandemic occurred. We collected air quality data daily from January 1 to
May 26, 2020 for major U.S. cities from AQICN (aqicn.org). This data includes daily
concentrations of nitrogen dioxide, carbon monoxide, and fine particulates less than 2.5
microns across (PM2.5), totalling 4.3K observations for 37 cities across the U.S. once miss-
ing data are removed. We also include population within 50 km of the city as a feature
because people within this area may have contributed to the concentration of pollutants.
We can use our model to determine when the change started, and compare these results to
the gold standard: the date stay-at-home orders were issued by states. These orders limited
business and commercial activity, which likely lead to the dramatic decline in pollution,
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Table 1 A comprehensive comparison of the performance of the proposed method against two
types of state-of-the-art methods: optimal segmentation and Bayesian change point detection on
synthetic data.MtChD(RF) is our method with a random forest classifier;MtChD(MLP) is our method
with a MLP classifier. DP + Normal (GLR eq.) is DP segmentation method used with normal loss
function, which is equivalent to GLR test that assumes a multivariate normal distribution. Six
combinations of optimal segmentation methods are listed. DP is dynamic programming
segmentation algorithm, BinSeg is binary segmentation,Window is window-based change point
detection, and BottomUp is Bottom-up segmentation. The cost functions used are RBF (RBF kernel),
L1 (L1 loss function), and L2 (L2 loss function). The last four rows are for Bayesian change point
detection with a uniform prior or Geo (geometric) prior. Gassusian stands for Gaussian likelihood
function, IFM is the individual feature model [30], and FullCov is the full covariance model [30]. μ(t0)
and σ (t0) are the mean value and standard deviation of inferred change point and μ(α) and σ (α) are
the mean value and standard deviation of inferred α . Bold values indicate change points that are
closest to the correct value

nc 2 4 6 8 10 6 6 6 6
t0 0.5 0.5 0.5 0.5 0.5 0.2 0.4 0.6 0.8

MtChD (RF) μ(t0) 0.5002 0.4983 0.4976 0.5000 0.4959 0.1950 0.3937 0.6014 0.8020
σ (t0) 0.0025 0.0017 0.0033 0.0005 0.0049 0.0047 0.0052 0.0023 0.0022
μ(α) 0.9494 0.9137 0.8562 0.7604 0.6573 0.6503 0.8429 0.8316 0.6580
σ (α) 0.0077 0.0041 0.0119 0.0220 0.0156 0.0346 0.0076 0.0133 0.0276

MtChD (MLP) μ(t0) 0.5027 0.5003 0.5262 0.5084 0.5772 0.5649 0.4095 0.5962 0.5372
σ (t0) 0.0027 0.0039 0.0173 0.0962 0.0569 0.0450 0.0258 0.0668 0.1315
μ(α) 0.9589 0.8289 0.6249 0.0048 0.0086 0.0045 0.4906 0.3950 0.0171
σ (α) 0.0095 0.0366 0.0710 0.0068 0.0080 0.0035 0.0534 0.1112 0.0202

Naive Confusion
(RF)

μ(t0) 0.4965 0.5017 0.4974 0.4975 0.4973 0.2271 0.4255 0.5235 0.5436
σ (t0) 0.0018 0.0019 0.0004 0.0001 0.0001 0.0382 0.0312 0.0229 0.0900

DP + Normal μ(t0) 0.5003 0.5006 0.5212 0.7238 0.5971 0.2441 0.4578 0.5885 0.8108
(GLR eq.) σ (t0) 0.0004 0.0005 0.0204 0.2762 0.3374 0.0377 0.0447 0.0266 0.0288

DP + RBF μ(t0) 0.5002 0.5001 0.5673 0.9495 0.3071 0.3740 0.4234 0.5827 0.8355
σ (t0) 0.0004 0.0019 0.0684 0.0679 0.2392 0.2840 0.1893 0.0246 0.0654

DP + L2 μ(t0) 0.9510 0.9875 0.3515 0.8584 0.5143 0.4451 0.3183 0.3104 0.2917
σ (t0) 0.0099 0.0062 0.2399 0.2734 0.4006 0.3481 0.4417 0.4252 0.3778

DP + L1 μ(t0) 0.9569 0.5313 0.5809 0.6053 0.4015 0.5526 0.1277 0.4916 0.2114
σ (t0) 0.0070 0.2660 0.1677 0.4027 0.3308 0.4467 0.1873 0.3832 0.3312

