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Abstract
Politics in different countries show diverse degrees of polarization, which tends to be
stronger on social media, given how easy it became to connect and engage with
like-minded individuals on the web. A way of reducing polarization would be by
distributing cross-partisan news among individuals with distinct political orientations,
i.e., “reaching the bubbles”. This study investigates whether this holds in the context of
nationwide elections in Brazil and Canada. We collected politics-related tweets shared
during the 2018 Brazilian presidential election and the 2019 Canadian federal
election. Next, we proposed an updated centrality metric that enables identifying
highly central bubble reachers, nodes that can distribute content among users with
diverging political opinions—a fundamental metric for the proposed study. After that,
we analyzed how users engage with news content shared by bubble reachers, its
source, and its topics, considering its political orientation. Among other results, we
found that, even though news media disseminate content that interests different
sides of the political spectrum, users tend to engage considerably more with content
that aligns with their political orientation, regardless of the topic.

Keywords: Political polarization; Polarization dynamics; Social network analysis;
Intergroup bridging centrality; Bubble reachers

1 Introduction
Polarized scenarios are characterized by the tendency of people with similar characteris-
tics, interests, and behaviours to form tightly linked groups [1]. In online social networks,
this characteristic tends to be stronger because users start to be selectively exposed to sim-
ilar points of view through mechanisms whose goal is to optimize engagement [2]. A small
portion of bridging nodes, called brokers, can form weak ties between polarized groups
by linking users with access to complementary information and creating opportunities for
intergroup contact and exchange of information [3]. On Twitter’s online social network,
highly central brokers tend to be related to news media accounts [4], through which such
media publish links to content available on their respective websites.

This study aims to understand how Twitter users engage with tweets shared by highly
central brokers—users who can reach others with diverging political orientations. For the
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sake of simplicity, these users are referenced to as “bubble reachers” in this study because
of their potential ability to reestablish the dialogue among polarized groups of people.
More specifically, we study tweets containing URLs to external news by analyzing the
relationship between users’ political orientation and the content of such news, content
source (i.e., website domain), and content topic (extracted using automated processes).
We are also interested in understanding the extent to which the exposure of users with
a diverging political orientation to the same content contributes to a meaningful engage-
ment, i.e., one that helps to increase the diversity of exchange of ideas, helping to avoid
situations such as “echo chambers” [5]. To conduct these analyses, we draw on the 2018
Brazilian presidential election and the 2019 Canadian federal election, two political situa-
tions with different polarization levels. For each of these cases, we collected tweets on the
weeks before and after voting and the election’s results. Datasets are publicly available in:
https://sites.google.com/view/onlinepolarization.

The main contributions of this study can be summarized as: (1) The proposition of an
updated centrality metric that enables the identification of highly central brokers (bubble
reachers) that reach users with diverging political opinions; (2) The creation and analysis of
tweet engagement networks, which allow us to identify common patterns in Brazilian and
Canadian cases, such as: (i) neutral domains tend to distribute information in a balanced
way to different polarized groups; however, (ii) when users in these polarized groups are
exposed to content that interests both sides of the political spectrum, they tend to engage
only with those which align with their own political orientation, regardless of the topic, and
(iii) this phenomenon is stronger with the increase in user polarity. Our results indicate
that, while news media can “reach the bubbles,” i.e., disseminate content that reaches and
appeals to different sides of the political spectrum, users still tend to select the information
that reinforces their points of view to engage themselves with. This clarifies the nature of
news media brokerage, suggesting it can integrate users across the political spectrum, but
is less effective in overcoming selective exposure. These findings speak to current debates
on media, bias, and polarization.

The rest of this study is organized as follows. Section 2 presents the related work. Sec-
tion 3 presents the data and methods used. Section 4 presents the results. Finally, Sect. 5
concludes the study.

2 Related works
Democratic theorists have long extolled the virtues of ties that cross-cut political cleav-
ages [6, 7]. Interactions with members of an outgroup are said to promote inclusive re-
lations that encourage civil restraint, and mutual understanding of opposing views [6].
Conversely, in the absence of bridging ties, the public sphere becomes fractured, breed-
ing segmented communities that foment antagonistic partisan identities [7]. Against this
backdrop, rising political polarization has been identified as a serious threat facing con-
temporary democracies. Growing distance between partisans, whether in their attitudes,
lifestyles, or relations, has eroded the cross-ties that once tempered partisan conflict [8].
As a result, partisan politics have become more rancorous, testing the limits of democratic
institutions [9].

Within this context, the role of online media, in particular, has been heavily scrutinized.
Early optimism over the democratic potential of networked communities has waned, giv-
ing way to concerns over ideologically homophilous networks that proliferate “fake news”

https://sites.google.com/view/onlinepolarization
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marred by partisan bias at the expense of factual veracity [2, 10]. Some scholars have ap-
proached these issues by relying on heuristics such as “filter bubbles,” or “echo chambers”
[5]. According to these arguments, processes like value homophily and selective exposure
that drive partisans to seek like-minded individuals and information corroborating prior
attitudes [1] are intensified in online spaces, reinforcing ideological viewpoints while insu-
lating partisans from opposing viewpoints [2]. Without the tempering effect of this cross-
cutting exposure, moreover, some claim partisan commitments become more extreme
[6, 9]. Consistent with this, research finds that individuals without cross-cutting exposure
become less politically tolerant, less likely to regard opposing views as legitimate, and more
likely to hold extreme attitudes [11].

These developments have brought questions about information brokerage to the fore.
Scholars identify brokers as those actors that bridge divides between opposing groups [3].
Owing to this relational position, brokers benefit from greater control over the transmis-
sion of information while also adopting conciliatory attitudes that mediate tensions [3].
As gatekeepers of political communication, media outlets have traditionally assumed this
role [12]. By selecting the news that citizens read and scrutinizing the quality of informa-
tion they consume, media outlets integrate citizens into common narratives [13]. Some
scholars refer to this as ‘agenda-setting,’ whereby news media have the power to integrate
public opinion by telling them what the important issues, worthy of attention, are [14, 15].

The emergence of social media, however, is said to have upended this role [16]. Platforms
like Twitter have reconfigured how information is diffused by enabling grassroots actors to
bypass traditional media outlets and spread crowdsourced information [16]. As discussed,
these platforms are seen as encouraging dynamics like homophily, moral sensationalism,
and “factual polarization” that drive echo chambers [17]. Taking heed of these issues, social
media platforms and mainstream news outlets have sought to remedy this situation by re-
asserting their brokerage function. Initiatives include expanding “fact-checking” efforts,
with social media platforms like Twitter and Facebook collaborating with third-party pro-
grams that independently review content and flag false information. By directing citizens
to institutionally validated facts, such initiatives intend to quell polarization by offering a
“neutral” medium that foregrounds partisan debate and counteracts ideological bubbles.

Recent research, however, suggests that the ideological bubble perspective misdiagnoses
the nature of online polarization in certain ways [18]. Empirical evidence finds that online
ideological homophily is overstated, demonstrating that online networks are diverse in
viewpoints and news sources, often more so than offline networks [19]. In fact, users of-
ten seek out counter-attitudinal political information. Morales et al. [20] find that during
discussions of the 2016 US elections, Reddit users were less likely to engage with mem-
bers of their own party than they were to engage across party lines. Likewise, Dylko et al.
[21] find that online engagement is higher when users are exposed to counter-attitudinal
items. Rather than moderating viewpoints, however, exposure to counter-attitudinal in-
formation can backfire, reinforcing commitment to prior beliefs [22]. Summarizing the
empirical record, Moller [18] claims that “the reality of social media and algorithmic fil-
ter systems today seems to be that they inject diversity rather than reducing it”. Despite
the normative benefits typically associated with diverse social ties [6], however, it appears
that exposure to diverse content on digital spaces can sometimes worsen polarization [23].
Overall, this research challenges the premise that cross-cutting ties mediate conflict in
online settings, suggesting that exposure to opposing views alone appears insufficient as a
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remedy to polarization. The information we receive and the evaluations we make appear
to be guided by an effort to preserve the integrity of prior beliefs, even when confronted
with opposing evidence [24]. Brokers who reach ideological bubbles by affording universal
access to similar content might not necessarily quell polarization, as partisan bias contin-
ues to motivate users to select stories and narratives that corroborate prior beliefs, and
reconcile challenging information by rejecting its validity [5].

