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Abstract
The spatial inequilibrium phenomenon is apparent during China’s rapid urbanization
in the past four decades. As the fertility rate decreases and the population ages, this
phenomenon will become more critical. To accurately forecast the future economic
development of China, it is necessary to quantify the attractiveness of individual cities.
This study introduces web search data to quantify the attractiveness of cities with a
fine spatial scale (prefecture-level city) and relatively long-term span (nine years).
Results confirm that the estimated city attractiveness can unravel a city’s capability to
attract labor force, and suggest that tourism and health care functions of a city have a
positive effect to the city’s attractiveness. Additionally, China’s north-south gap in
economic development has been widened in the past decade, and 11 cities with
nationwide influence have prosperous development potential. This study provides a
new lens for predicting China’s economic development, as well as its spatial patterns.

Keywords: City attractiveness; Spatial inequilibrium; Web search; Gravity model;
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1 Introduction
China has experienced a rapid economic growth and urbanization in the last 40 years [1],
during which population growth has been a major driver and will continually contribute
to the future change of the nation’s urban systems. However, the recent shrinking of labor
force (due to the low fertility rate) in China implied a blurry vision of the future, mak-
ing it a necessity to foresee its economic development from a geographical perspective.
While seeing a dramatic increase of the urbanization rate from 19.39% in 1980 to 60.60%
in 2019 [2], China’s regional inequality in urbanization also becomes apparent. Many giant
cities like Shenzhen have emerged, meanwhile, lots of cities such as Harbin and Shenyang
are declining. It is crucial to predict the prospects of individual cities through estimating
migrations between cities, which is a manifestation of a city’s capability to attract labor
forces, especially young workers to sustain its future development [3].

At the national scale, the geography of Chinese cities’ attractiveness has been constantly
changing, although the pace was not too fast. Such change is reasonable and expectable
because the attractiveness of a city is a synthetic indicator of many factors including wage,
house price, culture, and climate conditions. Even a subtle factor such as local cuisine or
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air quality might lead a person to move to or flee from a city. Examples include that many
of the young generation have been fleeing from Beijing and Shanghai, the two most at-
tractive cities in China about ten years ago, due to unaffordable living expenditures [4].
Consequently, the hinterlands of many central cities have also seen marked changes, un-
folding another facet of the dynamics of individual cities’ attractiveness.

To understand the attractiveness of cities, traditional approach mainly relies on sur-
vey data such as socio-economic statistics indicators [5], which often suffer from incom-
pleteness, unreliability and inconsistency across cities. Being assisted by the ubiquitous
awareness of interactions between cities, a network-based perspective has been increas-
ingly adopted to precisely estimate the attractiveness of a city. As the Internet gradually
becomes an essential part of our daily life, web search traffic has been taken as a promising
data set for urban studies, especially for tourism prediction [6–9]. Inter-city web search
volumes, which quantify the frequency that a city’s name being searched by users of an-
other city for the sake of either business, employment, tourism, or simply curiosity, can be
taken as the proxy data of spatial interaction intensity between cities, so as to provide us
a new lens to investigate the attractiveness of cities.

Based on longitudinal web search volumes, this study estimates the attractiveness of
individual cities in China over the last decade by reversely fitting the gravity model, and
investigates its spatio-temporal patterns. The estimated city attractiveness is yielded from
a novel directed gravity model with particle swarm optimization, and can provide us with
reasonable evidences to foresee the future development of the nation’s urban systems.

2 Related works
Measuring the attractiveness of cities has been a central topic in geography and regional
studies for a long time [10]. Previous studies have suggested that the determinants of
city attractiveness can be mainly summarized as six functional dimensions: economy, re-
search and development, cultural interaction, livability, environmental and accessibility
[11]. Along with the general studies of city attractiveness, tourist cities and touristic at-
tractiveness have also been extensively studied [12–14]. In earlier studies, researchers of-
ten take population size, economic scale, or city area as the quantitative descriptor of city
attractiveness [15, 16]. This simplification was supported by empirical evidence showing
that population sizes, used per capita income, percentage of tertiary sector, tourism rev-
enue per capita and railway dominance well explain the discrepancies between the devel-
opments of cities [17]. However, the relationship between those economic/demographic
indicators and city attractiveness might be very complex to decouple. For instance, re-
searchers have found a super-linear scaling law of city attractiveness with population size
for foreign tourists [18]. Whereas for residents, with the improvement of social economic
level and increasingly prominent environmental problem, cities with large populations
might not be the most attractive places to live in. As big cities are often accompanied by
higher living costs and inevitable “urban disease”, some second-tier cities might tend to be
more attractive for young populations. Hence, attractiveness of current cities is not driven
by jobs or economics only, factors concerning the direction of population movement are
playing increasingly important roles in defining the attractiveness of a city [19–21].