BinSeg + RBF μ(t0) 0.5002 0.4995 0.5701 0.7663 0.5635 0.3133 0.3850 0.6049 0.7258
σ (t0) 0.0002 0.0011 0.0502 0.3205 0.2190 0.3285 0.3702 0.1506 0.2715

Window + RBF μ(t0) 0.4391 0.5653 0.2960 0.5699 0.2444 0.4746 0.5654 0.7964 0.3987
σ (t0) 0.1364 0.2210 0.2139 0.1738 0.1012 0.2436 0.2459 0.2223 0.3159

BottomUp + RBF μ(t0) 0.5002 0.4581 0.4500 0.6821 0.4947 0.4271 0.5213 0.4602 0.5861
σ (t0) 0.0008 0.1477 0.3655 0.2879 0.3144 0.3059 0.2149 0.2885 0.2953

Uniform
+ Gaussian

μ(t0) 0.5474 0.5429 0.3915 0.4717 0.5429 0.6171 0.7546 0.5210 0.5196
σ (t0) 0.2299 0.3010 0.1567 0.2265 0.2159 0.2842 0.2203 0.1549 0.3386

Uniform + IFM μ(t0) 0.9969 0.9942 0.9973 0.9975 0.9975 0.9986 0.9958 0.9973 0.9985
σ (t0) 0.0031 0.0030 0.0020 0.0015 0.0030 0.0015 0.0049 0.0026 0.0012

Uniform
+ FullCov

μ(t0) 0.4985 0.5089 0.9986 0.9976 0.9989 0.9930 0.9280 0.9982 0.9974
σ (t0) 0.0002 0.0163 0.0006 0.0010 0.0009 0.0098 0.1593 0.0020 0.0038

Geo + Gaussian μ(t0) 0.0282 0.0271 0.0286 0.0323 0.0278 0.0326 0.0340 0.0312 0.0254
σ (t0) 0.0044 0.0018 0.0044 0.0054 0.0037 0.0063 0.0034 0.0051 0.0037

and therefore act as the ground truth external events for RDDs. The earliest such order
was announced in California on March 19, 2020 and the latest in South Carolina on April
7.
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Figure 2 Example time series of synthetic images that change at t0 = 0.5 when a solid circle changes to a
hollow circle. From top to bottom, each row shows images with an increasing noise level σ = 0.2, 0.4, 0.6, 0.8
and 1.0

Table 2 Change points inferred for noisy synthetic images. The true value of change point is
t0 = 0.50 where solid circles change into hollow circles with different levels of noise

Noise 0.20 0.40 0.60 0.80 1.00

μ(t0) 0.5048 0.5087 0.5253 0.5155 0.5380
μ(t0) – t0 0.0047 0.0086 0.0237 0.0191 0.0398
σ (t0) 0.0028 0.0043 0.0027 0.0111 0.0246
μ(α) 0.9612 0.9787 0.9298 0.9609 0.8781
σ (α) 0.0278 0.0139 0.0083 0.0361 0.0717

We compare our method to state-of-the-art algorithms in Table 3. Our method is the
only one that inferred a reasonable change point for the data of March 21, 2020 ± 3 days,
roughly in the middle of all state stay-at-home orders. We show accuracy deviation for
MtChD in Fig. 3. A random forest classifier gives better accuracy than MLP and the math-
ematical model fits accuracy deviation well. Although our method can work with any clas-
sifier, the performance on a given dataset can be improved by choosing a classifier that best
fits the data. Some empirical ways to determine which classifier to use is (a) choosing the
classifier that gives the largest accuracy deviation or (b) choosing the classifier that gives
the highest α.

4.2.2 Khan academy
As a second example, we apply our method to the learning platform Khan Academy
(khanacademy.org), which offers courses on a variety of subjects where students watch
videos and test their knowledge by answering questions. The Khan Academy platform had
undergone substantial changes to its user interface around April 1, 2013 (or 1.3648 × 109
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Table 3 A comprehensive comparison of our method with previous methods on real world datasets,
COVID-19 Air and Khan Academy. We use the same abbreviations as in Table 1. For COVID-19, the
measure of t0 is number of days since 01/01/2020. For Khan Academy, the measure of t0 is Unix
timestamp, namely, number of seconds since midnight 01/01/1970. Correct values are roughly 80
days for COVID-19 air data, and 1.365× 109 seconds for Khan Academy data. Bold values indicate
change points that are closest to the correct value