Brokers’ ability to temper opposing positions may thus be limited because of selec-
tive exposure. That said, they may still mediate polarization in other ways. As mentioned
above, an important function of brokerage traditionally provided by news media involves
‘agenda-setting’, whereby news media effectively tell people what topics to pay attention
to, even if they don’t dictate what the specific positions should be [14, 15]. From that angle,
established news media can still promote integration by delineating important topics of
public discussion, thus drawing interest from partisans across the spectrum, uniting them
in their attention, even if as hostile counterparts. Given the fragmentation of online me-
dia, however, the extent to which established news media that aim to be neutral brokers
succeed in this capacity is unclear.

Taken together, this research raises numerous questions on brokerage in online settings.
Our study seeks to adjudicate divergent perspectives by investigating how online brokers
mediate polarization during two elections in Brazil and Canada. Specifically, we pursue
four research questions: (1) How can we identify social media brokers (bubble reachers)
who reach users across partisan divides? (2) Does content shared by bubble reachers elicit
high or low levels of polarization? (3) Are more “neutral” users less likely to engage with
polarized content when compared to “polarized” users? (4) Does the source of content
shared by bubble reachers affect the degree to which it elicits a polarized response, based
on the specific article or its semantic content (represented by its topic)?

3 Data and methods
3.1 Data
We collected tweets from the Twitter streaming API regarding the 2018 Brazilian presi-
dential election and the 2019 Canadian federal election. To obtain tweets related to the
Brazilian and Canadian cases, we collected trending political hashtags ranked by Twit-
ter on those countries on different moments of the preceding collection day to use as
filtering criteria (“seeds”) on the Twitter API. We made sure to have a balanced num-
ber of trending hashtags supporting different candidates. Examples of hashtags for the
Brazilian scenario are: #bolsonaro, #haddad, #elenao, #elesim, #lula, #TodosComJair, and
for the Canadian scenario: #CanadaElection2019, #cdnpoli, #TrudeauMustGo, #Trudeau-
WorstPM, #TeamTrudeau, #Trudeau4MoreYears. Data collection for Brazil started 6 days
before the first-round vote, from 2018-Oct-01, and ended 15 days after the second-round
vote, on 2018-Dec-11. This dataset was filtered to obtain only tweets whose language of the
text and the author’s profile was Portuguese, resulting in 43,140, 298 tweets. For the Cana-
dian case, tweets’ collection started 34 days before the polls on 2019-Sep-18 and ended 16
days after the polls on 2019-Sep-06. This dataset was filtered to obtain only tweets whose
language of the text was English or French, resulting in 12,426, 349 tweets. We did not fil-
ter by users’ profile language for the Canadian dataset, because the Twitter Streaming API
was no longer making this attribute available on tweets body. Both Brazilian and Canadian
datasets were analyzed separately.
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The political situation for each election provides important context for the analysis. In
Brazil, during the election time, the polls1 indicated high polarization among voters. The
dispute was between Jair Messias Bolsonaro, representing the possibility of a 15-year break
from the ruling Workers Party (PT), and Fernando Haddad, representing the continuity
of PT’s rule, after a brief period in which a PT president elected was replaced by her vice-
president as a result of impeachment. The election culminated in Bolsonaro’s victory, with
55.13% against 44.87% of the valid votes in favour of Haddad.2 In Canada, Justin Trudeau
represented the Liberals, which had previously held a parliamentary majority after unseat-
ing the Conservatives in 2015. In a close election, the Liberals won 157 (39.47%) seats in
parliament, while the Conservatives, led by Andrew Scheer, won 121 (31.89%).3 The (left-
wing) New Democratic Party continued to lose ground from its 2011 peak, especially in
French Quebec, where the Liberals and the separatist Bloc Québécois subsequently gained
ground. The 2019 election resulted in the Liberals forming a minority government, which
have historically exhibited instability, since the prime minister relies on representatives of
other parties to remain in power.4 Despite the multi-party character of the Canadian polit-
ical system, at least since the 1980s, national politics has largely revolved around left-right
differences [25].

3.2 User polarity estimation
The next step was to estimate each user’s polarity based on the retweeted content. For
this, we used the political orientation of the hashtags that users applied in their tweets
as an indication of their polarity. For this task, we identified 87,620 and 86,959 unique
hashtags for the Brazilian and Canadian cases, respectively. For each of these two sets, we
extracted the top 100 most frequent hashtags and classified them manually according to
their political orientation, “L”, “N”, “R” and “?”, were used to represent left-wing, neutral,
right-wing and uncertain political leaning, respectively. Six volunteers (not the authors),
three in each country, helped to classify all the top 100 hashtags without interference from
one another. We maintained only the hashtags whose classification was the same for the
three raters, resulting in 64 and 78 out of 100 hashtags for Brazil and Canada, respectively.
We relied on the Fleiss’ kappa assessment [26] to measure the agreement degree between
the raters, obtaining κ = 0.63 for Brazil, which means “substantial agreement”, and κ = 0.80
for Canada, meaning “almost perfect agreement”, according to Landis and Koch’s (1977)
[27] interpretation of kappa scores.

To classify the rest of the hashtags at scale, we assumed that hashtags describing a com-
mon topic usually occur together in the same tweet. This way, a network of hashtag co-
occurrences was built for Brazil and Canada, in which a node represented a hashtag and
an edge between two nodes, the occurrence of both in the same tweet. Standalone hash-
tags were eliminated. A semi-supervised machine learning algorithm [28], which uses the
edges’ weight to compute the similarity between nodes, was applied over the network to
label unlabeled hashtags starting from the manually classified hashtags. By applying this
procedure, 57,487 (65.6%) and 67,639 (77.8%) hashtags were classified in the Brazilian

1http://media.folha.uol.com.br/datafolha/2018/10/19/692a4086c399805ae503454cf8cd0d36IV.pdf
2https://politica.estadao.com.br/eleicoes/2018/cobertura-votacao-apuracao/segundo-turno
3https://newsinteractives.cbc.ca/elections/federal/2019/results
4https://web.archive.org/web/20130627154515/http://www2.parl.gc.ca/Parlinfo/compilations/parliament/Duration
MinorityGovernment.aspx
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and Canadian datasets, respectively. For the Brazilian case we obtained 35,788 (62.3%)
hashtags classified as “R” (right), 643 (1.1%) as “N” (neutral), 21,039 (36.6%) as “L” (left),
and 17 (0.0%) as “?” (uncertain). For the Canadian case we obtained 8963 (13.3%) as “R”,
52,416 (77.5%) as “N”, 2597 (3.8%) as “L”, and 3663 (5.4%) as “?”. To assess the consistency
of this method, the same hashtag classification procedure was performed 100 times, but
randomly hiding 10% of the manually classified hashtags each time. Classification results
were submitted to the Fleiss’ kappa assessment [26] (simulating 100 raters), where we ob-
tained a κ = 0.84 for Brazil, and κ = 0.84 for Canada, meaning “almost perfect agreement”
in both cases. We also considered a more aggressive strategy, hiding 20% of the manually
classified hashtags, obtaining κ = 0.78 for Brazil, and κ = 0.73 for Canada, meaning “sub-
stantial agreement” in both cases, showing that the classification procedure was robust.

Results showed an imbalance in both datasets between hashtags classified as “N” and
those classified as “R” or “L”. Taking a close look at the Canadian dataset, it is possible
to conclude that users tend to apply neutral hashtags more frequently, for example, #cd-
npoli, #elxn43, #onpoli, and #abpoli, together with polarized hashtags, such as #Trudeau-
MustGo, #blackface, #ChooseForward, or #IStandWithTrudeau, which, in turn, are ap-
plied in a proportionally smaller number, helping to explain the more prominent number
of neutral hashtags in this case. On the other hand, in the Brazilian dataset, the use of left
and/or right hashtags is higher than neutral hashtags, even when they appear together.
This imbalance on both datasets was addressed by adding weights to each class during
the users’ polarity estimation, presented in Equation (1). Given the low relevance of hash-
tags with uncertain positioning “?” for the analysis, only those classified as “L”, “N” and “R”
were maintained. Finally, we removed all tweets from the dataset that did not contain any
classified hashtag, to preserve only political domain-related tweets. This removal resulted
in 4,217,070 (6, 1%) and 2,304,911 (17, 4%) tweets for the Brazilian and Canadian datasets,
respectively.

