
LaRock et al. EPJ Data Science           (2022) 11:18 
https://doi.org/10.1140/epjds/s13688-022-00331-z

R E G U L A R A R T I C L E Open Access

A path-based approach to analyzing the
global liner shipping network
Timothy LaRock1, Mengqiao Xu2* and Tina Eliassi-Rad1,3

*Correspondence:
stephanie1996@sina.com
2School of Economics and
Management, Dalian University of
Technology, Dalian, China
Full list of author information is
available at the end of the article

Abstract
The maritime shipping network is the backbone of global trade. Data about the
movement of cargo through this network comes in various forms, from ship-level
Automatic Identification System (AIS) data, to aggregated bilateral trade volume
statistics. Multiple network representations of the shipping system can be derived
from any one data source, each of which has advantages and disadvantages. In this
work, we examine data in the form of liner shipping service routes, a list of walks
through the port-to-port network aggregated from individual shipping companies by
a large shipping logistics database. This data is inherently sequential, in that each
route represents a sequence of ports called upon by a cargo ship. Previous work has
analyzed this data without taking full advantage of the sequential information. Our
contribution is to develop a path-based methodology for analyzing liner shipping
service route data, computing navigational trajectories through the network that
both respect the directional information in the shipping routes and minimize the
number of cargo transfers between routes, a desirable property in industry practice.
We compare these paths with those computed using other network representations
of the same data, finding that our approach results in paths that are longer in terms of
both network and nautical distance. We further use these trajectories to re-analyze
the role of a previously-identified structural core through the network, as well as to
define and analyze a measure of betweenness centrality for nodes and edges.

Keywords: Complex networks; Network representation; Sequential patterns; Path
data; Maritime economics; Liner shipping

1 Introduction
Maritime container shipping facilitates trade and logistics at the global scale. This global
shipping system can be modeled as a complex network, with ports as nodes1 and edges
between them representing flows of shipping [1–11]. Analyzing this network can provide
insight into factors important to maritime economists and shipping industry experts, such
as connectivity, efficiency, and robustness of the maritime shipping network, and thus the
network of global trade.

1We will use the words “port” and “node” interchangeably throughout this paper.
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The construction of the network, particularly the choice of connections between ports,
depends first and foremost on the type of data available. Many studies have used data from
vessel tracking based on Automatic Identification System (AIS) data that provides fine-
grained trajectories of individual vessels moving between ports [2, 7]. For example, Kaluza
et al. [2] constructed port-to-port shipping networks from AIS data based on the type of
cargo (bulk, oil, container) and analyzed properties of each of these networks, including
distributions of (weighted) degree and clustering, the actual trajectories of ships through
the network, and motif analysis. They found substantial differences between how ships
carrying different cargo navigated the network, suggesting implications for the spread of
invasive species through ship ballasts. Researchers have since built on their analysis, using
complex network models of AIS data to study invasive species transfer [7, 12].

The availability and granularity of AIS data makes it a valuable resource, but it does have
a few drawbacks. First, it requires substantial effort to collect and clean. Second, AIS data
does not retain information on the unique property of liner shipping: vessels move on fixed
liner service routes (which generally include source and target ports with multiple inter-
mediaries between these end-points) [13]. Although AIS data does contain information
about the sequence of ports visited by a vessel, this data alone cannot give precise infor-
mation about which ports are on the same route, since a ship may be redeployed from one
route to another [11].

In this work, we analyze liner shipping service routes designed by container shipping
companies and curated by Alphaliner, one of the largest proprietary shipping databases
in the world.2 Each route is an ordered sequence of ports called on by shipping vessels
(see Fig. 1). Each of these routes can be conceptualized as a walk through the port-to-port
shipping network. Although this data is less granular than individual ship tracking with
AIS data, it remains a valuable resource for understanding patterns in global container
shipping [9, 11]. Henceforth, we will refer to the data used in this study as “the service
route data”.

Different network representations can be constructed from this data. Our work com-
pares representations and methods used in previous analyses with new methods that are
designed to account for sequential or pathway patterns inherent to service route data.
Analysis of sequential patterns in complex networks is sometimes called higher-order net-
work analysis. Higher-order generally refers to interactions between nodes in a network
that include more than two nodes at a time [14]. These interactions may be unordered, as
in hypergraphs [15] and simplicial complexes [16], or, as in our case, the interactions may
be ordered, as in higher-order Markov models [17, 18]. For example, Saebi et al. [12] lever-
aged higher-order sequential information from AIS data to improve prediction of invasive
species movements [12, 19]. The service route data we study here is inherently sequential,
since we know not only which ports are connected in dyads, but also which ports are vis-
ited as intermediaries between pairs of ports that do not have direct connections. The
availability of this pathway information motivates the path-based approach we take in this
study.

We develop a path-based methodology for liner shipping service route data that refines
and expands our understanding of global container shipping. Building on previous work

2Alphaliner: https://www.alphaliner.com/.

https://www.alphaliner.com/
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Figure 1 Examples of the three representations of liner shipping service route data studied in this paper. The
input data is three routes, labeled r1, r2, and r3, visiting the ports A, B, C, D, E. The path graph is the traditional
directed network representation of the routes, where an edge exists from u to v if the edge appears in at least
one route. We also add parallel edges for every route in which the edge exists (or equivalently keep a set of
route labels for each edge). This graph represents how ships and cargo can move through the network. The
directed co-route graph is also a directed graph, but an edge exists from port u to port v if in at least one
route port v appears in any succeeding ports of call after port u. The length of the shortest path between any
two pairs of nodes in the co-route graph is the minimum-route distance (distances from A shown in (b)). In
the undirected co-route graph, every route is made into a clique, or fully connected undirected graph. This
representation was used for service route data in previous work [11], emphasizing that cargo transportation
between any two ports in a same route can be realized by one single vessel. All minimum-route paths
between A and D, which require two routes and do not allow any port to appear more than once, are shown
in (c)

that analyzed this type of data using complex networks [9, 11], our contribution is to inter-
polate and analyze the set of minimum-route paths through the routes. A minimum-route
path between ports s and t is a path that starting from s reaches t using the fewest number
of transshipments or transfers between shipping routes, an objective that corresponds to
industry practice [20, 21]. Transshipment operations are expensive and time consuming
because they require unloading, storing, and re-loading cargo containers at intermedi-
ate ports. Therefore, minimizing container transshipment improves the overall efficiency
of the global liner shipping network in terms of reducing costs and delivery times [13].
Transshipments also increase risk of cargo damage, and risk of missing connections (due
to the uncertainty in vessel arrival delay). Hence, having fewer transshipments to deliver
a container is preferred by both liner shipping companies and their customers.