COVID Air Khan
Time (day) Time (sec)

MtChD(RF) μ(t0) 80.0829 1.3703e+09
σ (t0) 2.9713 2.6992e+05
μ(α) 0.4164 0.2803
σ (α) 0.0392 0.0029

MtChD(MLP) μ(t0) 99.5820 1.3694e+09
σ (t0) 99.5820 1.3694e+09
μ(α) 0.4843 0.1491
σ (α) 0.3264 0.0173

DP + Normal μ(t0) 71.8333 1.3577e+09
(Normal GLR eq.) σ (t0) 0.3727 2.2059e+07

DP + RBF μ(t0) 37.1667 1.3763e+09
σ (t0) 25.5761 9.4481e+06

DP + L2 μ(t0) 70.1667 1.3679e+09
σ (t0) 53.8911 1.0014e+07

BinSeg + RBF μ(t0) 1.0000 1.3741e+09
σ (t0) 0.0000 8.9074e+06

Window + RBF μ(t0) 55.0000 1.3587e+09
σ (t0) 0.0000 1.2031e+07

BottomUp + RBF μ(t0) 54.0000 1.3528e+09
σ (t0) 0.8165 1.2960e+06

Uniform + Gaussian μ(t0) 96.9167 1.3439e+09
σ (t0) 37.5859 4.2047e+06

Uniform + IFM μ(t0) –0.5833 1.3564e+09
σ (t0) 0.8858 1.5300e+07

Uniform + FullCov μ(t0) 0.0000 1.3591e+09
σ (t0) 0.6455 1.6176e+07

Geo + Gaussian μ(t0) 8.1667 1.3396e+09
σ (t0) 8.9334 2.9504e+05

in Unix epoch time) [38], which affected user performance. This change acts as a ground
truth event we want to detect. After discovering this event, we can take regressions of
scores before and after the event and determine if this policy significantly changes stu-
dent performance scores via a RDD.

Data was collected by Khan Academy over the period from June 2012 to February 2014
and contains 16K questions answered by 13K students totalling 681K data points. Despite
the large number of students, the data is very sparse: the vast majority of students were
typically active for less than 20 minutes and never returned to the site. The performance
data records whether the student solved the problem correctly on their first attempt and
without a hint. When the user failed, they were able to attempt the problem again, and
the number of attempts made on a problem is recorded. Additional features recorded in-
clude the time since the previous problem, the number of problems in a student session, and
the number of sessions. Segmentation methods implemented in ruptures are not memory
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Figure 3 Accuracy deviation curve for COVID-19 Air data. (a) Using random forest classifier; (b) Using a MLP
classifier. The scatter points are accuracy deviation measured on testing set and the solid lines are fitted using
the proposed accuracy deviation model

Figure 4 Accuracy deviation curve for Khan Academy data. (a) Using random forest classifier; (b) Using a MLP
classifier

efficient, therefore we only sample 0.5% of the data (about 3.5K entries) uniformly at ran-
dom. For Bayesian change point detection, we sampled around 1.6K data points uniformly
at random.

Both our method and optimal segmentation algorithms can identify the change from
user performance data (Table 3), although optimal segmentation algorithms have larger
error. Bayesian change point detection does not give a reasonable change point for this
data. The accuracy deviation curve is shown in Fig. 4. The random forest classifier and
MLP classifier have comparable performance when used to estimate change points.

4.3 Measuring effects of changes via regression discontinuity design
We demonstrate how we can use regression discontinuity design to measure the effects of
changes on the population. Automatically discovered changes can therefore help uncover
potential natural experiments in data.

4.3.1 Persistence and performance in learning on Khan academy
Our analysis uncovered an abrupt change around April 2013 in the Khan Academy data
(Sect. 4.2.2). The change only affected user performance in a fraction of all sessions, quan-
tified by parameter α in Table 3. This change was likely due to a major redesign of the
platform’s user interface [38], although we do not know exactly what changed. We found
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no indication that the population was any different before and after the change. There-
fore, the April 2013 change could be used for a RDD, with some users “assigned” quasi-
randomly to visit the platform before the interface change and some after. This created an
effective control condition (before the change) and treatment condition (after the change).
The external event allows us to control for some of the confounders when investigating
correlates of performance in learning platforms. Specifically, comparing treated group to
the controled helps identify the link between persistence (working longer on problems
first answered incorrectly) and performance (answering the problem correctly on the first
attempt).