Alternatively, reversely fitting the gravity model on city interactions becomes a com-
monly used approach to reconstruct the attractiveness of cities. The gravity model (also
known as the spatial interaction model) is an important method for urban and regional
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analysis. There is a rich body of literature on the model and its various extensions, termed
the family of gravity models [22, 23]. In its generic form, the use of gravity model is to
predict the interaction intensity given the city sizes and the distances. Yet it also pro-
vides a tool to estimate the theoretical sizes of a set of cities, known as gravitational at-
tractions, under the scenario that the interaction flows and distances between each city
pair are known. This reversely fitting approach (referred to as reverse gravity model) has
been widely used for estimate city attractiveness in various types of spatial interactions,
including air passenger flows [17, 24, 25], social media check-ins [26, 27], toponym co-
occurrences [28] and tourism flows [14]. For example, Xiao et al. [17] reconstructed the
gravitational attractiveness of 25 major cities in China in 2001 and 2008 from air passen-
ger flow. Liu et al. [28] estimated theoretical sizes of Chinese provinces based on toponym
co-occurrences. He et al. [27] inferred the attractiveness of 348 prefecture-level Chinese
cities from the social media check-in data.

The existing methods for reversely fitting gravity models can be divided into two cat-
egories, exact methods and heuristic methods. Based on the mathematical expression of
the reverse gravity model, exact methods includes three existing approaches: linear re-
gression, linear programming (LP), and the algebraic method. O’Kelly et al. [24] applied
linear regression and LP to derive the gravitational attractions of 25 major cities in the
United States from the air passenger flow data in 1970. Using the same data set, Shen
[25, 29] developed the algebraic method and its simplified version that can solve the fit-
ting problem with lower computation complexity. Although each of these exact methods
has its merits, all have some limitations in reaching a fast and accurate solution on large
network data [30]. LP faces challenges on both computation time and stability when ap-
plied to a large spatial interaction network. The algebraic method is defective as edges
with zero flow need special treatment. Therefore, their applications have been scarce in
recent studies. Heuristic methods such as the particle swarm optimization (PSO) method
offer better ability in solving the reverse gravity model. Xiao et al. [17] first utilized PSO to
solve reverse gravity model, and compared the performance of different approaches on air
passenger flow networks. Results show that PSO outperforms LP and algebraic method in
all cases with different network size and sparseness. Moreover, PSO does not require the
objective function in any particular form as in LP, which needs a logarithmic transforma-
tion of the gravity model; nor assumes null flow between cities as a constant as algebraic
method does. Therefore, it has more flexibility in solving reverse gravity models.

There is much to learn from understanding the discrepancies between the estimated
gravitational attractions (“theoretical”) and actual city sizes. City attractiveness reported
in previous studies heavily relies on a single type of spatial interactions in the physical
space [14, 17, 24–27]. Taking transport network as an example, it is easy to overestimate
a city’s attractiveness by one type of transport mode if the reliance of a city on that mode
is high. In contrast, we may underestimate a city’s attractiveness under situations that
other transport systems have a strong influences on the city’s interactions with others.
Such discrepancies suggest that the estimated city attractiveness from one mode need to
be interpreted in a multimodal context to understand the complementary roles of various
transportation modes in urban development. Other factors such as income, economic
structure, and geography might also influence travelers’ mode choices and consequently
the market share of a transport system. As the World Wide Web has become a vast knowl-
edge base, such Internet-based data provide a fresh perspective on the real world when
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compared with traditional geospatial data. A few studies have already developed new
approaches to investigate the relation between geographical entities from data collected
from massive web pages, such as toponym co-occurence [28]. Compared with common
interaction data such as inter-city flight volumes, web data demonstrate its superiority in
the following aspects: (i) Wide spatial coverage. The data have nationwide coverage and
are not constrained by traffic networks. In comparison, traffic flow data such as air pas-
senger flow data can only be used to analyze major cities with airports; (ii) High temporal
resolution and long-time span. The data is updated daily and accumulated across years,
enabling us to analyze the variation and evolution of city attractiveness. It is noteworthy
that, as an emerging data source, the advantages and disadvantages of web documents are
widely debated concerning internet penetration rate, toponym ambiguity, and temporal
variation.