The problem of obtaining paths with the minimum cost of delivering a container in the
service network of a shipping company is referred to as the container routing problem.
Solutions to this problem are mainly based on integer programming optimization where
graphs are used to represent the container flows in liner shipping networks [13, 21, 22].
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The two conventional representation strategies are flows over edges of the physical net-
work (i.e., sailing edges of consecutive ports on shipping routes) and flows over full origin-
to-destination paths. Insights from our path-based approach could potentially be inte-
grated into integer programming approaches for effectively solving the container cargo
routing problem with any given operational constraints and business considerations.

Drawing on the techniques of complex network analysis, our work furthers our under-
standing of the functional structure of the port-to-port maritime shipping network. In
previous studies of liner shipping service route data a network was constructed by making
each route into a fully connected undirected graph, then analyzing shortest paths through
this network representation [1, 11]. If the routes were all bi-directional, this representation
would have the advantage that the shortest path length between any two nodes is equal
to the minimum number of routes required to move between them. This is not always
the case in the service route data used in these studies, making the path lengths through
the network hard to interpret. Further, some meaningful paths through the network are
impossible to compute using this representation since nodes that are only indirectly con-
nected in a route are made to be directly connected. This makes analyses that rely on
shortest paths through this network representation potentially inaccurate.

Our work addresses these inaccurate assumptions by incorporating route information
into analysis of the global liner shipping network. Our contributions are:

• We compare three representations of service route data: the directed co-route graph,
the undirected co-route graph, and the path graph (Sect. 3).

• We provide a procedure for computing minimum-route paths from liner shipping
service route data, called IMR. We further provide algorithms for filtering
minimum-route paths based on two factors, redundancy and shipping distance. We
show that the properties of these paths differ substantially from the shortest paths
used in previous analyses (Sects. 4.1 & 5.2).

• We reanalyze the role of the structural core of the global container shipping network
defined in previous work [11]. We find that these analyses underestimated the role of
core edges in routing through the network for all paths between peripheral ports and
overestimated their role in the subset of these paths that passed through the core
(Sect. 5.4). We also find the role of local edges was underestimated.

• We use minimum-route paths to define a modified betweenness centrality measure
for both nodes and edges called route betweenness. We analyze how this measure
differs from topological centrality measures across representations (Sects. 4.3 & 5.5).

Definitions We note a few basic definitions that will come up repeatedly to avoid confu-
sion. A walk is a sequence of adjacent edges in a graph. Nodes and edges in a walk can be
repeated. A walk is called closed if it starts and ends at the same node and open otherwise.
A route is a pre-defined walk through the shipping network. A path is a walk that never
repeats nodes, and a shortest path between two nodes s and t is a path starting from s and
ending at t visiting the fewest possible edges. Walks and paths can be directed or undi-
rected, whereas in this work routes are always directed. We will also use the word path
to refer to any trajectory or sequence of edges in a network (e.g. the phrase path-based);
we will note explicitly when we are using the term with its graph-theoretic meaning. We
present a list of abbreviations and symbols we use throughout the paper in Table 1 for
reference.
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Table 1 List of Abbreviations & Symbols

Abbreviation Meaning

IMR Iterative Minimum Route
AIS Automatic Identification System
TEU Twenty-foot Equivalent Unit
Gc = (Vc , Ec) Directed co-route graph
R Set of routes r ∈ R traversing ports pi , e.g. r = 〈p1,p2, . . . ,p�〉
�r Length in edges of a route r ∈ R
MR[d, s, t] Minimum-route paths between ports s and t with distance d
DIST[s, t] Minimum-route distance between ports s and t
Dmax Maximumminimum-route distance among all pairs
ηd # of pairs at minimum-route distance d
pd Max # of minimum-route paths between any pair at distance d
Ai,j Adjacency matrix of the path graph (unless otherwise specified)
PG Path graph
DCRG Directed Co-route graph
UCRG Undirected Co-route graph
∗-betw Betweenness in ∗ representation
∗-deg Degree in ∗ representation

The rest of this paper is organized as follows. In the next section, we provide a basic char-
acterization of the service route data. In Sect. 3, we describe and compare three network
representations for service route data. In Sect. 4, we present our proposed procedures for
constructing minimum-route paths and using these paths to define new measures of cen-
trality. In Sect. 5 we compare minimum-route paths with shortest paths through various
network representations, revisit the analysis of the structural core of the global shipping
network, and evaluate our newly defined measures of betweenness. Finally, we provide
concluding remarks in Sect. 6.

2 Data
The service route data we study here is an aggregation of the liner shipping service routes
on which shipping companies sent ships during the year 2015. The data is given in the
form of 1622 liner shipping service routes, each of which is a sequence of � ports visited
by a ship on a single trip, e.g. r = 〈p1, p2, . . . , p�〉. For each route, we are given an estimate of
the total capacity of that route in 2015 in Twenty-foot Equivalent Unit (TEU). Routes visit
varying numbers of ports � and we define the length of a route to be the number of legs
� – 1 it takes, finding that the average length of a route is 6.9 edges. The same port can be
visited multiple times in a single route, making each route a walk through the port-to-port
network. A walk may be closed (if the route starts and ends at the same port) or open (if
the route starts and ends at different ports). In this dataset, 1416 of the routes are closed
and 206 are open.

Although we do not have data on specific container movements, we know that the routes
represent the pre-determined movements of vessels carrying containerized cargo (i.e.,
merchandise that is shipped as container load units by sea). We also know that vessels
cannot be simultaneously deployed on more than one service route at a time, and that
the routes will not be modified for any vessel except in extreme circumstances. Vessels
deployed on each route are always pre-fixed, and thus vessels cannot be simultaneously
deployed on more than one service route at a time. Detailed cargo information (e.g., spe-
cific information concerning merchandise categories of the cargo loaded in the containers)
is related to the market competences of shipping companies and is thus kept confidential
and unavailable.
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Figure 2 Statistics of the shipping routes. The left plot shows a histogram of the length of routes in terms of
the number of edges. Most routes have length less than 10, but some visit as many as 30 ports. The middle
plot shows the degree of a node (horizontal axis) against the number of routes the node appears in (vertical
axis). The degree of a node in the path graph correlates with the number of routes it participates in and most
nodes appear in a few routes, while some appear in more than 200. The right plot shows the estimated edge
capacity in TEU (horizontal) against the number of routes in which each edge appears. Most edges appear in
only a handful of routes, while few appear in nearly 100, and TEU capacity spans multiple orders of magnitude
and correlates with the number of routes in which a port appears

Table 2 Statistics for each graphical representation of the service route data. The path graph is
substantially more sparse than the other two representations

Representation Directed? Nodes Edges Mean Degree Mean Local Clustering

Path Yes 977 5268 5.4 0.26
Co-route (directed) Yes 977 30,035 30.7 0.64
Co-route (undirected) No 977 16,680 34.15 0.71

In Fig. 2 we show the distributions of route lengths (left), the degree of a node against the
number of routes in which it participates (middle), and the estimated TEU capacity of an
edge against the number of routes in which the edge participates (right). These distribu-
tions take similar forms, with the majority of routes being short and the number of routes
each node and edge participates in being relatively small, but with tails in higher values.
There are also positive correlations between the degree of a node and the TEU capacity of
an edge with the number of routes in which the node or edge appears. This immediately
suggests that ports and edges play different roles in the navigation of the network and that
ports can be in principle separated into more central or important versus more peripheral,
a common observation in shipping network analysis that is fundamental to the analyses
that follow in this work [3, 11].