The next step was to classify users according to their political orientation, which was
performed on a weekly basis. For this, we separated each dataset into six weeks, starting
on Monday and ending on Sunday. Less active users, with less than five tweets per week,
were removed. This was done because these users did not create enough tweets to estimate
their polarity. With that, we obtained 72,576 and 26,815 unique users for the Brazilian and
Canadian datasets, respectively. For each of these users, a list of hashtags used in all of their
tweets for the week was created, and their polarity (P(H)), calculated using Equation (1):

P(H) =
|HR| × WR – |HL| × WL

|HL| × WL + |HN | × WN + |HR| × WR
, (1)

where HL, HN and HR are the hashtag multisets (a set that allows for multiple instances
for each of its elements) for classes “L”, “N” and “R”, respectively. WL = avg(|HN |, |HR|)/|H|,
WN = avg(|HR|, |HL|)/|H|, and WR = avg(|HL|, |HN |)/|H| are the weights for classes “L”, “N”
and “R”, respectively. In these equations, avg(.) is a function that returns the average num-
ber of hashtags in two sets, and H is a set containing all hashtags applied by a user, i.e.,
H = HL ∪ HN ∪ HR. These weights are important to mitigate the class imbalance char-
acteristic of our datasets. This is inspired by usual tasks in classification scenarios with
imbalanced classes [29]. The general idea is to penalize classes with a higher number
of hashtags, such as the case of class “N” in Canada, and “R” and “L” in Brazil, and in-
crease the relevance of classes with fewer hashtags, such as “R” and “L” in Canada, and
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“N” in Brazil. This is necessary to avoid polarity estimation biased to the most frequent
hashtags users’ tweeted. Without this strategy, most users would have their polarity esti-
mated wrongly as neutral in the Canadian case. For example, a user who tweeted #Choose-
Forward, #ChooseForwardWithTrudeau, #cdnpoli, #elxn43, #ScheerCowardice, #onpoli,
#VoteLiberal, #cdnpoli, #elxn43, #ItsOurVote, #CPC and #climatestrikecanada, which is
a representative example of our dataset, would have a P(H) value equal to –0.1 without
using weights, and a P(H) value equal to –0.5 with weights, better reflecting the polarity
of the user. Similarly, a user who applied the hashtags #cdnpoli, #elxn43, #elxn43, #RCMP,
#cdnpoli, #TrudeauIsARacist and #TrudeauCorruption, would have a P(H) value of +0.3
without weights and equal to +0.7 with weights, again the use of weights expresses a user’s
polarity much better. Without weights, the opposite would happen in the Brazilian case;
most users would have their P(H) values skewed to extremes improperly.

The result of P(H) is a value in the continuous range [–1.0; +1.0]. Positive values repre-
sent a right-wing political orientation, negative values represent a left-wing orientation,
and values close to 0.0 represent a neutral orientation. Based on this result, we labelled
users according to their political orientation: the first third of values on the P(H) scale rep-
resents the left-wing (L) users, with P(H) ∈ [–1; –1/3[, the second third, the neutral users
(N), with P(H) ∈ [–1/3; 1/3] and the last third, the right-wing users (R), with P(H) ∈]1/3; 1].
It is important to note that the use of the terms left (L), right (R) and neutral (N ) to denote
the political orientation of hashtags and users was a simplification used to make it possible
to compare the two political situations through a common and simplified categorization
[25].

3.3 Detecting bubble reachers
After identifying all users’ political orientation, a network was created for each week, con-
necting one user to another through retweets. Each network was represented in the form
of a weighted undirected graph, where each user is a node, and the retweet is an edge
that starts from the user who was retweeted and ends at the user who retweeted. The
network is undirected because the incoming activity of any individual node—how much
they retweet—is dwarfed by the outgoing activity of popular nodes—how much they get
retweeted—, thus minimizing problems due to this characteristic. The edge weight rep-
resents the number of retweets between users. Self-loops and isolated nodes were elimi-
nated.

To achieve the main goal of our study, we needed to detect highly central nodes linked
to both sides of the network, i.e., we needed to detect brokers (bubble reachers) on the
network capable of reaching users with diverging political views. For this task, between-
ness centrality [30] could be a metric to be applied as a starting point, because it ranks
nodes by their capacity of acting as information bridges between more pairs of nodes in
the network, relying on the number of shortest paths that pass through each node. How-
ever, in a polarized situation, we can have nodes with a high betweenness degree within
and between polarized groups. That is, highly influential nodes inside bubbles could be
ranked the same as highly influential nodes between bubbles. The former are called “local
bridges” and the latter “global bridges” [31]. We were interested only in the global bridges,
nodes that most of the time act as brokers, by linking both sides of the network.

Considering that betweenness centrality was not an appropriate metric to distinguish
local bridges from global bridges, we identified in the literature a relatively new centrality
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metric called “bridgenness” [31]. This metric is based on the betweenness algorithm, but
while computing the number of shortest paths between all pairs of nodes that pass through
a source node, it does not include the shortest paths that either start or end at the imme-
diate neighborhood of the source node [31]. Even though the bridgeness algorithm could
better emphasize global than local bridges, it brings up a problem when the considered
network has a small average path length, which is precisely what happens with the retweet
networks we are analyzing. This is because it could disregard some important small paths
that either start or end on the neighborhood of a node. Considering that we already know
the political orientation of all users in our dataset and that users with similar orientations
tend to form tightly linked groups on the network, we used the political orientation as a
filtering criterion for the shortest paths.

Algorithm 1 presents this proposed process, which we called the “intergroup bridging”
algorithm. This algorithm builds on the betweenness and bridgeness algorithms. Still, while
computing the number of shortest paths between all pairs of nodes that pass through
a node, it does not include the shortest paths that either start or end at the immediate
neighborhood of a certain node if the considered node on the neighborhood has the same
class (political orientation, in our case) as the source node—a key twist added to the brid-
geness algorithm is this restriction to be from a different class. Put in simple words: this
new algorithm measures a node’s capacity to disseminate information to distinct groups
on the network, with a different political orientation from itself. To construct the inter-
group bridging algorithm, we relied on the Brandes “faster algorithm” [32]. These proposed
changes are presented in line 35—in the count of the shortest paths that pass through node
w, it is verified if the considered path is not a self-loop with w �= s (which already exists in
the original Brandes’ algorithm) and if s is not in the neighborhood of w, with A[w, s] == 0
or, if s is in the neighborhood of w, with A[w, s] >= 1 and s has a different political ori-
entation from w, with O[w] �= O[s]. We refer to the measure created by this algorithm as
“intergroup bridging centrality.” Note that this metric is also applicable to other problems
with the same characteristics.

To illustrate the difference between centrality metrics, a synthetic network was used, the
same one evaluated by Jensen et al. (2016) [31] to compare the metrics of betweenness and
bridgeness, but with the addition of a label for each node representing its political orienta-
tion (L, N or R), to allow the intergroup bridging metric computation. Figure 1 presents this
network on (a), including the computed values for all metrics, with colour-coded nodes
according to political orientation, with L in red, N dark-coloured, and R in blue, and two
scatter plots on (b), one representing the relationship between intergroup bridging with
betweenness, and another between intergroup bridging with bridgeness, where the col-
ors reflect the user political orientation, and the size of the point its degree (the bigger,
the higher), with all values normalized in the [0.0; 1.0] interval by each metric, to allow a
fair comparison. In this figure, it is possible to observe that the intergroup bridging metric
was more efficient in detecting nodes that bridge distinct groups on the network with a
different political orientation from itself, represented by nodes A and B. To complement
this analysis, Fig. 2 shows centrality values for the 25 users with the highest betweenness
values in Brazil in week 4. These values were normalized using a min-max strategy for
each metric. The user’s political orientation (L, N, or R) is presented next to their name.
It is possible to note that the values of bridgeness and intergroup bridging centrality follow
a similar pattern for most users in Brazil, being the former metric slightly higher than the
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1: A[u, v] ← adjacency matrix;
2: O[v] ← node orientation, v ∈ V ;
3: CB[v] ← 0, v ∈ V ;
4: for s ∈ V do
5: S ← empty stack;
6: P[w] ← empty list, w ∈ V ;
7: σ [t] ← 0, t ∈ V ;σ [s] ← 1;
8: d[t] ← –1, t ∈ V ; d[s] ← 0;
9: Q ← empty queue;