Figure 5(a) shows average performance over time, measured as the fraction of problems
the user solved correctly on their first attempt. Performance decreases gradually for all
users over the two-year period (blue line), despite seasonal variation. However, for users
working on problems that take more than 100 seconds to answer, i.e., hard problems, per-
formance increases after the change (orange line). To estimate the effect of the change,
we binned the data and fit the outcomes before and after the change as functions of time
using two kernel models (see Appendix A.2 for details). The effect is strongest in users
who solve hard problems correctly on their first attempt (Fig. 5(b)). At the same time,
users became more persistent, i.e., more likely to continue working on a problem they did
not solve correctly on the first attempt (Fig. 6(a)). The effect is bigger for users working on

Figure 5 Performance in Khan Academy. (a) Performance vs. time in Khan Academy data for problems
binned with duration and number of attempts. (b) Change of performance for binned data

Figure 6 Persistence in Khan Academy. (a) Persistence rate vs. time in Khan Academy data for long (≥ 100
sec) and short (< 100 sec) duration questions. (b) Change of persistence rate for long and short duration
problems
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Figure 7 Averaged and change of nitrogen dioxide levels before and after Mar. 21, 2020. (a) For Manhattan,
(b) For San Francisco

hard problems (Fig. 6(b)). Thus, the change had two effects: it made users working on hard
(to them) problems more persistent, and this improved their performance on other hard
problems, i.e., made them more likely to correctly solve these problems on the first try. Im-
provement in performance for these users was large, ∼10%, which corresponds to a full
letter grade in a class setting. Psychological studies have identified traits, such as consci-
entiousness or grit, that allow some people to practice a skill so as to achieve mastery [39].
Our study supports the link between persistence and improved performance.

4.3.2 Covid-19 lockdowns reduced air pollution
We detect a change on Mar. 21, 2020 in the COVID-19 Air Quality data (Sect. 4.2.1).
The change is consistent with the dates of the COVID-19 lockdown orders in the US, in
which people had to stay at home to reduce the spread of the disease. We calculated the
change in nitrogen dioxide levels before and after Mar. 21, 2020 as shown in Fig. 7. For
both Manhattan and San Francisco, nitrogen dioxide levels drop significantly (by around
5 ppb) after the lockdown. The reduction in air pollution is due to reduced traffic after the
lockdown. Our findings of the date and effect of the change are confirmed by Venter et
al. [40].

5 Discussion
We introduce Meta Change Point Detection (MtChD), a novel method to detect changes
in high dimensional data. The method identifies changes in a wide range of data, from tab-
ular to images. Moreover, it gives us the fraction of data changed, which we find can act as
a confidence metric. Our comprehensive experiments validated the method on synthetic
and real-world data that are difficult for other methods, and showed that it can robustly
identify changes in sparse and noisy data. We also demonstrate that our method has low
bias with higher accuracy than competing state-of-the-art methods, and efficiently han-
dles large datasets.

MtChD can be used in tandem with regression discontinuity designs to discover effects
of policies within observational data. By accurately estimating when a change occurs, we
can uncover plausible exogenous events that produce these changes, and then use RDDs
to determine average treatment effects of the event, thereby discovering natural experi-
ments in data. Importantly, RDDs assume unconfoundedness: the treatment (i.e., change)
is unaffected by the outcome variable. Therefore, RDDs on the change points themselves
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would not be methodologically sound. Instead, the method offers candidate events and
additional research would then reveal what is an appropriate exogenous event and what
features are confounded by this change. Therefore, our method substantially reduces re-
search time needed to detect natural experiments.

We illustrate this idea by discovering important events in empirical data. Namely, by
applying the change point detection, we identify a change in user performance on Khan
Academy. We discover that for long problems, users are both more likely to be persistant
and perform a full letter grade better. This finding is consistent with the notion that per-
sistent people perform better [39]. It appears that simply by encouraging users to keep
working on problems they find challenging (i.e., they failed to solve them on the first at-
tempt), could make these users more successful later on. Our findings therefore hint that
user interface design choices might make people more persistent.

Our method helps researchers automatically detect natural experiments otherwise hid-
den in high-dimensional empirical data [41]. Determining which dimensions produce
causal effects is an ongoing problem, especially when the change may be heterogeneous
across conditions, as in the case of Khan Academy [42].