3 Background: three representations of liner shipping service route data
Previous work analyzing route data, including both maritime shipping and other trans-
portation networks like public transit and railroad networks, have developed represen-
tations for the data that each have advantages and limitations. In this section we define
three graph representations of route data and discuss their tradeoffs. We present exam-
ples of each representation in Fig. 1 and statistics for each representation in Table 2. All
three representations include 977 ports, but the density in terms of number of edges, the
average degree, and the average clustering differ substantially across the representations,
as does the interpretation of the connections in the network.
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3.1 Path graph
The first representation, which we call the path graph, is the standard representation of a
directed and weighted network. In the path graph, an edge exists between nodes u and v
if that edge appears exactly in a route, e.g. there is some route r such that u and v appear
in sequence in r. In this representation we also label the edges with the routes in which
they appear, equivalently formalized as many parallel labeled edges (1 per route the edge
appears in), or a single set of routes as an edge attribute (with cardinality the total number
of routes the edge appears in). The degree of a port u in the path graph indicates the
number of unique ports (excluding parallel edges) that can be reached directly from u. The
weighted degree (or strength) of a node u is the total number of edges the node participates
in across all routes (including parallel edges). This representation is the most sparse of
the three we analyze, with 5268 edges, average degree 5.4, and average local clustering
coefficient 0.26.

3.2 Directed co-route graph
In the directed co-route graph, a directed edge exists between u and v if there is some open
route r such that u appears before v in r, or some closed route r such that u and v both ap-
pear in r (the assumptions behind this construction are discussed further in Sect. 4.1). In
this graph, the shortest path distance between any two nodes u and v represents the min-
imum number of routes required to reach v from u. However, shortest paths themselves
through the graph may be misleading, since direct edges are drawn even where actual con-
nections between ports are indirect. For example, in the co-route graph in Fig. 1, A-C-B is
a shortest path between nodes A and C. However, the edge C-B never appears in the ship-
ping routes. To get from A to B, a container would need to visit the edges C-E and E-B.
In this representation, degree indicates the number of ports that can be reached through
some other port, taking directionality into account. The strength of a node is its degree in-
cluding all parallel edges representing different routes. This representation is more dense
than the path graph, with 30,035 directed edges, average degree 30.7, and average local
clustering coefficient 0.64.

3.3 Undirected co-route graph
In the undirected co-route graph representation each shipping route is made into a fully
connected and undirected graph, i.e. a clique. If the routes being represented are bidi-
rectional, then the shortest path length between nodes u and v in this graph reflects the
minimum number of routes required to navigate between u and v. However, the shipping
routes used in this and previous studies are often not bidirectional. This representation
also suffers from the same problem as the co-route graph that shortest paths do not re-
flect actual navigation trajectories. For example, in the undirected co-route graph in Fig. 1
there is a direct edge A-D, but this edge does not appear in the shipping routes. In this
representation, degree indicates the number of ports that can be reached using a single
route, assuming the routes have no directionality. This is the most dense representation,
with 16,680 undirected edges (33,360 directed), average degree 34.15, and average local
clustering 0.71.

In the remainder of this work, we implicitly use the path graph representation as our
network of interest, in contrast to some previous work on liner shipping service route data
that studied shortest paths through the undirected co-route graph representation [11].
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Rather than studying shortest paths, we compute paths that use the minimum number of
route transfers, or minimum-route paths, which we define in the next section.

4 Proposed methods
In this section we describe our methodology for studying the liner shipping service routes
from a path-based perspective. We define minimum-route paths and a procedure, IMR, for
computing them, as well as additional procedures for filtering redundant and unrealistic
paths. Then we use these paths to define measures of port and edge betweenness for route
data.

4.1 Minimum-route paths
Intuitively, a minimum-route path is a path from a source port to a target port that uses the
minimum number of transfers between shipping routes. We are interested in these paths
because they minimize the number of times a container needs to be unloaded and reloaded
at an intermediate port, which is costly in terms of time, money, and coordination. In
practice there are often many minimum-route paths between a given source and target
pair. These paths are at least as long as the shortest path (in edges) between the source
and target ports in the path graph, and may be longer if using the shortest path would
require using more than the minimum number of routes. For example, if the path A-B-C-
D connects A and D using only 1 route, while the path A-E-D connects the ports using 2
routes, only the first will count as minimum-route.

Many shipping routes are closed walks, meaning they start and end at the same port. In
industry practice, ships circulate on these routes regularly, meaning paths may continue
from the end of the route on to the beginning. For example, in the route A-B-C-T-E-F-S-
C-A, which starts and ends at the same port A, we consider the path S-C-A-B-C-T to be a
valid minimum-route path between S and T that uses 1 route. Note that in these cases we
allow cycles to occur in the route. There are alternative assumptions we could make that
disallow cycles. We could use the path S-C-T, which only uses 1 route but also requires a
transshipment, since a container traversing the path would need to be unloaded at port
C, then loaded on another ship and brought to port T. This could be reasonable in some
cases where the number of intermediate ports is very large, or it could be unreasonable if
the number of intermediate ports is small. Alternatively, we could not allow any path from
S to T using this route. This corresponds to a very strong assumption about directionality
of the routes, but it misrepresents how the system operates, since routes are intentionally
designed as closed walks.