10: enqueue s → Q;
11: while Q not empty do
12: dequeue v ← Q;
13: push v → S;
14: for all neighbor w of v do
15: // w found for the first time?
16: if d[w] < 0 then
17: enqueue w → Q;
18: d[w] ← d[v] + 1;
19: end if
20: // shortest path to w via v?
21: if d[w] = d[v] + 1 then
22: σ [w] ← σ [w] + σ [v];
23: append v → P[w];
24: end if
25: end for
26: end while
27: δ[v] ← 0, v ∈ V ;
28: // S returns vertices in order of non-increasing distance from s
29: while S not empty do
30: pop w ← S;
31: for v ∈ P[w] do
32: δ[v] ← δ[v] + δ[v]

δ[w] · (1 + δ[w]);
33: end for
34: // this is the part where intergroup bridging differs from betweenness and

bridgeness algorithms
35: if w �= s and (A[w, s] == 0 or A[w, s] >= 1 and O[w] �= O[s]) then
36: CB[w] ← CB[w] + δ[w]
37: end if
38: end while
39: end for

Algorithm 1: intergroup bridging algorithm, adapted from Brandes’ “faster algorithm”
for betweenness centrality [32] and bridgeness algorithm [31]
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Figure 1 Centralities comparison on a synthetic network

latter, showing that those metrics capture similar information for most cases. However,
they differ considerably in specific cases, especially when important nodes reach different
sides of the spectrum in a more balanced way, such as the case for @UOLNoticias and
@g1, two Brazilian news media profiles.

This result can be difficult to understand without being familiar with the network struc-
ture; thus, Fig. 3 compares the same metrics on a zoomed example of the same net-
work analyzed above. Nodes are sized by their respective centrality measure. On the left
and right corner of the figures, one can view the left-wing (red) and right-wing (blue)
groups. Between them, a small number of nodes (dark-coloured) link these groups. On
the first representation for betweenness centrality, two big nodes appear. These are for
accounts @Haddad_Fernando and @ManuelaDavila, representing Fernando Haddad and
Manuela Davila, candidates for presidency and vice-presidency. On the left-wing side of
the figure, these accounts were ranked higher than the bridging nodes @UOLNoticias
and @G1. On the second representation (bridgeness centrality), as expected, nodes from
polarized groups were also not highlighted. Rather, @Trump_The_Robot, a spamming
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Figure 2 Centrality comparison among top 25 users according to betweenness for the Brazilian
dataset—week 4

Figure 3 Comparison among centralities on week 4 in Brazil

account banned from Twitter after data collection, was ranked higher than @UOLNoti-
cias and @G1. And finally, on the third representation for intergroup bridging centrality,
nodes from polarized groups also were not highlighted. However, in contrast to bridgeness
centrality, @UOLNoticias ranked higher than @Trump_The_Robot and @G1. This same
pattern prevailed in other weeks. For Canada (not shown due to lack of space), the inter-
group bridging also helps to highlight important nodes that receive the attention of users
from different sides of the political spectrum. These findings regarding the effectiveness
of the intergroup bridging centrality algorithm speak to our first research question.

3.4 Domain, content and topic polarity estimation
The next step was to extract entities (i.e., domain, content, and topic) related to the links to
external sites present in tweets made by bubble reachers. Recall that content refers to news
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represented by its URL, domain refers to the news website domain, and the topic refers to
the latent topic in the content extracted using standard automated processes. The process
for extracting and estimating the polarity of these entities is presented in this section.

Intergroup bridging centrality was used to obtain the 100 users that had the highest
value for this metric in each of the weeks. Knowing the most central accounts, we ob-
tained all retweets made by other users from content shared by this specific group of highly
central accounts that included links to external sites, except social networking sites (i.e.,
Facebook, Instagram, Linkedin, Reddit, Periscope, and Snapchat) and content aggrega-
tors (i.e., YouTube, Google News, Apple Podcasts and Globo Play—in case of Brazil). In
total, 299,873 and 261,703 retweets with links were identified in the Brazilian and Cana-
dian datasets, respectively. Shortened links have been transformed to its original form,
and those whose related domain was retweeted less than 10 times or had only a single link
shared along all weeks were removed. As a result, only links from domains with at least
two distinct links shared during the data collection period were maintained. To capture
the textual content and metadata from pages referred to in these links, the news-please5 li-
brary was used. A total of 370 and 625 unique links were extracted from the Brazilian and
Canadian datasets, respectively. Any textual content with less than 300 characters was
removed to avoid potentially incomplete articles, resulting in 338 and 484 unique con-
tents in the Brazilian and Canadian datasets, respectively. Then, the textual content was
pre-processed in the following order: (1) removal of stop-words from specific lists for the
languages of each dataset using the NLTK library;6 (2) removal of tokens that were not
nouns, proper names, adjectives or verbs using specific pre-trained POS-tagging models
for the languages of each dataset using the Spacy library;7 (3) stemming of tokens using
pre-trained models for the languages of each country through the Spacy library; (4) trans-
formation of tokens into lower case and removal of special characters and accents; (6)
extraction of bi and trigrams using the Gensim library.8

Having cleaned the data, we extracted topics from the pre-processed textual content.
For this task, we applied the Latent Dirichlet Allocation (LDA) [33] algorithm using the
Gensim library implementation. This algorithm allows for identifying topics in a set of
texts, considering that each text has a mixture of topics [33]. The choice of the number of
topics needs to be made manually for the LDA algorithm. Therefore, multiple models were
created for each dataset with values for the number of topics in the range from 1 to 50.
Within this range, we identified the model whose quantity of topics had the highest degree
of semantic similarity between texts through the coherence metric generated with the Cv

model8, which is based on the indirect cosine similarity of most representative words from
each topic throughout all documents on the dataset. For all cases, the same seed was used
so that the results of identifying topics could be replicated. Using this method, we found
48 topics in Brazil and 26 in Canada. After extracting topics with this method, it was ana-
lyzed the topic dominance of each content, from which it was found that 87% and 68% of
contents in the Brazilian and Canadian datasets, respectively, were dominated by only one
topic, with a dominance of at least 80% over other topics. Considering this result, we ex-
tracted the dominant topic of each content and checked the mean number of contents tied

5https://pypi.org/project/news-please
6https://www.nltk.org
7https://spacy.io.
8https://radimrehurek.com/gensim

https://pypi.org/project/news-please
https://www.nltk.org
https://spacy.io
https://radimrehurek.com/gensim
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to each dominant topic. In the Brazilian case, it was found a mean value of 6.5 contents per
dominant topic, with a standard deviation of 2.5, and, in the Canadian case, a mean of 15.0
contents per dominant topic, with a standard deviation of 4.1. These results indicate that
most topics were well-defined (less nebulous) and evenly distributed between contents.
Finally, the authors manually evaluated all topics identified and reached a consensus on
whether the topics were closely related to the respective political situations.

The last step was to estimate the polarity of domains, content, and topics based on the
polarity (P(H)) of the users who retweeted a tweet. For this task, a new metric called rel-
ative polarity (RP(H)) was created, which is calculated as follows: (1) for each entity (i.e.
domain, content or topic), a list with 21 positions was created, where each cell computes
the number of retweets that the entity received from users in the polarity bins represented
by the set {–1.0, –0.9, . . . , 0.0, . . . , +0.9, +1.0}; (2) the entities were allocated in a matrix, in
which each row represents an entity and each column one of the 21 polarity bins; (3) in
order to avoid data imbalance for each bin, considering the overall dataset, each cell of the
matrix was divided by their respective column maximum value; (4) for each entity (row),
we normalize the values using a min-max strategy, putting the values on a [0.0, 1.0] in-
terval; (5) for each entity (row), we summed each cell value multiplied by its respective
polarity, for example, the first cell value was multiplied by –1.0, the second cell by –0.9,
the third by –0.8, and so on, until +1.0. If the cell value was equal to zero or the cell repre-
sented the polarity 0.0 it was disregarded and not counted; (6) finally, the sum result was
divided by the number of considered cells, which became the RP(H) value for the entity.
The resulting value of the metric RP(H) was interpreted in the same way as the metric
P(H), presented in Sect. 3.2.