Appendix
A.1 Details of confusion based training
We use four hidden layers for the MLP, each with 64 neurons. We chose the ReLU ac-
tivation function and the maximum number of epochs for training is 100. The random
forest classifier uses 100 decision trees with a maximum depth of 32. Entropy is used as
the splitting criterion. To detect changes in video data, a convolutional neural network
(CNN) is used with six convolutional layers. The dimensions of each layer are 3 by 3, and
the number of filters in each layer are 32, 32, 64, 64, 128, and 128. After the second, fourth
and the sixth convolutional layer, max pooling and drop out is performed. The kernel size
for max pooling is two and stride two, while the drop out ratio is 0.20. The output of the
convolutional layers are sent into a fully connected neural network with one hidden layer
and 64 neurons. A ReLU activation function was also used for this neural network and the
model was trained for 30 epochs.

A.2 Kernel regression for effect estimation
We used kernel regressions with RBF kernels to model the average outcomes (persistence
rate and correct rate) as functions of time. Namely,

y(t) =
∑

j

k(t, tj) · yj =
∑

j

exp
(
–γ (t – tj)2) · yj. (10)

Variable t is first standardized. We use γ = 1. To accelerate the calculation, we set cutoff
for kernel weights k(t, tj) equals 0.05. For binned data in Fig. 6 and Fig. 5, we perform a
kernel regression for each bin, respectively.

Acknowledgements
Authors are grateful to Tad Hogg for helping explain the effects of the Khan Academy natural experiment.

Funding
This work was supported in part by DARPA under contracts HR00111990114 and HR001121C0168.



He et al. EPJ Data Science           (2022) 11:49 Page 15 of 16

Abbreviations
RDD, Regression Discontinuity Design; MtChD, Meta Change Point Detection; COVID-19, Coronavirus Disease 2019;
CUSUM, Cumulative Sum; GLR, General Likelihood Ratio; HMM, Hidden Markov Model; CNN, Convolutional Neural
Network; DP, Dynamic Programming; BinSeg, Binary Segmentation; RBF, Radial Basis Function; RF, Random Forest; MLP,
Multi-Layer Perceptron; PM2.5, Fine inhalable particles, with diameters that are generally 2.5 micrometers and smaller.

Availability of data and materials
All code and synthetic data (including code to generate synthetic data) is available at
https://github.com/yuziheusc/confusion_multi_change. COVID-19 Air dataset is avialable to at
https://aqicn.org/data-platform/covid19/. US census dataset is avialable at https://data.census.gov/cedsci/. The
processed and cleaned version of the data is available from the corresponding author upon request. Khan Academy
dataset is available from Khan Academy but restrictions apply to the availability of these data, which were used under
license for the current study, and so are not publicly available. Data are however available from the authors upon
reasonable request and with permission of Khan Academy.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author contribution
KB, YH, and KL conceptualized the study. YH created software used in analysis. YH, KB, and KL analyzed results and wrote
the paper. All authors read and approved the final manuscript.

Author details
1Information Sciences Institute, University of Southern California, Marina del Rey, CA, USA. 2Department of Physics and
Astronomy, University of Southern California, Los Angeles, CA, USA.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 25 January 2022 Accepted: 9 August 2022

References
1. Lazer D, Pentland A, Adamic L, Aral S, Barabasi A-L, Brewer D, Christakis N, Contractor N, Fowler J, Gutmann M et al

(2009) Social science. Computational social science. Science 323:721–723
2. Pearl J (2009) Causal inference in statistics: an overview. Stat Surv 3:96–146
3. Athey S, Imbens G (2016) Recursive partitioning for heterogeneous causal effects. Proc Natl Acad Sci

113(27):7353–7360. [Online]. Available. https://www.pnas.org/content/113/27/7353
4. Künzel SR, Sekhon JS, Bickel PJ, Yu B (2019) Metalearners for estimating heterogeneous treatment effects using

machine learning. Proc Natl Acad Sci 116(10):4156–4165
5. Bryan CJ, Tipton E, Yeager DS (2021) Behavioural science is unlikely to change the world without a heterogeneity

revolution. Nat Hum Behav 5(8):980–989
6. Angrist JD (1990) Lifetime earnings and the Vietnam era draft lottery: evidence from social security administrative

records. Am Econ Rev 80(3):313–336. [Online]. Available. http://www.jstor.org/stable/2006669
7. Serdula MK, Brewer RD, Gillespie C, Denny CH, Mokdad A (2004) Trends in alcohol use and binge drinking,