We construct minimum-route paths directly from the shipping routes R as input using
a procedure we call IMR. We build the set of paths iteratively, starting with pairs that
can be connected using 1 route. For this, we loop over each route r ∈ R, checking if the
route is open, meaning the first and last nodes are not the same, or closed, meaning r
starts and ends at the same port. In the case where r is open, we add all of the paths
between each pair of indices i, j, i < j. If r is closed, we add all paths between all pairs i, j ∈ r,
i �= j, allowing paths to continue from the end of the route to the beginning. Finally, we
iterate over each minimum-route distance d, finding all minimum-route paths for pairs of
nodes that require d routes. At each distance, we loop over all pairs (s, t) that are reachable
using the current number of routes d. Then, we loop over all d – 1-route paths from s
searching for any intermediate nodes w that have a 1-route path to t (by definition such a
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path exists). For any ports w such that a path s · · ·w · · · t exists, we record all such paths.
When minimum-route paths have been computed for all pairs at distance d, we restart
the while loop until all pairs have been evaluated.

Pseudocode for the IMR procedure described above is available in Algorithm 1 of Ap-
pendix A. We also include in Appendix A a detailed analysis of the runtime of IMR. Impor-
tantly, the runtime does not depend only on the structure of the network (e.g., the number
of nodes and edges), but also on the number of input routes and the distribution of their
lengths, the maximum minimum-route distance between any two ports in the input, as
well as the distribution of the number of minimum-route paths per pair of ports.

4.2 Filtering minimum-route paths
There may be many paths between any given pair of nodes that use the minimum num-
ber of routes, and not all of these paths are equally desirable or plausible for navigation of
the network. The assumption underlying the minimum-route paths is that shippers pre-
fer to minimize trans-shipments, but other factors are also relevant to choosing between
potential shipping routes. Two such factors are the existence of shorter routes that visit
essentially the same set of ports and the total shipping distance of a route.

Motivated by these considerations, we filter minimum-route paths using two criteria:
1. Redundancy: A path is excluded if there is a shorter path in which every port in the

shorter path is also visited in the longer path. Concretely, given two paths X and Y
with lengths �X > �Y , we say X subsumes Y if Y ⊂ X . Any path that subsumes another
path is called redundant and is filtered. For example, consider the longer path
X = A, B, C, D, E and the shorter path Y = A, B, E. The intersection between X and Y
is all of Y , X ∩ Y ≡ Y , meaning that Y ⊂ X and X is redundant. In contrast, the
longer path X ′ = A, F , G, E would not be redundant with Y because the node B does
not appear in the longer path X ′, meaning Y �⊂ X ′ and thus X ′ does not subsume Y .

2. Distance: We filter paths based on distance in two ways and compare the results. The
first method uses a simple threshold on the shipping distance. A path is excluded if
its total shipping distance is more than a factor α ≥ 1 of the minimum distance route.
Concretely, for each pair s, t we compute the total shipping distance (in km) for every
path from s to t, then set a threshold using the minimum of these distances
multiplied by α. Smaller α (closer to 1) will filter out more paths, since only paths
with shipping distance close to the minimum will remain. If α = 1 all paths except the
minimum distance path are filtered, while α = ∞ filters no paths. The second method
uses the detour factor of the minimum shipping distance path with the direct
shipping distance and compares with the detour factor of all other paths with the
minimum-distance path (described further in Sect. 4.2.2).

We present further details of these filtering procedures below, as well as pseudocode
and runtime analysis for the procedures in Algorithms 2 and 3 of Appendix A.

4.2.1 Distance threshold filtering
In the first filtering method, we compare the shipping distance of each path to this min-
imum shipping distance among all paths multiplied by the filtering threshold parameter
α, removing any paths p such that dist[p] > αdistmin. Figure 3 shows an example of the
filtering process using all of the minimum-route paths between the ports at Durress, Al-
bania and Bari, Italy. The paths range in shipping distance from 1019 km to 1798 km,
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Figure 3 Example of our approach to filtering minimum-route paths. Paths 1 and 2 are kept because their
shipping distances are not longer than 150% of the shortest distance, nor are they redundant with any of the
other paths. Paths 3, 4, and 5 are all redundant with at least one other path, and paths 4 and 5 are additionally
filtered based on their shipping distance. In this example, none of the paths would be filtered based on the
detour ratio method, since the absolute detour ratio (3.93) is larger than all of the relative detour ratios

and some of the longer paths have significant overlap with shorter paths. The purpose of
our filtering is to remove paths that are prohibitively long in terms of shipping distance
(with respect to the minimum distance path between Durress and Bari) and those that are
significantly redundant with shorter paths, since shippers are likely to simply choose the
shorter of the paths. In the example, path 1 is automatically kept because it is the shortest
both in terms of the number of edges used (3) and the total shipping distance (1019 km).
In this example, we set α = 1.5, meaning the shipping distance of a path must be less than
150% of the minimum, in other words we set the threshold to be 1019 × 1.5 = 1528.5 km.
Based on this threshold path 2 is kept because its distance is less than 150% longer than
the first path and unlike path 1, path 2 does not visit the port at Bar. Path 3 is acceptable
based only on distance, but it is redundant with path 2 because it visits all of the same
ports, but adds a stop in Trieste, Italy. The final two paths are filtered because they are
both too long (151% and 176% the minimum, respectively) and redundant with at least 1
other path. In fact, path 5 is redundant with all of the first four paths.

4.2.2 Path filtering via detour factors
Using a threshold on the minimum shipping distance to filter out long paths has the ad-
vantage of simplicity, but the disadvantage that it is one size fits all, meaning the same
thresholding factor α is used for every pair regardless of the distribution of shipping dis-
tances, and this parameter α must be set heuristically. This is unsatisfying because we
expect these distributions to be different depending on the geographic distribution of the
ports, with some quite far apart and others close together. An approach to filtering that
does not require a single parameter to govern the filtering of all pairs of ports would be
preferable. In this section, we develop such an approach using the detour factor [23] (also
known as the detour ratio).

Given two alternate paths p1 and p2 between ports s and t with respective (spatial) dis-
tances d1 and d2, we define the detour factor between the two paths to be DR(p1, p2) = d1

d2
.

In the canonical detour factor, d2 represents the great-circle distance between s and t,
guaranteeing that d1 ≥ d2 and so DR(p1, p2) ≥ 1.
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In this work we define two slight modifications of this usual definition. First, we define
the minimum distance detour factor DRmin

s,t to be the detour factor when p1 is the minimum
shipping distance non-redundant path between s and t and d2 represents the shipping
distance (rather than the great-circle distance) between s and t. Second, for each non-
redundant path between s and t that is not the minimum shipping distance path, we define
the relative detour factor DRri

s,t to be the detour factor when p1 is the path in question and
p2 is the minimum shipping distance path between s and t.

Finally, we filter a path if its relative detour factor is larger than the minimum distance
detour factor, e.g. if DRri

s,t ≥ DRmin
s,t .