3 Data
Baidu Index [31] released by Baidu Inc. is our main data source for estimating city attrac-
tiveness. As the largest Chinese search engine around the world with widespread users in
mainland China, Baidu publishes its web search index that counts the times a keyword
being searched by Baidu users in certain area each day, and is updated daily since 2011.
We may obtain the search index from one city to another by setting the keyword and user
area. To query the index from Beijing to Shanghai, for example, set the user area to Bei-
jing and the keyword as “Shanghai” (in Chinese). In this case, we call Beijing the source
city and Shanghai the target city. We opt for web search index to derive city attractiveness
due to not only its wide spatial coverage and high temporal resolution, but also its rich
semantics, that is, people attracted by a city may not essentially have an actual visit to that
city, while such attraction may be reflected by their web searching activity, so as in the web
search index data.

The aim is to estimate the attractiveness of cities in China for each year from 2011 to
2019, and the seasonal variation is not our focus. For each city pair, the daily search in-
dex data from 2011 to 2019 are collected, and averaged annually to avoid the influence of
seasonal variation. To leave out the influence of COVID-19 on web search since 2020, we
concentrated on city attractiveness before 2020 for the sake of reliability. To cover main-
land China (i.e. excluding Hong Kong, Macao and Taiwan) as much as possible, we try
to include all prefecture-level cities as well as county-level cities directly under provincial
government, except for those whose names have not been included as keywords or not
available as user areas. As a result, our city list covers 333 prefecture-level cities in main-
land China, excluding Sansha in Hainan province due to lack of data. We also cover all four
municipalities directly under the central government, namely Beijing, Tianjin, Shanghai
and Chongqing as well as 20 county-level cities in our study. A total of 357 cities are con-
sidered from 2017 to 2019, while from 2011 to 2016, only 322 cities are covered due to
data incompleteness. From the Baidu Index data between city pairs, we construct a di-
rected network to depict the searching behaviors among Chinese cities for each year. An
example of 2019 is presented in Fig. 1a. The edge weights of the network follow a bro-
ken power law distribution (Fig. 1b) and basic descriptive statistics for the edge weights is
shown in Supplementary Table 1 in Additional file 1.

In addition, we evaluate two general issues concerning the web search activity. The first
is toponym ambiguity [28]. Cities with ambiguous names sometimes have abnormally high
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(a)

(b)

Figure 1 Characteristics of searches between cities in 2019. (a) The map of searches between city pairs in
2019. (b) Probability distribution of edge weights between cities in 2019

search index values (see Supplementary Discussion 1 in Additional file 1 for a detailed dis-
cussion). Due to the difficulty to detect and eliminate ambiguity systematically, we did not
modify our data for this issue, but considered its influence when interpreting our results.
The second is the impact of public emergencies. We found that a city’s search index may
increase to up to a hundred times of the normal value after the occurrence of a public
emergency that draws nationwide attention. A large proportion of these events are nega-
tive, like earthquakes, explosion hazards and so on. We suppose that high values caused
by public emergencies cannot be regarded as evidence for an attractive city, and values on
normal days reflect city attractiveness better. Therefore, we ignored search index values
higher than 4 times the year average. This threshold is based on our observation of the
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data that normal fluctuation of search index (caused by tourism peak season and off sea-
son, for example) seldom exceeds 4 times the year average. Thus it is reasonable to treat
these values as abnormal.

It is also worth noting that, according to China Internet Network Information Center
(CNNIC), the Internet penetration rate in China is 64.5% in total and 76.5% in urban areas
in 2019 [32]. In 2018, most provinces in China had an Internet penetration rate of over
50% (see Supplementary Table 2 in Additional file 1), and the Internet penetration rate in
China is still in the process of rapid increasing. Therefore, search index data could reflect
the interests of most urban residents, and it is possible to derive reliable city attractiveness
from it. For those without network access, it is natural that their concern for other cities
and willingness to migrate are weak as well. This mitigates the impacts of sample bias on
estimated attractiveness.

4 Methods
As aforementioned, the gravity model can be applied to estimate the theoretical sizes of
the cities, known as gravitational attractions, given the interaction flows and distances be-
tween each city pair. To solve the problem of asymmetric flows, we introduce a directed
modification of the gravity model, including two parameters, propulsion and attraction,
for each city. Based on web search volumes and the distance between each pair of cities,
we reversely fit the gravity model with a particle swarm optimization (PSO) approach.
The derived values of attraction parameters stand for attractiveness of cities. Subsequent
analyses are performed to explore the spatial pattern and temporal evolution of city at-
tractiveness. Moreover, multivariate linear regression models are built to investigate the
association between city attractiveness and socio-economic factors. Finally, the analysis
of spheres of influence (SOI) provides another perspective to understand the change of
major cities’ attractiveness. The proposed analytic framework is illustrated in Fig. 2.