1985–1999: results of a multi-state survey. Am J Prev Med 26(4):294–298. [Online]. Available.
http://www.sciencedirect.com/science/article/pii/S0749379703003933

8. Card D, Krueger AB (1993) Minimum wages and employment: A case study of the fast food industry in new jersey
and pennsylvania. NBER Working Paper No. 4509

9. Oktay H, Taylor BJ, Jensen DD (2010) Causal discovery in social media using quasi-experimental designs. In:
Proceedings of the first workshop on social media analytics, ser. SOMA’10. Association for Computing Machinery,
New York, pp 1–9. https://doi.org/10.1145/1964858.1964859. [Online]. Available

10. Varian HR (2016) Causal inference in economics and marketing. Proc Natl Acad Sci 113(27):7310–7315. [Online].
Available. https://www.pnas.org/content/113/27/7310

11. Bor J, Moscoe E, Mutevedzi P, Newell M-L, Bärnighausen T (2014) Regression discontinuity designs in epidemiology:
causal inference without randomized trials. Epidemiology 5:729–737

12. Page ES (1954) Continuous inspection schemes. Biometrika 41(1–2):100–115.
https://doi.org/10.1093/biomet/41.1-2.100.

13. Page ES (1957) On problems in which a change in a parameter occurs at an unknown point. Biometrika
44(1–2):248–252. https://doi.org/10.1093/biomet/44.1-2.248.

14. Baum LE, Petrie T (1966) Statistical inference for probabilistic functions of finite state Markov chains. Ann Math Stat
37(6):1554–1563. https://doi.org/10.1214/aoms/1177699147

15. Raghavan V, Galstyan A, Tartakovsky AG (2013) Hidden markov models for the activity profile of terrorist groups. Ann
Appl Stat 2402–2430

16. Wilson RC, Nassar MR, Gold JI (2010) Bayesian online learning of the hazard rate in change-point problems. Neural
Comput 22(9):2452–2476

17. Van Nieuwenburg EP, Liu YH, Huber SD (2017) Learning phase transitions by confusion. Nat Phys 13(5):435–439
18. He Y, Rao A, Burghardt K, Lerman K (2021) Identifying shifts in collective attention to topics on social media. In:

International conference on social computing, behavioral-cultural modeling and prediction and behavior
representation in modeling and simulation. Springer, Berlin, pp 224–234

https://github.com/yuziheusc/confusion_multi_change
https://aqicn.org/data-platform/covid19/
https://data.census.gov/cedsci/
https://www.pnas.org/content/113/27/7353
http://www.jstor.org/stable/2006669
http://www.sciencedirect.com/science/article/pii/S0749379703003933
https://doi.org/10.1145/1964858.1964859
https://www.pnas.org/content/113/27/7310
https://doi.org/10.1093/biomet/41.1-2.100
https://doi.org/10.1093/biomet/44.1-2.248
https://doi.org/10.1214/aoms/1177699147


He et al. EPJ Data Science           (2022) 11:49 Page 16 of 16

19. Siegmund D, Venkatraman E (1995) Using the generalized likelihood ratio statistic for sequential detection of a
change-point. Ann Stat 255–271

20. Willsky A, Jones H (1976) A generalized likelihood ratio approach to the detection and estimation of jumps in linear
systems. IEEE Trans Autom Control 21(1):108–112

21. Barber J (2015) A generalized likelihood ratio test for coherent change detection in polarimetric sar. IEEE Geosci
Remote Sens Lett 12(9):1873–1877

22. Willsky AS, Jones HL (1974) A generalized likelihood ratio approach to state estimation in linear systems subjects to
abrupt changes. In: 1974 IEEE conference on decision and control including the 13th symposium on adaptive
processes. IEEE, pp 846–853

23. Truong C, Oudre L, Vayatis N (2020) Selective review of offline change point detection methods. Signal Process
167:107299. [Online]. Available. http://www.sciencedirect.com/science/article/pii/S0165168419303494

24. Rigaill G (2015) A pruned dynamic programming algorithm to recover the best segmentations with 1 to k_max
change-points. J Soc Fr Stat 156(4):180–205