4.3 Minimum-route betweenness
Previous work has used betweenness centrality in the port network as a proxy for mea-
suring the importance of a port to the navigation of the system [3, 9, 11]. Betweenness
centrality for a node u is defined as the sum of the proportion of shortest paths that in-
clude u between each pair of nodes (s, t) for all pairs s �= t �= u. We modify this definition by
replacing the shortest paths between each pair with the set of (possibly filtered) minimum-
route paths between s and t. Using this alternative set of paths defines a measure we call
route node betweenness centrality that is based on navigation of the network using the
shipping routes rather than shortest paths. Formally, route node betweenness centrality is
computed as

rb(u) =
∑

s,t

σs,t(u)
σs,t

,

where σs,t(u) is the number of minimum-route paths from s to t that pass through the node
u and σs,t is the total number of minimum-route paths between s and t.

We can also compute route edge betweenness centrality following the same procedure as
above except replacing nodes with edges:

rb(e) =
∑

s,t

σs,t(e)
σs,t

,

where σs,t(e) is the number of minimum-route paths between s and t that use the edge e.

5 Experimental results
In this section, we analyze the global liner shipping service route data using the path-
based methodology set out in the previous section. We begin by evaluating the effect of
the distance filtering parameter α on the minimum-route paths. Then, we compare four
sets of paths constructed using different representations of the service route data: filtered
minimum-route paths, shortest paths through the directed co-route graph, shortest paths
through the undirected co-route graph, and shortest paths through the path graph. Next
we build on previous work analyzing the structural core of the global liner shipping net-
work by comparing the role of core nodes and edges using minimum-route paths. Finally,
we compare our measures of port and edge importance, route betweenness centrality, with
external and topological measures of importance.
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Figure 4 Outcome of filtering on minimum-route path statistics. Comparison of path length distribution
(left), route shipping distance distribution (middle), and number of paths per pair (right) for all
minimum-route paths against filtered paths with increasing values of the distance filtering parameter α , as
well as the detour rate thresholding method. All filtering methods reduce the maximum values in each
distribution and more paths are filtered when α is closer to 1. The parameterless detour rate thresholding
method is more conservative than filtering using α < 1.75. We run subsequent analyses with α = 1.15, chosen
heuristically because the results using this value fall somewhere in the middle in all distributions

5.1 Filtered minimum-route paths
We compare path length and shipping route distance statistics for all minimum-route
paths and filtered paths in Fig. 4. We show results for α ∈ {1.0, 1.05, 1.15, 1.25, 1.5, 1.75, 2.0},
as well as using the parameterless detour factor filtering. As α decreases, we see that long
paths, both in terms of number of ports visited and total shipping distance, are reduced
substantially. The number of paths per reachable pair is also reduced by multiple orders
of magnitude after filtering, with the average number of paths per source and target pair
dropping from 472 paths when including all minimum-route paths to an average of 6 paths
after filtering with α = 1.15. Using the detour factor filtering behaves similarly to filtering
with the largest threshold we tested, α = 2.0. We attribute the looseness of the filtering
to the very large absolute detour factor between for some pairs of ports, which make it
unlikely that the relative detour factors for the other paths will be large enough to filter.

Throughout the remainder of the analysis we use filtering threshold α = 1.15 unless oth-
erwise indicated. We choose this threshold because it strikes a balance between short max-
imum path and route lengths and filtering out almost all paths.

5.2 Comparing minimum-route paths with shortest paths
In this section we compare the filtered minimum-route paths described above with short-
est paths through the undirected co-route graph (used in [11]), shortest paths through the
directed co-route graph, and shortest-paths through the path graph without using route
information.

Since the undirected co-route graph includes many connections that are only indirect in
the other two representations, it is not possible to make an exact comparison. Out of the
900,190 pairs of ports for which we have computed minimum-route paths, only 85,781 of
those pairs have at least one shortest path through the undirected co-route graph that is
also viable in the path graph. There is also a mismatch in the opposite direction: since many
more ports are mutually reachable in the undirected co-route graph, there are 953,552
pairs of ports with at least one shortest path between them, more than the number of
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Figure 5 Filtered minimum-route paths more accurately capture how a container can move through the
network based on liner shipping service routes. Path and route length statistics differ substantially between
the filtered minimum-route paths (blue circles) and shortest paths through all of the path graph (orange
crosses), the directed co-route graph (green stars), and the undirected co-route graph (purple triangles). Each
panel shows a normalized histogram with an unnormalized version in the inset plot. Network path lengths
(a): Minimum-route paths are much longer (mean 20 edges) than the shortest paths through the undirected
(3.5) or directed (3.5) co-route graph and the path graph (mean 5.4). The mean shipping distance (b) for the
minimum-route paths (mean 21,861.3 km) is shorter than that of the undirected (22,784.05) and directed
(22,767.85) co-route graphs, but distribution for the minimum-route paths has a longer tail. The
minimum-route paths are longer than shortest paths through the path graph, both in terms of mean
(19,532.4) and maximum distance. The number of routes required (c) for the filtered paths (mean 3.2 routes) is
shorter than in the path graph (4.7), where each shortest path may use a different number of routes. Only
0.3% of the shortest paths through the undirected and 0.4% of paths through the directed co-route graph are
viable based on the shipping routes, but those that do correspond to viable paths use the minimum number
of routes (means 2.6 and 2.7, respectively). Finally, the number of paths per pair of ports (d) is reduced
substantially in the path graph and filtered minimum-route paths

pairs that are connected by minimum-route paths. See Table 3 for statistics on shortest
paths and minimum-route paths through various co-route graphs.

This lack of alignment is impetus to take some care in explaining how we compute and
report the distributions in Fig. 5. To make the potential issues concrete, there could be five
shortest paths through the undirected co-route graph for a given pair. Each of these paths
has the same length (by definition of the shortest path), but they may each use a different
number of routes, and some may not be viable at all based on the routes. On the other
hand, there may be ten minimum-route paths between the same pair, all of which use the
same number of routes, but each of which is a different length. For the sake of compar-
ison, in Fig. 5, where we compare distributions of path length, shipping route distance,
and number of routes used across the three sets of paths, we (1) plot both normalized his-
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Table 3 Path statistics for shortest paths through the path, directed and undirected co-route graphs,
and minimum-route paths with and without filtering

Paths # pairs # paths Avg paths/pair Avg edges Avg routes

Path graph shortest 900,190 6,289,093 7.0 5.4 4.7
Co-route (dir) shortest 900,190 30,537,099 33.9 3.5 2.7
Co-route (undir) shortest 953,552 36,565,016 38.3 3.5 2.3
Minimum-route 900,190 424,919,483 472.0 20.0 3.7
Minimum-route (α = 1.15) 900,190 5,034,897 5.6 10.7 3.2

tograms (main plots) to compare the distributions directly and unnormalized histograms
(inset) to get a sense for the differences in scale; and (2) compute one value per path be-
tween every pair, even when the values are all the same between that pair (in this sense we
may describe the histograms as weighted).