Figure 2 The proposed analytic framework
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4.1 Directed gravity model
As an analogy to the law of universal gravitation, the gravity model was proposed for the
modeling of spatial interactions. The simplified gravity model [24] can be expressed as

Gij = k
SiSj

dβ

ij
, (1)

where Gij is the interaction intensity from city i to city j, Si and Sj are sizes of the cities, dij

is the distance of certain measure between i and j, β is the distance decay coefficient, k is
a constant.

Note that Eq. (1) is not suitable for modeling directed spatial interaction, where the
interaction intensity Gij is not necessarily equal to Gji. Most previous studies using reverse
gravity model did not distinguish the two directions, where Gij denote sum of the flows in
both directions. In our case, however, the search volume of two directions can be vastly
different, so it is essential to distinguish the source and the target. Inspired by the idea of
push-pull laws in migration studies [33] and the supply and demand formulation of gravity
model in econometrics [34], we introduce two city parameters, propulsion and attraction,
to replace the size parameters in the original model. We define the directed gravity model
as follows,

⎧
⎪⎨

⎪⎩

Iij = k PiAj

dβ
ij

,

Iji = k PjAi

dβ
ij

,
(2)

where Iij is the interaction flow from i to j, and Iji denotes the inverse flow. Pi and Pj are city
propulsions, and Ai, Aj are city attractions. The meaning of other parameters are the same
as Eq. (1). This model assumes that the interaction intensity is proportional to propulsion
of the source city and attraction of the target city. Note that the general gravity model
[35], with different exponents for the source and target, is also capable of fitting directed
interaction flows, yet its fitting performance on our dataset is significantly inferior (see
Supplementary Discussion 3 in Additional file 1 for detailed comparison results).

The reversely fitting approach can be performed on the directed model as well, enabling
us to use the search index data to estimate city propulsions and attractions. In specific,
the model is fitted for search index data each year, where Iij in Eq. (2) denotes the annual
average search index from city i to city j; Pi and Ai stand for the propulsion and attrac-
tion of city i in that year, respectively; dij denotes the topological distance between city
i and j. The topological distance of two cities is defined as their shortest path length on
the adjacent graph. Two cities are considered adjacent if and only if they share a border
as areal units. Hence, the distance between a city and its neighbor is 1, and between two
non-adjacent cities with a common neighbor is 2 and so on. For cities on islands, we make
Haikou linked to Zhanjiang (by Yuehai Railway) and Zhoushan to Ningbo (by Zhoushan
Sea-crossing Bridge) so that the adjacent graph is connected. Topological distances are
used instead of Euclidean distances for the following reasons. Regarding Euclidean dis-
tances, a point coordinate needs to be determined for each city area, which involves am-
biguity [28]. Additionally, topological distances could mitigate the variation of city density
across the country. Considering two cities with a distance of 500 km. In western China,
they are probably neighbors, and people in one city could be very concerned with the
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other city. Yet in southeastern China, they could be separated by several cities, and people
in one city might be unfamiliar with the other city at all. Therefore, we suppose topological
distance is more consistent with cognitive distance of Internet users, which is more rele-
vant in the case of web search than real distance. This notion is similar with rank-based
friendship in social networks [36]. Moreover, a comparative experiment finds no signifi-
cant difference in model fitness between the two distance measures (See Supplementary
Discussion 4 in Additional file 1 for details).

4.2 Reversely fitting the gravity model with PSO
Among existing methods for reversely fitting the gravity model, PSO is capable of handling
large spatial interaction networks, and is applicable to the directed model. Therefore, we
adopt PSO as our model solver. Particle swarm optimization (PSO) is a swarm intelligence
approach to optimize non-linear continuous functions, proposed by Kennedy and Eber-
hart [37]. In PSO, the swarm is defined as a group of particles, each representing a position
(i.e. a feasible solution vector) in the solution space. Initial positions of particles are gener-
ated randomly. In the iteration process, each particle records the best position it has ever
searched as Pbest, while the swarm records the best position reached by all particles as
Gbest. In a minimization context, for example, a position is better than another if lower
value of the objective function is obtained. During each iteration, each particle flies to a
new position, which is usually generated under the guidance of its Pbest and Gbest with
randomness. After the movement, each Pbest and Gbest are updated. The algorithm exits
when it reaches the maximum number of iterations, or the objective function falls below a
predefined value. PSO is derivative-free, simple to implement, and intrinsically paralleliz-
able. Similar to many other intelligent optimization methods, the theoretical foundation
of PSO is relatively lack, yet its practical performance has been widely recognized [38].