4 Results
4.1 Polarization analysis
To provide general context, we first analyze the global polarization of each dataset; the
metrics of variance, kurtosis, and polarization degree were extracted based on the P(H)
value of the users who retweeted each week; the analysis is inspired by [34]. Variance refers
to the dispersion of opinions among individuals. The more dispersed the opinions become,
the more difficult it becomes for the political system to maintain consensus [34]. Kurtosis
refers to the bimodality in the distribution of opinions among individuals. Positive values
mean consensus, and negative values, as it gets closer to –2.0, mean disagreement among
individuals. The more these curves diverge, the greater the probability of social disagree-
ment [34]. The polarization degree, calculated by the average absolute values of P(H) for
all users, refers to how much the opinions of individuals tend to one or both extremes
in the P(H) spectrum: a value around 0.0 means that most users tend to be ideologically
neutral, while a value around 1.0 means a more extreme bias to one or both sides of the
political spectrum. Table 1 shows the values for these metrics, and Fig. 4 shows the weekly
histograms of users by P(H) range, divided into 21 bins.

In both datasets, it is possible to visually identify bimodal curves in the first four weeks.
These weeks represent the period before the elections. The presence of the bimodal curve
indicates that both datasets present evidence of polarization [34, 35], with the polarization
in the Brazilian case stronger than in the Canadian case. The variance indicates that the
Brazilian case had a greater dispersion in political opinions, while it was less dispersed in
Canada. Right-wing radicals in both situations appear proportionally more concentrated
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Table 1 Polarization analysis. P(H) summarized variables: variance (var), kurtosis (kurt) and
polarization degree (deg)

Week Brazil Canada

Var Kurt Deg Var Kurt Deg

1 0.439 –1.494 0.621 0.298 –0.890 0.593
2 0.481 –1.438 0.659 0.280 –1.059 0.543
3 0.597 –1.774 0.743 0.321 –1.514 0.511
4 0.507 –0.993 0.775 0.283 –1.341 0.492
5 0.155 –0.473 0.387 0.220 –0.967 0.393
6 0.279 –0.706 0.594 0.099 –1.063 0.310

Figure 4 Number of users by polarity histograms

than left-wing radicals, which could be interpreted as the former being more prone to
retweet content shared by the top bubble reachers than the latter. Finally, the polarization
degree indicates a more extreme scenario in Brazil, mainly in week 4, which refers to the
week before the voting day. After the election in Brazil, polarization became lower on both
left and right-wing sides. The histograms show some polarization in Canada, but with a
significant amount of neutral users during the entire observed period. However, weeks 5
and 6 exhibit proportionally more neutral users than polarized users than previous weeks,
and a substantial reduction of polarized users occurs after the election result (week 6).

To provide validation of these polarization metrics on the network, we conduced a net-
work assortativity analysis for all retweet networks representing each week. Table 2 sum-
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Figure 5 User engagement with domains

Table 2 Assortativity on retweet networks according to node’s political orientation

Week Brazil Canada

All nodes L and R nodes All nodes L and R nodes

1 0.68 0.96 0.48 0.94
2 0.74 0.94 0.49 0.98
3 0.82 0.96 0.48 0.97
4 0.85 0.97 0.47 0.95
5 0.31 0.78 0.48 0.98
6 0.48 0.80 0.50 0.27

marize the assortativity regarding the similarity of connections in the networks consider-
ing the node orientation (L, N , or R) for Brazil and Canada. The first column “All nodes”
considers the entire network, where it is possible to observe a higher polarization in Brazil
than in Canada. However, when we remove N labeled nodes—second column “L and R
nodes”—both countries show a very high assortativity. As N nodes tend to act as bridges
in several situations—especially in the Canada dataset—the polarization is more evident
when we remove them.

This high degree of overall polarization, even among users exposed to the content shared
by the top bubble reachers, is an initial sign that exposure to cross-cutting content alone
is not enough to remedy polarization, especially in the emotionally intensified context of
a national election. This finding speaks to our second research question.

4.2 Most central users characterization
In order to highlight the difference of the intergroup bridging metric compared to be-
tweenness and bridgeness, the relationships between these centralities were compared
in Fig. 6. Scatter plots express the relationship between intergroup bridging and the other
metrics, where each point represents accounts among the top 100 users according to inter-
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group bridging and the top 100 users according to betweenness or bridgeness centralities.
The X-axis is the value of the intergroup bridging centrality, and the Y-axis is the value of
the betweenness or bridgeness centrality for each data point—values are normalized on
the [0.0; 1.0] interval for each metric in order to allow a fair comparison between metrics.
Colors indicate user’s political orientation, being red for L, black for N, and blue for R. By
looking at the scatter plots, it is evident that intergroup bridging does not classify as the
most central the same nodes as betweenness and bridgeness. It is possible to observe a
tendency for intergroup bridging to give higher values to N-labeled nodes, disfavoring L
and R. It’s worth to mention that neutral users, in this case, are less averse to connect to
out-group members than partisans by retweeting or being retweeted, thus, not impacting
these patterns observed for intergroup bridging. Another important fact—not visible in
the figures—is that intergroup bridging tends to rank higher verified accounts compared
to bridgeness—a critical scenario—among the top 100 accounts in all weeks, intergroup
bridging identified 77 verified ones against 55 by bridgeness in Brazil. Where in Canada,
intergroup bridging identified 152 versus 110 by bridgeness. Being able to rank higher ver-
ified accounts is interesting because the algorithm better capture accounts less probable
to be bots, which tends to be central in the diffusion of information [36].

To provide descriptive information about the top 100 user accounts by each central-
ity, we explored the following metrics: (i) “polarity,” measured by the users’ average po-
larity, thus, representing the ideological distribution of users; (ii) “polarization degree,”
measured by the average of the absolute values of polarity, representing the degree of ex-
tremism in direction to one or both sides in the ideological distribution; and (iii) “followers
count,” indicating the degree of influence of these accounts through the number of follow-
ers they have. To compare these metrics, four groups of users were selected in each of the
weeks: top 100 users by the betweenness metric, top 100 users by the bridgeness metric,
top 100 users by the intergroup bridging metric, and 1000 random users. This informa-
tion was compiled in Fig. 7. Each graph represents one of the metrics, the horizontal axis
the weeks in the dataset, and the vertical axis the value of the respective metric on each
graph. Analyzing this figure, it is clear that all metrics rank certain users differently. For
simplicity, we will concentrate the analysis between intergroup bridging and bridgeness.
In our dataset, intergroup bridging ranked higher users with average polarity lower than
bridgenness. This is also the case when we look at the absolute polarity metric, where top
users by intergroup bridging are less ideologically extremist. More central users accord-
ing to intergroup bridging tend to have more followers in both datasets, indicating that it
identify, in general, more influential users.

Considering the importance of the most central users for this study, they were manually
labeled according to its type to understand on what proportion they appear on the dataset.
User type could be: “news media”, for communication channels that focus on the transmis-
sion of facts, seeking to avoid positioning bias, “free media”, for communication channels
that allow the expression of opinions freely and spontaneously, “journalist”, for journal-
ism professionals, “political party”, for political organizations or users representing a po-
litical party, “politician”, for candidates, individuals with political office or ex-politicians,
“activist”, for politically motivated users who defend a political position, party or candi-
date, “celebrity”, for individuals with notable public knowledge, “removed”, for accounts
removed from Twitter, and “other”, for all other cases not covered by any other type. While
it was not feasible to manually label all top 100 users found in all weeks in both countries
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Figure 6 Comparison between centrality metrics in all weeks, with top 100 users according to intergroup
bridging and the top 100 users according to betweenness or bridgeness

(which was around 900 unique accounts), this analysis was concentrated on verified ac-
counts from that set, being 61 for Brazil and 87 for Canada). Figure 8 shows the mean
number of accounts per week according to their type. It is possible to note that intergroup
bridging finds more verified accounts than bridgeness. Most of these accounts are news
media or journalists (especially in Canada—most of them are connected to a news media).
These results also reinforce that the novelties introduced by intergroup bridging help to
rank different users. Also, the fact that intergroup bridging and those accounts identify
the majority of verified accounts tend to be connected to news media, one would expect
that they are essential for the phenomenon of ideology bridge that we envision to study,
suggesting an advantage of this metric.

The diversity of content shared by highly central users according to intergroup bridg-
ing centrality was also analyzed. For this, the number of unique hashtags was used as an
indicator of diversity. We found that top 100 bubble reachers tend to use more unique
hashtags than all other users—see Fig. 9. This suggests that central bubble reachers share
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Figure 7 Characterization of top 100 users by each centrality metric

Figure 8 Mean number of accounts per week according to its type. This analysis considers only verified
accounts among the top 100 verified ones in all weeks by each centrality metric

more diverse content. It is worth mentioning that the number of unique hashtags applied
according to its political orientation is still virtually the same between highly central bub-
ble reachers and all other users. That is, they do not have clear differences in choosing
hashtags according to its political orientation.