In the distribution of path lengths based on the number of edges used (Fig. 5(a)), we
see that the shortest paths through the directed and undirected co-route graphs and the
path graphs are short compared to the filtered minimum-route paths. This is true both in
terms of the average and maximum path lengths. This is important because it suggests that
using shortest paths in analyzing this dataset will significantly underestimate the number
of ports required for cargo to move through the shipping network.

In Fig. 5(b) we compare the distributions of route shipping distance in kilometers for
each set of paths. All of the shipping distance distributions have peaks around 25,000
km, and the undirected co-route, directed co-route, and path graph have increasing max-
imums between 65,000 km, 70,000 km, and 76,000 km, respectively. However, the tail of
the minimum-route path distance distribution is substantially longer, with maximum dis-
tance of more than 100,000 km. This again suggests that using shortest paths through
any representation without accounting for the routes may underestimate the actual effort
required to ship a container between some ports.

We compare the distributions of routes used per path in Fig. 5(c). As expected, the
minimum-route paths use fewer routes than the shortest paths through the path graph.
We note that in the case where a shortest path through the directed or undirected co-
route graphs does correspond to a viable path through the routes, we know that path is
minimum-route because each step away from the source port in these representations
corresponds to the use of one more route [1].

Finally, in Fig. 5(d), we compare the distributions of number of paths per pair of reach-
able nodes. Some reachable pairs in the undirected co-route graph have upwards of 1000
shortest paths between them, while the maximum number of paths for the path graph
shortest paths and minimum-route paths is an order of magnitude less.

5.3 Route importance
Since many of the same edges appear in more than one route, a minimum-route path can
often be realized using multiple unique sequences of routes, each of which we call a route
sequence. Consider the simple case of the edge C-E in Fig. 1: the edge appears in both of
the routes r2 and r3. Now consider adding a fourth path r4 = E → F . Now to get from C
to F, we can use two unique route sequences: r2, r4 and r3, r4. In this section we study
the statistics of these route sequences to evaluate to what extent some routes are more
important than others.
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Figure 6 Many route sequences realize the same paths. Minimum-route path length (horizontal) against the
(a) mean and (b) maximum number of route sequences for minimum-route paths of that length. The mean
number of route sequences per path is low (less than 4) across all path lengths, but maximums reach as high
as 700 sequences realizing a single path

We begin by analyzing the number of route sequences per minimum-route path. Fig-
ure 6 shows the (a) mean and (b) maximum number of route sequences per minimum-
route path length. For every minimum-route path length, the average number of route
sequences per path is relatively low, less than 4. However, the maximum number of route
sequences is upwards of 600 for many lengths between 5 and 20, and over 100 for paths
as long as 40 ports. The number of route sequences that realize a path is a function of
the number of routes that connect its constitutive subpaths. For paths that can be realized
using only 1 route, the number of route sequences that can realize that path is trivially the
number of routes that contain it. Paths that require multiple routes are made up of multi-
ple 1-route subpaths, and the total number of realizations is the product of the number of
ways to realize each of these subpaths. For example, the minimum-route path visiting Tu-
ticorin, Colombo, Port Kelang, Singapore, Jakarta, and finally Surabaya can be realized by
32 unique 3-route sequences. That is because there are 4 different routes that contain the
edge from Tuticorin to Colombo; 8 routes that connect Colombo, Port Kelang, and Singa-
pore; and 1 route that connects Singapore, Jakarta, and Surabaya. This implies 4 choices
for the first route, 8 choices for the second, and 1 for the last, giving a total of 32 possible
routes. The reason that this path has many possible realizations is that the path between
Tuticorin and Singapore has many realizations, while the final leg between Singapore and
Surabaya is only realizable in one way.

We show histograms counting the appearance of each route in all of the route sequences
across all minimum-route paths in Fig. 7(a). For every minimum-route path, we loop over
all route sequences that can realize that path. For each route, we keep a count of the to-
tal unique route sequences in which the route appears (# Sequences), as well as the total
number of edges from that route used across all minimum-route paths (Total Edges). We
observe that longer routes tend to appear most often, however not all of the highest count
routes are long, and some are shorter than 10 ports. Given that the shipping service routes
and minimum-route paths both have varying lengths, we are interested in understanding
the relationship between the length of a route and how much it appears in the minimum-
route paths. In Fig. 7(b), we show the length of a route against the average number of
edges used when that route appears in a route sequence, computed as the total edges used
divided by the number of sequences in which the route appears (the two quantities in
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Figure 7 Longer routes use more edges on average, but all routes are not used to the same extent, and not
all appearances are equal. Panel (a) shows the length of a shipping service route (horizontal axis) against the
number of unique route sequences that route appears in (# Sequences, blue triangles), and the total number
of edges from that route used across all minimum-route paths (Total Edges, orange stars). Longer service
routes tend to be more highly weighted, but some shorter routes are also prevalent in realizing
minimum-route paths. Panel (b) shows the average number of edges used per appearance in a route
sequence for each service route (Total Edges divided by # Sequences). The length of a route is a natural limit
on the number of edges that can be used from that route in a given path; if the points were to fall along the
line y = x, then each time a route appeared in a route sequence we could expect most or all of its edges to be
used in that minimum-route path. On average roughly half of the edges from a route are used whenever it
appears in a route sequence (R2 = 0.92). Panel (c) shows a direct relationship (in logarithmic space) between
the number of sequences a route appears in and the total edges used from the route, while (d) shows the
same quantities but with the y-axis scaled to show the proportion of the maximum possible edges. Values
near the bottom indicate that few edges from a route were used with respect to the number of times the
route appeared and its length, while high values indicate that each time the route is used all of its edges
appear

Fig. 7(a)). We find a correlation between the length of a route and the average number of
edges used, which is to be expected since there is a natural limit on the number of edges
that can be used from short routes, e.g., a maximum of 1 edge can be used from a route
of length 1. However, the maximum correlation in this case would be equality, meaning
the whole service route was used every time it appeared in a minimum-route path realiza-
tion. In our data, the average edges per use is about 50% for the longest routes (the simple
model y = x

2 shown in Fig. 7(b) has coefficient of determination R2 = 0.92).
In Fig. 7(c), we plot for each route the number of unique sequences in which it appears

against the total number of its edges used across all paths and sequences (the quanti-
ties from Fig. 7(a)). The total number of edges scales directly in logarithmic space with
the number of sequences in which a route appears. This is intuitive, since total edges in-
creases monotonically with the number of sequences. However, because routes have vary-
ing lengths, not every appearance of a route is the same. Some long routes may contain 1
important edge that is used repeatedly, while others may be used in their entirety each time
they appear. In Fig. 7(d), we rescale the vertical axis to account for the maximum possible