This study uses PSO to minimize the root mean square error of the directed gravity
model, as the objective function

RMSE =

√
√
√
√

1
N(N – 1)

∑

i�=j

(

Iij –
PiAj

dβ

ij

)2

, (3)

where N is the number of cities, Iij stands for annual average search index from city i to
city j (1 ≤ i, j ≤ N). The city parameters, Pi and Ai, i = 1, 2, . . . , N , are obtained through
PSO. We treat β as an input parameter and try different value at step 0.05. The β that
produces the lowest RMSE is selected afterwards. Without loss of generality, let P1 = A1

for the first city, so the solution vector should be 2N – 1 dimensional. In the case of 357
cities, the solution space has 713 dimensions.

The challenge of applying PSO to the optimization of a high-dimensional problem like
this is nontrivial. In our experiment, the canonical PSO based on velocity update failed to
find the optimal solution. To improve the algorithm performance, we incorporated fea-
tures of two PSO variants, bare bones PSO with jumps (BBJ) and cooperative hybrid par-
ticle swarms (CPSO-H).

Based on bare bones particle swarms proposed by Kennedy [39], BBJ applies the follow-
ing position update formula [40],

x(d)
t+1 = Gbest(d) + αε

∣
∣x(d)

t – Gbest(d)∣∣, ε ∼ N(0, 1), (4)
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where xt is the particle’s position after t iterations, d = 1, 2, . . . , D is the component index
of the D-dimensional solution vector, N(0, 1) stands for the standard normal distribution,
α is a hyperparameter to control the exploration range. Besides, each dimension of each
particle disobeys this formula at a probability pJ , which is called jump. When this happens,
the new coordinate is generated from uniform distribution in [Xmin, Xmax], where Xmin and
Xmax are the lower and upper bound for each element of solution vectors, respectively. This
feature allows the swarm to escape from local optima and avoid premature convergence.
This research sets α = 0.75, and pJ = 0.001, as the authors suggested.

Cooperative PSO [41] is proposed to deal with the curse of dimensionality, that the al-
gorithm performance falls rapidly as dimensionality increases. In the CPSO-H algorithm,
the solution space is divided into subspaces and a P-swarm is created to search in each
subspace. At the same time, a Q-swarm is created to search in the whole solution space.
The P-swarms and Q-swarm work alternatively, and cooperate through particle exchange.
This mechanism allows Q-swarm to control the search direction globally, while P-swarms
search subspaces thoroughly. Note that swarms in CPSO-H can take any updating method,
including Canonical PSO and BBJ.

We implemented and tested four algorithms on average search index data in 2018,
namely Canonical PSO, BBJ, CPSO-H + Canonical PSO and CPSO-H + BBJ. To reduce the
computation time, we utilized GPU-based parallel computing with CUDA Toolkit 10.0. In
our implementation, the objective function computations for each particle run in parallel
on GPU cores, while the main thread does all the other work. Swarms with up to 4096
particles are used in our high-dimensional problem, which is greatly larger than the com-
mon setting of 20-50 particles [42]. Results show that CPSO-H + BBJ outperforms other
algorithms, and is adopted in this study. (See Supplementary Discussion 2 in Additional
file 1 for details on parameters and comparison of algorithms.)

4.3 Multivariate linear regression
Given a city, the attractiveness reflects search behavior of individuals, including potential
visitors and people interested in the city. It is related to many attributes and functions
of the city, including economic development, traffic convenience, health care, educational
services, employment, recreation and shopping services, ecological quality, administrative
services, and housing [43]. As urban attractiveness in cyberspace is not limited by acces-
sibility, traffic convenience is not a proper explanatory factor. Housing and environment
are important to local residents, while Internet users in other cities have fewer concerns
about these two attributes. Hence, six of nine city attributes are included in the model,
including economics, recreation, health care, education, employment and administrative
function. Additionally, the tourism function and business function could attract travelers
and business visitors. They contribute to the web search volume of a city, and are essen-
tial to the explanation of city attractiveness. To sum up, eight categories of features are
considered to explain the derived city attractiveness.

The influencing factors, the corresponding economic indicators, and their sources are
given in Table 1. We use statistical indicators collected from China City Statistical Year-
book 2019 [2], CEIC database [44], and the 7th national census [45]. Two of the selected
factors, administrative service and tourism, are difficult to measure with statistical indi-
cators due to the lack of data or inconsistency in statistic definitions among cities. Thus,
we use two dummy variables to represent them based on official lists from the national
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Table 1 List of factors and corresponding variables

Factors Indicators Variables

Economics development GDP in RMB yuan [2] GDP
Recreation and shopping services Proportion of tertiary sector [2] P-Third
Health care Total amount of beds in hospitals [2] Hos
Educational services Number of university students [44] Unv
Employment Working-age population [45] Workpop

Average salary [44] Sal
Administrative services Political city list PC, PT
Tourism Tourism city list [46] TC, PT
Business development Number of industrial enterprises [2] Bus

government. The administrative variables are defined by the list of political cities, which
includes 36 cities that are provincial capitals, municipalities directly under the central gov-
ernment, sub-provincial cities, or cities with independent planning status. These cities are
more potential to receive beneficial policies from the central government, and get politi-
cal attention from media. Cities with tourism function are defined with reference to the
List of Top Tourist City of China by the National Tourism Administration of China [46],
including 85 cities in our research. The two lists are provided in Supplementary Tables 4
and 5 in Additional file 1. In our model, we choose the normal cities as the base group and
use three dummy variables, PC, TC, PT to represent political cities, tourism cities, and
cities with both functions respectively.