Kobellarz et al. EPJ Data Science           (2022) 11:47 Page 19 of 28

Figure 9 Mean unique hashtags count by user

Table 3 Correlation between User P(H) and retweeted Domain, Content or Topic RP(H)

User P(H) Brazil Canada

Domain RP(H) Content RP(H) Topic RP(H) Domain RP(H) Content RP(H) Topic RP(H)

(1) all N = 23,033 N = 23,844 N = 18,484 N = 31,070 N = 31,370 N = 21,487
r = 0.834*** r = 0.892*** r = 0.643*** r = 0.701*** r = 0.878*** r = 0.381***
ρ = 0.790*** ρ = 0.833*** ρ = 0.619*** ρ = 0.601*** ρ = 0.721*** ρ = 0.332***

(2) neutral N = 2960 N = 2956 N = 2445 N = 6278 N = 6261 N = 4420
r = 0.404*** r = 0.512*** r = 0.359*** r = 0.448*** r = 0.625*** r = 0.216***
ρ = 0.385*** ρ = 0.507*** ρ = 0.360*** ρ = 0.410*** ρ = 0.599*** ρ = 0.220***

(3) polarized N = 20,073 N = 20,888 N = 16,039 N = 24,792 N = 25,109 N = 17,067
r = 0.857*** r = 0.913*** r = 0.666*** r = 0.727*** r = 0.913*** r = 0.396***
ρ = 0.783*** ρ = 0.816*** ρ = 0.625*** ρ = 0.518*** ρ = 0.619*** ρ = 0.293***

Note: r and ρ represent the Pearson and Spearman’s correlation coefficients, respectively. All correlations are significant at
p < 0.001 level (two-tailed).

4.3 User engagement
This section discusses how users with specific political orientations engage by retweeting
messages that support their political biases in different perspectives: domain, content, and
topic. For this, we examine the correlation between the user P(H) who made a retweet
and the RP(H) of the domain, content, and topics that were retweeted. The results of the
correlations are shown in Table 3, where columns refer to the variables that were tested,
with “User P(H)” being the P(H) value for the user who made a retweet, and “Domain
RP(H)”, “Content RP(H)”, and “Topic RP(H)” the RP(H) value of the retweeted entity. To
structure the tests, we considered that users classified with a neutral political orientation
(with the label “N”) behave differently from polarized users (with labels “L” or “R”). For
this reason, three tests were created, each with a distinct set of retweets filtered by the user
P(H): (1) including all retweets, regardless of the user’s political orientation, (2) including
only retweets made by neutral users and (3) including only retweets made by polarized
users. See Table 3.

Considering that an entity’s RP(H) value is defined based on the P(H) of the users who
retweeted it, we evaluated the possible existence and impact of circularity in the correla-
tion tests. For this purpose, a synthetic dataset of random retweets was created for each
performed correlation test, maintaining the same number of retweets, users, and enti-
ties present in the original retweets dataset, but with P(H) values generated randomly
following a uniform distribution. Each synthetic dataset was generated 100 times with
different random seeds. For each synthetic dataset, we generate two null models: Model
A with RP(H) being calculated following the method presented in Sect. 3 and Model B
with RP(H) generated randomly following a uniform distribution. As expected for a full
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random model, Model B showed no correlation between the P(H) of users and the RP(H)
of domains, content, or topics for all tests. On the other hand, Model A showed weak signs
of positive correlations, so we focused on presenting results from this model.

User P(H) vs domain RP(H): Considering all retweets, a strong to very strong positive
correlation was found, with r(23,033) = 0.834***, and ρ(23,033) = 0.790*** in the Brazil-
ian dataset and a strong positive correlation with r(31,070) = 0.701***, and ρ(31,070) =
0.601***, in the Canadian dataset. When looking only at neutral users, this correlation is
slightly less intense than polarized users in both datasets. This result indicates that, in
general, users tend to retweet content from domains with a political orientation aligned
to their own, even if they do not always do so. Figure 5 show the retweet density made by
each user polarity from the top 20 most retweeted domains on each dataset and their re-
spective RP(H)—domains were sorted in an increasing order by their RP(H) value. In this
figure, it is possible to note that a relatively small number of domains could be reaching the
bubbles more than others, such as “noticias.uol.com.br” and “globalnews.ca”. Considering
that these domains could be producing content that appeals to users from diverging politi-
cal orientations, we also have to verify if partisans interact in a balanced way with content
that goes towards or against their own political bias (we present results regarding this
point in Sect. 4.4). The correlations found for the null Model A were r(31,542) = 0.043***
(±0.0037), r(10,532) = 0.013 (±0.0088) and r(21,010) = 0.052*** (±0.0045) for tests 1, 2
and 3, respectively, in Canada and r(23,885) = 0.031*** (±0.0047), r(7961) = 0.007 (±0.01)
and r(15,924) = 0.038*** (±0.0059), respectively, in Brazil. Values are similar for Spear-
man’s correlations. We observe that there is a very low circularity that is negligible. Also
note that the original correlation values are much larger than the limits of the null model,
thus, no significant impact of circularity in the results.

User P(H) vs content RP(H): When considering all retweets, a strong to very strong pos-
itive correlation was identified in both datasets, with r(23,844) = 0.892***, and ρ(23,844) =
0.833*** for Brazil and r(31,370) = 0.878***, and ρ(31,370) = 0.721*** for Canada. The sim-
ilarity between these results may indicate that, regardless of the dataset, most of the time,
users engage with content that aligns with their political orientation. As with the corre-
lation of user P(H) with domain RP(H), when neutral users are observed in isolation, the
correlation is slightly less intense compared to polarized users. The fact that the correla-
tion between user P(H) and content RP(H) is stronger than the correlation between user
P(H) and domain RP(H) may indicate that the content’s political orientation is slightly
more important than the domain political orientation in user retweet behaviour. Regard-
less, content shared by bubble reachers remains highly polarized, and even “neutral” users
engage with content in segmented ways. Figure 10 show the retweet density made by each
user polarity from the top 10 most retweeted URLs (content) on each dataset and their
respective RP(H) - see Table 4 for data references. URLs are ordered ascending according
to their RP(H) value. In this figure, it is possible to note that none of the URLs reached
the bubbles. Instead, the content was shared only by users with a political orientation
that resonated with the content bias. This visualization indicates that, although some do-
mains could be reaching the bubbles, users tend to select only the content that aligns
with their beliefs, even when exposed to content that appeals to different groups. The
correlations for the null Model A are r(31,542) = 0.150*** (±0.004), r(10,531) = 0.047***
(±0.01) and r(21,011) = 0.180*** (±0.0049) for tests 1, 2 and 3, respectively, in Canada
and r(23,885) = 0.0.135*** (±0.0048), r(7947) = 0.044*** (±0.013) and r(15,938) = 0.162***
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Figure 10 User engagement with news content - see Table 4 for data references

Table 4 Heatmap data references for Fig. 10

ID Content URL for (a) Brazil RP(H)

1 https://jornalistaslivres.org/urgente-tse-recebe-acao-para-investigar-caixa-dois-de-
bolsonaro-e-impugnar-sua-candidatura

–0.70

2 https://noticias.uol.com.br/politica/eleicoes/2018/noticias/2018/10/18/medico-diz-
que-bolsonaro-evolui-bem-mas-nao-cita-liberacao-para-debates.htm

–0.68

3 https://lula.com.br/arrancada-haddad-cresce-6-pontos-em-minas-e-3-em-sao-paulo –0.64
4 https://www.valor.com.br/u/5920771 –0.44
5 https://renovamidia.com.br/bolsonaro-na-record-durante-o-debate-da-rede-globo 0.49
6 http://www.caneta.org/checagens/checamos-haddad-mente-sobre-pedido-de-

prisao-de-empresarios-sem-investigacao
0.51

7 https://www.oantagonista.com/?p=122290 0.65
8 https://www.oantagonista.com/?p=123030 0.66
9 https://istoe.com.br/bolsonaro-recebe-6138-dos-votos-validos-em-londres-

haddad-tem-3844
0.79

10 https://politica.estadao.com.br/noticias/eleicoes,mourao-diz-que-vai-processar-
compositor-por-fala-sobre-tortura-azevedo-pede-desculpas,70002559739