LaRock et al. EPJ Data Science           (2022) 11:18 Page 17 of 32

edges from a route that could have been used given its number of sequences, dividing the
total number of edges by the product of the number of unique sequences and the length of
the route. We see that some routes are used in a large number of paths, but the proportion
of the maximum possible edges that could have been used is less than 20%. This suggests
that only sub-routes within the larger route are being used by many different paths. An
example of this is a route connecting Helsinki, Finland with Szczecin, Poland. This route
includes 20 port calls throughout northern Europe, including 6 ports in Finland, calls in
England, Belgium, Holland, Germany, and finally Poland. This route appears in millions of
minimum-route paths, but only 20% of the maximum number of edges are used. Zoom-
ing in, we find that the route is structurally important because of a few sub-routes with
lengths substantially shorter than the full route length that appear in large numbers of
minimum-route paths. The most frequent sub-routes of this route are the edge from Hull,
UK to Antwerp, Belgium; from Helsinki to Kotka to Hamina in Finland; and the edge be-
tween Felixstowe and Hull in the UK. The least frequent sub-routes are between more
peripheral ports, for example the edge between the ports at Kemi and Oulu in Finland,
which appears exactly once. From this analysis we see that in some cases the importance
of a route may not be determined by the importance of its start and end ports, or by the
combined importance of all of its constituent ports, but by its most important sub-routes,
which may make up a relatively small proportion of the entire route.

In contrast, other routes appear in many sequences and a considerable proportion of
the maximum possible edges are used each time they appear. This could have two expla-
nations. First, some routes are very short, thus are used completely each time they appear.
Examples of this include the route consisting of only the edge between Busan, South Ko-
rea and Hakata, Japan, as well as the routes containing only the edge between the ports
Jakarta and Belawan in Indonesia. By definition, each time one of these routes appears in
a minimum-route path, the proportion of edges used is 1, since there is only 1 edge. A less
trivial possibility is that some routes connect ports that are not connected in any other
way, thus they are used every time those ports need to be connected. For example, a route
connecting Rotterdam, Gerrmany with Hull, UK, via London and Grangemouth, is used
in its entirety an order of magnitude more than its next most frequent sub-route, which is
the same path but stopping short of Hull at the port in Grangemouth. This route connects
Rotterdam and Hull in just 3 edges, while the two other routes in the dataset that connect
these ports both require more than 10 edges and substantial intermediate detours through
northern Europe.

This analysis shows that the importance of a particular route to the structure underlying
the container shipping process is not just a simple function of the ports visited on the
route. Instead, the role a route plays in the process is a complex and varied calculation
that depends not only on itself, but also on the connections between other ports that it
may facilitate.

5.4 Structural core analysis
Previous work by Xu et al. [11] classified connections between ports in the global ship-
ping network into three categories based on whether ports involved in the connections
were part of the “structural core” of ports, finding that this core plays an important role in
supporting cargo transportation between peripheral ports. Using the undirected co-route
graph representation, the structural core was defined by first computing a partitioning of
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the nodes in the network based on modularity-maximizing community detection (using
the Louvain algorithm [24]). The structural core of the graph was chosen to be a set of
nodes such that (1) at least one node from each of the modules was present and (2) the
density of connections among the nodes in this core was relatively high. A specific set
of nodes was found that satisfied these criteria (using a heuristic choice of 0.8 subgraph
density): the top 37 nodes with highest value of Gateway-ness, a measure of the extent to
which a port was connected to other ports outside of its own module, for a specific par-
tition of the network. From here on, we will refer to all ports not in this structural core
as “peripheral” ports. In this section, we compare the original analysis of the role of this
structural core with an analysis using minimum-route paths rather than shortest paths
through the undirected co-route graph.

With the ports making up the structural core defined, we continue following Xu et al.
[11] by categorizing each edge based on whether the ports on either end are in the struc-
tural core. The original taxonomy had three categories: core edges, when both ports are in
the structural core; feeder edges, when exactly one port in the core; and local edges, when
neither port is in the core. Since minimum-route paths take directionality into account,
we can split the edges in the feeder category into two categories, where an edge is an out-
feeder if it points from a core port to a peripheral port, and an in-feeder if it points from a
peripheral port to a core port.

Figure 8 shows reproduced results from Xu et al. [11] (left) and results computed using
minimum-route paths (right). The leftmost bar in each plot shows the percent of edges
in the graph (the undirected co-route and path graphs, respectively) that fall into each
category. The second bar represents the percent of total shipping length, measured as
the sum over all edges (u, v) of the real distance in kilometers that a vessel must travel
to get from u to v, in each category. Both edge percentages (3.2% compared to 5.2%) and
length percentages (6.4% compared to 9.8%) in the path graph are slightly larger than those
reported in Xu et al. [11], suggesting that the role of core edges in the graph structure was
underestimated in the previous work. We also report that out-feeder edges make up a
larger percentage than in-feeder edges in the path graph representation.

The third and fourth bars in the left plot of Fig. 8 represent length percentages for all
shortest paths between pairs of peripheral ports (third bar) and only those paths that in-
clude at least one core edge (rightmost bar). In the right plot we report the same quan-
tities for minimum-route paths using distance threshold value α = 1.15 (more values of
α reported in Appendix B). Only 25% of shortest paths through the undirected co-route
graph pass through the structural core. In contrast, 75% of the filtered minimum-route
paths pass through at least 1 core edge. This difference between the paths helps explain
the somewhat counterintuitive result that the role of core edges was underestimated for
all paths between peripheral ports (16.6% vs. 24.2%), but overestimated for only the paths
between peripheral ports that pass through at least 1 core edge (62.0% vs. 27.7%). In both
cases the role of local edges was underestimated; these edges make up almost one third of
the length in both sets of minimum-route paths between peripheral ports.