A total of 254 cities are considered in the OLS regression, while other cities are excluded
due to lack of data. Before the regression, the correlations between all statistical variables
and city attractiveness are examined with Pearson correlation coefficient. Results show
that all the variables are related at 0.01 significance (Supplementary Table 3 in Additional
file 1). Meanwhile, all explanatory variables involved are rescaled with Z-score standard-
ization. This step makes the regression coefficients comparable, so that the importance
of different variables could be revealed. Finally, to ensure the completeness of the model,
Ramsey RESET test [47] is performed to test variable omissions.

4.4 Sphere of influence of a city
We can use the flow of web searches originated from other cities to a city A to delineate
its sphere of influence (SOI). People in city Z may be interested in a number of cities,
including A, which can be obtained based on search volumes from city Z to other cities.
For example, if the search volume from Z to A is greater than those from Z to any other city,
city A ranks first in the list of cities in which city Z is interested, and city A has the strongest
influence on city Z. However, if A’s position is not so high, say 20, A has a relatively weak
impact on Z. Hence, given a rank threshold N , the N-SOI of city A can be defined as

N – SOIA =
{

Z|RankZ(A) < N
}

, (5)

where A, Z are cities and RankZ(A) means A’s rank in the list of cities in which Z is inter-
ested according to search volumes. Figure 3 illustrates the calculation of SOIs (5-SOI and
25-SOI) of two example cities A and B.
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Figure 3 An Example of extracting city’s SOI. The figure shows the extraction of 5-SOI and 25-SOI of city A
and city B, which are denoted by large blue nodes. The other four cities,W , X , Y , Z , are small yellow nodes, and
only the search flows from such four cities to A and B are drawn. The list boxes beside the four nodes are the
ranked lists of cities in whichW , X , Y , and Z are interested. Note that for simplicity, searches from A and B, or to
W , X , Y , Z , are not drawn

5 Results
5.1 Attractiveness of Chinese cities
By reversely fitting a directed gravity model for web search index data, we obtained the
attractions and propulsions of 357 Chinese cities in 2019. The R2 between real and pre-
dicted search index is 0.913, which indicates the data is well described by the directed
gravity model. The estimated decay coefficient β = 0.4. It is in accordance with previous
results that interaction in cyberspace is still affected by distance decay [36], yet the in-
tensity of decay is weaker than in real space [30]. Compared with propulsion that directly
reflects the number of Internet users and their interests on other cities, attraction is found
to be a more comprehensive indicator related to the population, function, and economic
development of a city (Sect. 5.2). Hence, we focuses on city attractiveness hereafter.

The overall spatial distribution of the Chinese cities’ attractiveness (Fig. 4a) was highly
east leant to the Hu Line [48]. Additionally, the four most famous metropolitan areas in
China can be easily identified as the four clusters of cities with top attractiveness: (a) Jing-
Jin-Ji Metropolitan Region in the north, including Beijing and Tianjin; (b) Yangtze River
Delta in the east, including Shanghai and Hangzhou; (c) Pearl River Delta Metropolitan
Region in the south, mainly covering the most densely urbanized and wealthiest regions
in China; and (d) Western cities represented by Chengdu, Chongqing, and Xi’an, which
developed fast recent years.

Note that Chengdu and Xi’an outperform traditional metropolises and become the most
attractive cities (Fig. 4b). In addition to rapid economic development, high attractions of
these cities may be attributed to rich tourism resources. In the top 20 list, several cities
including Sanya (#10), Zhangjiajie (#11), Beihai (#12), and Xishuangbanna (#19), are rel-
atively small cities, but gain much attentiveness due to their well-known city brands of
appealing scenery or comfortable tourism services.
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(a)

(b)

Figure 4 Cities’ attractiveness in 2019. (a) The Chinese map of cities’ attractiveness in 2019. (b) The top 20
attractive cities in 2019. The estimated city attractiveness is standardized so that the sum of all cities is 10000

The estimated attractiveness index can be cross validated by other city attractiveness
indicators, such as the Top 100 cities for talent attraction in 2019 (published by [49], see
Supplementary Table 6 in Additional file 1). The Spearman rank correlation coefficient
between talent attraction and city attractiveness is 0.713 (Fig. 5, significant at 1% level).
Note that 6 of top 20 cities ranked by estimated attractiveness are not in top 20 for talent
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Figure 5 The correlation between city attractiveness and talent attraction. Cities in the top 20 in both
rankings are labeled in the enlarged figure

attraction, such as Harbin and Sanya, which heavily depend on the tourism and hospitality
industry. This implies that the estimated attractiveness takes the tourism factors into con-
sideration and is a comprehensive proxy of the city’s real but immeasurable attractiveness.