0.82

ID Content URL for (b) Canada RP(H)

1 https://www.ctvnews.ca/video?playlistid=1.4634949 –0.59
2 https://www.cp24.com/video?clipid=1807978&binid=1.1127680&playlistpagenum=1 –0.49
3 https://torontosun.com/opinion/columnists/jim-warren-justin-trudeau-deserves-

another-shot-heres-why
–0.47

4 https://press-presse.liberal.ca/fact-check/conservative-platform-includes-53-billion-
in-cuts-including-14-billion-in-hidden-cuts

–0.45

5 https://www.theglobeandmail.com/politics/article-liberal-mp-involved-in-
cannabis-start-up-did-not-publicly-disclose

0.32

6 https://www.conservative.ca/advance-polls 0.37
7 https://montrealgazette.com/opinion/editorials/our-endorsement-best-

choice-for-canada-is-andrew-scheer
0.42

8 https://tnc.news/2019/10/06/malcolm-trudeaus-so-called-carbon-offsets-
bought-from-liberal-friendly-firm

0.46

9 http://cpcp.cc/ghk-ry 0.59
10 https://election.ctvnews.ca/truth-tracker-are-bots-amplifying-trudeaumustgo-

twitter-says-no-1.4612390
0.66

(±0.0062), respectively, in Brazil. Values are similar to Spearman’s correlations. Note that
although the limits produced by this model are slightly higher than the previous case, the
original correlation results are located well beyond the limits of observed circularity ef-
fects.
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Figure 11 User engagement with topics - see Table 5 for data references

User P(H) vs topics RP(H): In the test for all retweets, a weak to moderate positive cor-
relation was found in both datasets, with r(18,917) = 0.548***, and ρ(18,917) = 0.513*** in
the Brazilian dataset and r(21,308) = 0.451***, and ρ(21,308) = 0.389*** in the Canadian
one. The similarity between the results may indicate that, regardless of the situation, the
topic’s political orientation has less influence on retweeting behaviour compared to the
content or domain. This means that the content itself and where it appears is generally
more important than what it says in terms of its topic. Figure 11 shows the retweet den-
sity made by each user polarity from the top 10 most retweeted topics on each dataset and
its respective RP(H) - see Table 5 for data references. Topics are sorted in an increasing
order based on RP(H) value. It is possible to observe more topics slightly biased to the left
in Brazil, while in Canada most of the topics are dispersed among partisans, regardless of
their political orientation. The correlations for the null Model A are r(21,923) = 0.032***
(±0.0048), r(7318) = 0.009 (±0.0116) and r(14,605) = 0.039*** (±0.0056) for tests 1, 2 and
3, respectively, in Canada and r(19,078) = 0.047*** (±0.0049), r(6378) = 0.015 (±0.0113)
and r(12,700) = 0.057*** (±0.0063), respectively, in Brazil. Values also are similar to Spear-
man’s correlations. Here we also observe that the original correlations are located very far
from the observed circularity limits. Therefore, these results, like the others, are also not
due to pure circularity.

About our third research question, we found that more polarized users show stronger
partisan alignment. However, relatively neutral users still tend to share content from me-
dia outlets that align with their own partisan beliefs.

4.4 The impact of the content source
The analyses that were carried out in the previous section indicate a stronger correlation
between users’ polarity and content polarity than between users’ polarity and domain’ po-
larity. However, it is still not possible to know whether users who engage with domains that
produce content that interests both sides, that is, domains with a neutral RP(H), retweet
more content that reinforces their political views or tend to balance their retweets by in-
cluding content that goes in favour and against their political orientation. To better un-
derstand this, correlation tests were carried out involving the retweeted domain RP(H)
and the retweeted content or topic RP(H) produced by the domain. The results are shown
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Table 5 Heatmap data references for Fig. 11

ID Topic keywords for (a) Brazil RP(H)

1 lutar, percentual, filho, levantamento, crescer, movimentar, voto_valido, manha,
cenario, jovem

–0.44

2 battisti, italia, marinha, extraditar, ambientar, audio, reporter, paulo_guedes,
forcas_armadas, defender_democracia

–0.42

3 manifestacao, jornal, apoiadores, tv, aplicativo, controlo, combater, rio,
domingo_foto, tuite

–0.36

4 tratamento, saudar, escola, vidar, previdencia, comprar, crescer, globo, ampliar,
pretender

–0.27

5 londres, votacao, receber_voto_valido, perguntar, aprender, escola, acao, sexo,
descontar, comprar_pacote

–0.14

6 obrar, ex_presidente, petrobras, depoimento, acusar, preso, site, bahia,
policia_federal, indicio

0.05

7 conteudo, grupo, fux, agencia, censurar, enviar, servico, kit_gay, apoiadores, ilegal 0.07
8 torturar, mourao, geraldo_azevedo, torturador, presar, hamilton_mourao, show,

artista, planar, mourao_torturador
0.23

9 medico, hospital, paciente, receitar, rasgar_receitar, unidade, giselda_trigueiro,
jose, uol, natal

0.24

10 evangelico, igreja, lideranca, pastor, cristao, deus, religioso, urna, vieira,
confederacao

0.28

ID Topic keywords for (b) Canada RP(H)

1 rcmp, girl, snc_lavalin, mr_scheer, information, rebel, mr_trudeau, levant, witness,
energy

–0.17

2 coalition, win_seat, al, bloc, windsor, abortion, new_democrats, guy, winnipeg –0.09
3 genocide, apologize, bloc, apology, inquiry, blanchet, indigenous, racism, black,

quebecer
–0.07

4 pipeline, protest, library, obama, oil, plane, hypocrisy, climate, rumour, murphy 0.15
5 de, le, la, et, un, du, les, pour, que, au 0.15
6 elections_canada, saroya, refugee, ballot, voting, racism, young, mr_trudeau,

apology, form
0.16

7 infrastructure, spending, new_democrats, mr_trudeau, propose, indigenous,
mr_scheer, health_care, deficit, gain

0.33

8 andrew, protest, feeling, thinking, speech, cabinet, deserve_elect, editorial, date,
young_people

0.36

9 bernier, beauce, abortion, worker, maxime_bernier, bloc, levesque, director,
present, farm

0.39

10 coal, water, health, china, harper, lean, environmental, mr_harper, cap_trade,
mining

0.47

Table 6 Correlation between retweeted Domain RP(H) and Content or Topic RP(H)

Domain RP(H) Brazil Canada

Content RP(H) Topic RP(H) Content RP(H) Topic RP(H)

(1) all N = 23,788 N = 19,029 N = 31,512 N = 21,186
r = 0.889*** r = 0.677*** r = 0.683*** r = 0.343***
ρ = 0.876*** ρ = 0.647*** ρ = 0.610*** ρ = 0.303***

(2) neutral N = 15,534 N = 8922 N = 24,562 N = 19,657
r = 0.749*** r = 0.439*** r = 0.509*** r = 0.196***
ρ = 0.740*** ρ = 0.418*** ρ = 0.454*** ρ = 0.188***

(3) polarized N = 8254 N = 10,107 N = 6950 N = 1529
r = 0.934*** r = 0.726*** r = 0.674*** r = –0.159***
ρ = 0.766*** ρ = 0.619*** ρ = 0.806*** ρ = –0.350***

Note: r and ρ represent the Pearson and Spearman’s correlation coefficients, respectively. All correlations are significant at
p < 0.001 level (two-tailed).

in Table 6. The tests were conducted in the same way as the previous ones, separating
the dataset according to the domain RP(H), including: (1) all retweets, regardless of the
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Figure 12 Correlation between retweeted Domain RP(H) and Content RP(H)

retweeted domain RP(H), (2) only retweets from domains with neutral RP(H) and (3) only
retweets from domains with polarized RP(H).