25. Fryzlewicz P et al (2014) Wild binary segmentation for multiple change-point detection. Ann Stat 42(6):2243–2281
26. Keogh E, Chu S, Hart D, Pazzani M (2001) An online algorithm for segmenting time series. In: Proceedings 2001 IEEE

international conference on data mining. IEEE, pp 289–296
27. Killick R, Fearnhead P, Eckley IA (2012) Optimal detection of changepoints with a linear computational cost. J Am Stat

Assoc 107(500):1590–1598
28. Adams RP, MacKay DJ (2007) Bayesian online changepoint detection. Preprint arXiv:0710.3742
29. Niekum S, Osentoski S, Atkeson CG, Barto AG (2015) Online Bayesian changepoint detection for articulated motion

models. In: 2015 IEEE international conference on robotics and automation (ICRA), pp 1468–1475
30. Xuan X, Murphy K (2007) Modeling changing dependency structure in multivariate time series. In: Proceedings of the

24th international conference on machine learning, pp 1055–1062
31. Bardet J-M, Kengne WC, Wintenberger O (2010) Detecting multiple change-points in general causal time series using

penalized quasi-likelihood. Preprint arXiv:1008.0054
32. Arlot S, Celisse A, Harchaoui Z (2019) A kernel multiple change-point algorithm via model selection. J Mach Learn Res

20(162):1–56
33. Hido S, Idé T, Kashima H, Kubo H, Matsuzawa H (2008) Unsupervised change analysis using supervised learning. In:

Pacific-Asia conference on knowledge discovery and data mining. Springer, Berlin, pp 148–159
34. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M et al (2015)

Imagenet large scale visual recognition challenge. Int J Comput Vis 115(3):211–252
35. Lee DS, Lemieux T (2010) Regression discontinuity designs in economics. J Econ Lit 48(2):281–355. [Online]. Available.

https://www.aeaweb.org/articles?id=10.1257/jel.48.2.281
36. Almond D (2006) Is the 1918 influenza pandemic over? Long-term effects of in utero influenza exposure in the

post-1940 us population. J Polit Econ 114(4):672–712
37. Stroustrup N, Ulmschneider BE, Nash ZM, López-Moyado IF, Apfeld J, Fontana W (2013) The caenorhabditis elegans

lifespan machine. Nat Methods 10:665–670. lifespan Machine | Supplementary videos | Harvard News
38. Chan M, O’Connor T, Peat S (2016) Using Khan Academy in community college developmental math courses. New

England Board of Higher Education, Tech. Rep, [Online]. Available,
s3.amazonaws.com/KA-share/impact/Results_and_Lessons_from_DMDP_Sept_2016.pdf

39. Duckworth AL, Peterson C, Matthews MD, Kelly DR (2007) Grit: perseverance and passion for long-term goals. J Pers
Soc Psychol 92(6):1087

40. Venter ZS, Aunan K, Chowdhury S, Lelieveld J (2020) Covid-19 lockdowns cause global air pollution declines. Proc
Natl Acad Sci 117(32):18984–18990

41. Herlands W, McFowland E III, Wilson AG, Neill DB (2018) Automated local regression discontinuity design discovery.
In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining,
pp 1512–1520

42. Wager S, Athey S (2018) Estimation and inference of heterogeneous treatment effects using random forests. J Am
Stat Assoc 113(523):1228–1242

http://www.sciencedirect.com/science/article/pii/S0165168419303494
http://arxiv.org/abs/arXiv:0710.3742
http://arxiv.org/abs/arXiv:1008.0054
https://www.aeaweb.org/articles?id=10.1257/jel.48.2.281
http://s3.amazonaws.com/KA-share/impact/Results_and_Lessons_from_DMDP_Sept_2016.pdf

	Leveraging change point detection to discover natural experiments in data
	Abstract
	Keywords

	Introduction
	Our contribution

	Related work
	Change point detection
	Natural experiments

	Methodology
	Problem statement
	Step 1: Confusion-based training
	Step 2: Modeling accuracy vs. ta curve
	State-of-the-art

	Results
	Discovering changes in synthetic data
	Synthetic "chessboard pattern"
	Synthetic images

	Discovering changes in real-world data
	Covid-19 air quality
	Khan academy

	Measuring effects of changes via regression discontinuity design
	Persistence and performance in learning on Khan academy
	Covid-19 lockdowns reduced air pollution


	Discussion
	Appendix
	Acknowledgements
	Funding
	Abbreviations
	Availability of data and materials
	Declarations
	Competing interests
	Author contribution
	Author details
	Publisher's Note
	References