5.2 Driving factors of city attractiveness
Using the multivariate linear regression model, we evaluated the relationship between city
attractiveness and city functions and attributes (Table 2). All city attributes and functions
are positively related to the city attractiveness. The tertiary sector, health care, employ-
ment and tourism function are significant influencing factors. The result shows that the
level of medical care has the greatest impact on the attractiveness of the city, followed
by tourism. The uneven allocation of medical care resources [50] leads to the need to
seek medical services across cities, which might increase the contribution of health care
function to urban attractiveness. The high impact of tourism shows that people tend to
target tourist destinations when searching the Internet. The average salary also has a pos-
itive impact on city attractiveness, showing that well-paid jobs can largely increase the
attractiveness of the city. Gross domestic product (GDP) also contributes to the city at-
tractiveness, indicating better economic development is more attractive to high-quality
labor, businesses, and capital. The significance level of the Ramsey RESET test is 0.142,
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Table 2 Regression results of city attractiveness

Variables Coef. Std Err.

GDP 0.100 0.095
P-Third 0.123∗∗∗ 0.043
Hos 0.336∗∗∗ 0.085
Unv 0.051 0.077
Workpop 0.113∗∗ 0.046
Sal 0.151∗∗∗ 0.053
TP 0.185∗∗∗ 0.068
PC 0.042 0.037
TC 0.165∗∗∗ 0.036
Bus 0.043 0.060
Constant –0.002 0.034

Adjusted R2 0.715
F value 64.858

Notes: ∗∗∗ and ∗∗ represent 1% and 5% significance levels, respectively.

higher than 0.1. Therefore, we cannot reject the hypothesis that the model has no omitted
variables, suggesting the completeness of our model.

5.3 Changes of city attractiveness in the last decade
City attractiveness for each year from 2011 to 2018 is estimated with the same approach.
The model fitness R2 is all above 0.87, and the distance decay effect is in the range of 0.4 to
0.5 during the nine years (see Supplementary Discussion 2 in Additional file 1 for details).
The temporal evolution of urban attractions from 2011 to 2019 revealed the features of the
Chinese urbanization trend in the last decade (Fig. 6). The evolution of cities in northern
China and southern China differ a lot, indicating that the northern cities’ development
is slower than the southern cities. Northern China especially northeastern China is stuck
in a quagmire of stagnation since China’s heavy industry economy is inevitably shrinking.
In contrast, owing to fast development of light industries and high-tech industries, cities
in southern China experienced a rapid growth in the past decade, widening the gap with
the north part. Based on the two groups of cities, the traditional dividing line, i.e. the
Qinling Mountains-Huaihe River Line, between the north and south parts, has gradually
become the separatrix between two types of cities with opposite trends. Having made
great advances, the cities along the Yangtze River, named Yangtze River Economic Belt,
show the prospect to become China’s new growth pole.

5.4 Major cities’ sphere of influence
With the method described in Sect. 4.4, we can extract cities’ sphere of influence, named
N-SOI. In this research, we assume that the 5-SOI delineates the sphere that is strongly
influenced by the city and the 25-SOI depicts the region that was influenced by the city
while the city’s impact is not so dominant. Figures 7 and 8 portray the 5-SOIs and 25-SOIs
of several cities. In general, a big city has a nationwide SOI like Xi’an in Fig. 7b, while
medium cities usually have local SOIs like Harbin in Fig. 7a. A greater SOI implies that
the city attracts more attention and thus has a promising development prospect.

To identify cities with nationwide impact, we used a simple rule. If a city’s 25-SOI covers
more than 60% of cities in a province, we say it covers that province; if a city’s 25-SOI covers
more than 80% of provinces in China, then the city is viewed as a nationwide city. Follow-
ing this criterion, we found 11 nationwide cities: Shanghai, Beijing, Nanjing, Zhangjiajie,
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Figure 6 Changes of cities’ attractiveness from 2011 to 2019. Based on Hu Line and Qinling
Mountains-Huaihe River Line, China is divided into three parts Western China (Zone A), Northern China (Zone
B), Southern China (Zone C). In Zone A, 16.3% cities increase by more than 30 places in the ranking, while
16.3% cities decline by more than 30 places. However, in B and C, the two proportions are 6.3% vs. 23.9% and
20.0% vs. 9.8%, respectively. The obvious north-south contrast indicates a nationwide economic development
trend

Figure 7 Harbin and Xi’an’s sphere of influence in 2019

Chengdu, Hangzhou, Wuhan, Shenzhen, Suzhou, Xi’an, and Chongqing. Among them,
Zhangjiajie is famous for its tourism resources, and the other 10 cities are important tier-
one cities.