Domain RP(H) vs content RP(H): When considering all retweets, a very strong pos-
itive correlation was identified in the Brazilian dataset with r(23,639) = 0.895*** and
ρ(23,639) = 0.900***, and a strong positive correlation was identified in the Canadian
dataset, with (31,306) = 0.699*** and ρ(31,306) = 0.605***. However, when neutral do-
mains are analyzed in isolation, it is possible to observe a strong positive correlation
between domain RP(H) and content RP(H), with r(14,716) = 0.759*** and ρ(14,716) =
0.801*** in the Brazilian dataset and a moderate positive correlation with r(27,644) =
0.525*** and ρ(27,644) = 0.458***, in the Canadian dataset. These correlations are signif-
icantly lower than between domain RP(H) and content RP(H) of polarized domains in
Brazil, with r(8923) = 0.949*** and ρ(8923) = 0.848*** and slightly lower in the Canadian
dataset, with r(3662) = 0.567*** and ρ(3662) = 0.748***. Figure 12 shows the scatter plot
with the regression line (in green) for the correlation test involving domain RP(H), on the
horizontal axis, and content RP(H) on the vertical axis, where each point is colour-coded
considering the polarity value of users who made each retweet. In this figure, it is possible
to observe what was identified in the correlation tests, which shows that neutral domains
can generate engagement of users from both extremes of the political spectrum in a more
balanced way, i.e., engage a similar proportion of users with different political orienta-
tions, potentially exposing those users to different points of view, thus, breaking the filter
bubble. As we saw in the previous results, this balanced engagement does not mean that
users with different political orientations engage with any content. In fact, the indication
we have is that users are selective, engaging with content that matches their convictions.

Domain RP(H) vs topic RP(H): Finally, in the test including all retweets involving the do-
main RP(H) and topic RP(H), a moderate positive correlation was identified in the Brazil-
ian dataset, with r(19,029) = 0.548*** and ρ(19,029) = 0.538***, and a weak positive cor-
relation in the Canadian dataset, with r(21,345) = 0.287*** and ρ(21,345) = 0.261***, in
the Canadian dataset. Figure 13 shows the scatter plot with the regression line (in green)
for the correlation test involving domain RP(H), on the horizontal axis, and topic RP(H)
on the vertical axis, where each point is colour-coded, considering the polarity value of
users who made each retweet. Nevertheless, when we study neutral users in isolation, as
it happened for previous tests, the correlation is slightly less intense when compared to
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Figure 13 Correlation between retweeted Domain RP(H) and Topic RP(H)

polarized users. These results suggest that the political orientation of topics and domains
is weakly related to retweeting behaviour.

Overall, speaking to our fourth research question, we found that neutral domains tend
to foster more engagement across partisan divisions than more partisan domains. Nev-
ertheless, this high degree of cross-partisan exposure does not mean users from different
partisan orientations engage with the same content to the same degree. Rather, they se-
lectively engage with content that aligns with their partisan orientation. Moreover, this
selective engagement is not based on the actual content but upon where it appears. Ar-
ticles on similar topics generate very different responses depending on the media outlet
that was dealing with it.

5 Discussion and conclusion
The results indicate a common phenomenon across the Brazilian and Canadian datasets:
neutral domains can distribute content that interests both sides of the political spectrum
in a balanced way. Despite that, in most cases, users tend to engage only with content that
reinforces their convictions, regardless of the topic. The same topic can generate differ-
ent retweet behaviours, depending more strongly on the content or the domain’s political
orientation (in polarized domains).

Social media platforms and mainstream news organizations have pursued initiatives to
expose users to more frequently shared and neutral content, hoping that this effort would
reduce polarization. The results presented in this study partially contrast with this re-
ceived wisdom. We find that when users engage with neutral domains and are exposed to
content that interests both sides of the political spectrum, they prefer to select the con-
tent that better fits their previous beliefs. In short, users seek to engage with information
more aligned with their biases, even when exposed to contrasting information. Neither
cross-cutting exposure nor “neutral” media alone seems to be enough to free people from
their echo chambers. Intergroup contact with the same content may not have the expected
effect in reducing polarization. Our results thus build on previous literature emphasizing
the role of selective exposure in structuring online polarization [37, 38]. We offer greater
confidence in the truth of these claims by using an updated centrality metric. This suggests
selective exposure is not simply an artifact of prior measurement techniques but reflects
something fundamental about engagement on social media.
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On the other hand, evidence that neutral domains generate engagement from distinct
polarized groups suggests news media can still function as a “bubble reacher”, but in a
different way. By evidencing prior biases as the decisive factor in building public opinion,
selective exposure arguments tend to minimize the impact of news media. However, while
news media may be ineffective in telling people what to think, others note it is more suc-
cessful in telling people what to think about through “agenda setting” [14, 15]. Based on
that, news media can still promote cohesion by delineating what the important topics are,
even when positions on these issues diverge. Our analysis speaks to this dynamic by find-
ing that even when neutral domains are unable to upend partisan biases, they still manage
to draw interest from across the political spectrum. Neutral domains can thus conceivably
mediate polarization by integrating opposing partisans within common topical agendas,
even if this means adopting antagonistic perspectives. Along similar lines, the fact that
neutral domains can draw interest from both sides of the political spectrum could be in-
terpreted as consistent with their promise to be impartial in regard to partisan “coverage
bias” [39]. Nowadays, this is an important point considering news media are constantly
being attacked by country leaders who claim that they produce fake or biased news to
weaken their power [10, 11].

Despite the interesting results of this study, there are limitations that we should high-
light. The use of trending hashtags for data collection could have impacted the retweet
diversity and limited the content only to popular political subjects around election set-
tings of each country. Because of that, the observed phenomena about the role of bubble
reachers and how users behave when exposed to its content must not be interpreted as
something universal for any polarized situation or online social network. Moreover, the
action of retweeting was considered a sign of a user’s endorsement of a domain, content,
or topic. However, retweets do not always indicate that a user is endorsing something.
Regarding this point, users could even retweet content they don’t agree with to make fun
of or mock it in front of their peers. In addition, the Twitter platform recommendation
mechanisms may be generating filter bubbles [2] through the selection of content pub-
lished by traditional media that would potentially generate more engagement on either
side of the political spectrum. Despite this, with the sample sizes of the analyzed datasets
and the fact that a balance has been identified in the distribution of neutral media content
among users in differing political spectrums, that possibility becomes less likely to have af-
fected the obtained results. We recognize that the high granularity of the L, N, and R labels
greatly simplified our analysis, however real extremists could behave differently compared
to those who are merely biased, and those we considered neutral in their orientation were
not necessarily so. Moreover, this categorization must be interpreted with care, since each
situation has political characteristics far more complex than those expressed merely by L,
N, or R labels, for example, users with the same political orientation could be acting as
supporters for different political parties [25]. Lastly, it is important to consider that the fil-
tering of most active users on a weekly basis may have captured more politically motivated
individuals for our analysis, which could inflate the polarization indicators—they could be
more extreme in their ideology and polarized. Despite this, there is a large number of users
in the dataset, and politically motivated individuals could be in a smaller proportion when
compared to individuals just sharing political content among other non-political content,
even considering the election’s setting.
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For future studies, it is important to verify whether the same dynamic found in the en-
gagement of users with content created by neutral top bubble reachers is replicated in
other online social networks, such as Facebook, Whatsapp and Reddit or even in offline
social networks. Cinelli et al. [40], for instance, find that platforms like Twitter which are
organized around social networks and news feed algorithms generate greater homophilic
clustering than others. Understanding this phenomenon in distinct contexts is impor-
tant for consolidating policies or building mechanisms that aim to reduce polarization,
whether online or offline [23]. Such research could build on recent work outlining the
different functions of cross-partisan brokerage [41, 42] by elaborating the role of neutral
bubble reachers. Drawing on our earlier discussion, this could mean exploring their role
in topical “agenda-setting”.

Regarding the role of news media, an important step is to assess the degree to which
this media is able to distribute content in a balanced way to different social groups and
how individuals behave when exposed to such content, not only considering the sharing
behaviour, as performed in this work, but also in the discussion cascades generated from
the consumption of online contents. In this sense, recent work on message cascades ex-
changed by Whatsapp [43] users identified that the reach of messages with false political
information was greater than that of other types of information. Similar research could
be built in order to understand the user’s reaction through discussions, when exposed to
information shared by news media, considering the political bias of users and the kind of
information to which they were exposed.

It’s also important to point out a possible extension for the intergroup bridging algo-
rithm: considering that the main purpose of the algorithm was to find nodes that could
reach nodes with distinct labels from itself more efficiently, its mechanism could poten-
tially be updated to count only shortest paths between nodes with different labels (polit-
ical orientation, in the case of this research) while maintaining the same dynamic of the
intergroup bridging algorithm to minimize the effect of star nodes, as it inherited from
bridgeness centrality. This is specially useful in problems involving finding efficient nodes
that act as super-spreaders between distinct groups.
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