Additionally, the change of SOI provides us an insight to foresee a city’s future. As shown
in Fig. 8, the tendency of Wuhan and Beijing is quite different. In 2011, Beijing’s attractive-
ness control almost the whole China. However, when it comes to 2015 and 2019, its influ-
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Figure 8 Beijing and Wuhan’s sphere of influence in 2011, 2015 and 2019

ence quickly declined (the area of orange zones) and step-by-step shrinks to merely north-
ern China. Both the 5-SOI and 25-SOI of Wuhan only limited around Hubei Province,
indicating a localized city in 2011. However, its 25-SOI gradually expands to whole China
after 2011 and achieves national influence in 2019. Besides, in 2019, its 5-SOI also sprawls
out of the Hubei Province, indicating that Wuhan is becoming a core city of the Yangtze
River Economic Belt and has a promising future.

6 Conclusions and discussion
An emerging proxy data source, search index data, is utilized to estimate the attractiveness
of Chinese cities accounting for people’s interactions with cities in the cyberspace. This
study takes advantage of its superiority on spatial coverage and temporal span. We obtain
three main findings as follows. First, the web search indices are promising and reasonable
data source with relatively high spatio-temporal resolution for evaluating urban systems.
Second, given a city, its attractiveness and sphere of influence together quantify the po-
tential to attract resources, in addition to attention, from other cities. Last, recognizing
that high attractiveness and large sphere of influence imply positive future development,
a notable trend is that most northern cities, including Beijing, are in decline.

The successful usage of particle swarm optimization algorithms on such high-dimen-
sional problem further demonstrates its ability on solving the reverse gravity model, com-
pared to previous studies [17, 26]. Our estimation and analysis of city attractiveness reveal
the rise and fall of major cities and regions. These findings conform with the development
of Chinese cities, and may indicate the development pattern of Chinese cities in the fu-
ture. As web search data accumulate, the longitudinal search index would be a promising
proxy for researchers and policy makers to understand and predict the future of China’s
city system, as well as the economic development.

Our work might suffer the following limitations. First, ambiguity of a city’s name could
induce bias on search index and estimated city attractiveness occasionally, as observed in
our results. Besides, web users may search with a keyword related to the city rather than
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the city name. For example, someone interested in Beijing may search “Tian’anmen” (in
Chinese). These searches are not counted in the search index, thus not reflected in our
estimated city attractiveness. As most cities encounter the same problem, we assume that
the impact of this issue is tolerable. Second, high search volume might come from negative
public emergency rather than city attractiveness. By filtering out abnormal values, this
effect could be largely mitigated. Third, the interests of those who seldom or even never
surf the Internet is overlooked due to the sample bias of the data. As a result, the search
index might reflect interests of young people more than the elderly, for example. Recent
statistical data [51] show a rising trend on Internet penetration, and the proportion of
elderly people in Internet users is growing as well. Therefore, it is hopeful that this issue
might be mitigated gradually. We also suggest that the fusion of web search data and spatial
interaction data in physical space, like human mobility data, might further resolve these
limitations and produce more reliable results on the evolution of urban system.

Those limitations imply that a one-size-fits-all solution for measuring inter-city interac-
tions as well as the derived city attractiveness might be impossible. Nonetheless, as the ac-
cess to data set capturing the interactions between cities in both physical space and virtual
space increases, it opens a possibility to synergize different interactions in the two spaces
to fully understand city attractiveness. Furthermore, incorporating them is not straight-
forward, and the relationship between interactions needs to be considered. We may con-
jecture that the interplay between interactions in physical space and virtual space is either
mutually complementary or exclusive. Moreover, there might exist spatially and/or tem-
porally lagged effects between population movements in physical space and web search
activities in virtual space. Empirical verification using spatio-temporal models will be a
direction of further investigation. In a sense, our study introduces web search data as a
promising (while being largely ignored) data source for the analysis of inter-city interac-
tions, and appeals that more attentions should be paid to understanding city attractiveness
in a coupled and multi-faceted fashion. As the big data are increasingly accessible, we see
a lot of opportunities as well as challenges on this topic.
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