We also follow Xu et al. [11] by comparing the length-to-edge percentage ratios for each
of the length percentages (numbers in parenthesis in Fig. 8). Overall these ratios are similar
between the two representations. The exception is the role of core edges in mediating
paths between peripheral ports that pass through the core, where the previously reported
length-to-edge percentage ratio was 19.4, while the ratio in our analysis is 5.3.
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Figure 8 Percentage of edges and shipping length (real shipping distance between ports, measured in
kilometers) by edge type in the original work (left) and with our updated minimum-route paths filtered with
distance threshold α = 1.15 (right). The role of the core was simultaneously underestimated for all shortest
paths between peripheral ports and overestimated for only paths between peripheral ports that pass through
at least 1 core edge. The first bar in each plot shows the percentage of edges in the graph that fall into each
category (sum of in and out feeders in gray to the left of each bar in the right plot). The second bar shows the
percentage of total shipping length for edges in each category in the graph. The numbers in parentheses are
the length percentage divided by the edge percentage. The majority of edges in both representations are
local (64.1% and 64.8%), but local edges make up relatively less of the total length among all edges in the
graphs. The third bar in each plot shows the percentage of length by category for all paths between
peripheral ports (75% of shortest paths in the previous analysis vs. 26% here), while the fourth bar shows the
same quantity but only for paths that pass through at least 1 core edge (25% previously vs. 74% here). Using
shortest paths through the undirected co-route graph we find that the role of the core was under-estimated
for all paths (16.6% vs. 24.2%). However, the length-to-edge percentage ratios are similar for all categories
(core: 5.2 vs. 4.6; feeder: 1.7 vs. 1.3; local: 0.4 vs. 0.5). Limiting to only paths that pass through the structural
core, the role of the core appears to have been overestimated (62.0% vs. 27.7%) and the role of local edges
was underestimated in the previous work (4.6% vs. 33.3%). In this case, the length-to-edge percentage ratio
for the core is much smaller (19.4 vs. 5.3), while the feeder (1.0 vs. 1.3) and local (0.1 vs. 0.5) ratios are again
similar. Out-feeder edges, which are edges that leave the structural core, make up a higher percentage of
both edges and lengths than in-feeder edges, which go from outside the core to inside

The difference in estimates of the role of core edges can be explained in part by the
choice of representation. When constructing the undirected co-route graph, ports that
would require multiple intermediaries to reach one another based on the shipping routes
are given undirected connections. Thus when shortest paths are computed, the number
of intermediary nodes and edges traversed is greatly reduced, since they are bypassed by
direct connections created by the undirected co-route graph construction. In contrast, in
the minimum-route paths these intermediary ports must be traversed in the order they ap-
pear in routes, meaning that local edges are not avoided. The important implication of this
for our analysis is that the size of the set of paths analyzed in the fourth bar changes from
25% of the paths between peripheral ports passing through the core in the original work
to 75% in our analysis, which shows that core edges are indispensable in supporting cargo
transportation between peripheral ports. Indeed, core edges take up an even higher per-
centage of the total shipping length of paths between peripheral ports that travel through
the core (fourth bar, right plot) than in all paths between peripheral ports (third bar, right
plot), while the difference was overestimated in previous work (left plot). By using shortest
paths through the undirected co-route representation, the core was more easily avoided
in the full set of paths between peripheral ports. However, this also biased the set of paths
that did pass through the core towards using even more core edges. This also explains
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why the third and fourth bars in our analysis are more similar to one another than in the
original work.

Despite the differences in the analyses, the general result from the previous analysis still
holds. Our minimum-route path based analysis suggests that the structural core identified
in the previous work does play an outsized role in mediating possible paths for cargo to
take through the shipping network. However, we have found that quantifying the role of
this core using shortest paths through the undirected co-route graph representation si-
multaneously biases against and toward the core edges depending on whether the paths
being analyzed travel through the core at least once.

5.5 Route betweenness
In this section we evaluate route betweenness as described in Sect. 4.3, comparing our
minimum-route path-based measures of route node and edge betweenness with topolog-
ical centrality measures in the co-route and path graph representations.

We evaluate route node betweenness by measuring the correlation of the port rankings
it produces with external data. We use as our baseline for comparison the top 100 ports
based on container throughput downloaded from Lloyd’s List Intelligence, a leading mar-
itime shipping analyst service.3 From this list we construct a rank vector t = 〈1, 2, . . . , 100〉
for the top container throughput ports, where the entry ti corresponds to the port i with
the ith highest throughput. Then, we compute rankings of all ports based on route node
betweenness centrality, (weighted) degree and (inverse weighted) betweenness centrality
in both the path and undirected co-route graphs, and the count of the number of routes
in which a node appears, where we define the weight of an edge to be the total number of
times the edge appears across all of the routes. For each centrality ranking, we construct
a rank vector r, where the entry ri is the ranking in the respective centrality measure for
the port with the ith highest container throughput. The result is 8 rank vectors where
each entry corresponds to the same port across all vectors. Finally, we compute Kendall’s
τ rank correlation [25, 26] between the top container throughput ranking and each cen-
trality ranking over a sliding window increasing in rank k.

Figure 9(a) shows the results of this analysis. All 3 centrality measures correlate pos-
itively with container throughput, consistent with previous results [11]. The number of
routes that a port appears in consistently has the largest rank correlation with the top 100
container throughput ports, and the strength (weighted degree) rankings are better cor-
related than any of the betweenness rankings. However, the correlation coefficient for the
route node betweenness ranking is consistently larger than for the other betweenness mea-
sures for all values of k, and p-values on the coefficients are significant at p = 0.0001 after
the top 30. These results suggest that when measuring port importance, our route node
betweenness measure is more consistent with a measure of importance external to the
network than topological betweenness centralities, while simpler measures like weighted
degree or the number of routes a port participates in are better correlates than centrality.

We repeat this process again in Fig. 9(b), but this time using the total TEU capacity of all
routes that a node participates in based on the data described in Sect. 2. The top 100 TEU

3https://www.lloydslistintelligence.com/. Note that the top 100 container ports all together account for about 80% of world’s
total container throughput each year. In fact, we use the top 98 ports because the ports at Ambarli and Dandong do not
appear in the service route data. Further, the ports Keelung and Taipei are combined in the top 100 dataset, while they are
separate in our shipping routes. Where applicable we use the minimum ranking between the two ports.

https://www.lloydslistintelligence.com/
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Figure 9 Rank correlations for port (a-b) and edge (c-d) importance measures. Ranking ports by number of
routes they participates in has the strongest correlation with the top 100 ports by container throughput, and
port rankings based on route betweenness correlate more strongly with ranking by container throughput
than either topological betweenness measure. Ranking by route node betweenness correlates strongly with
the top 100 ports by total TEU capacity. Correlation of edge rankings with route edge betweenness and total
TEU capacity is strongly positive. Aggregating edge betweenness to the country level, betweenness in the
directed and undirected co-route graphs correlates more strongly with bilateral trade than route edge
betweenness or path graph betweenness. Dashed lines in the right plots indicate p = 0.01, 0.001, and 0.0001

Capacity port ranks are shown in the main plots, while the inset plots show correlation
over all port ranks. Note that the strength rankings are determined by the total edges a
node participates in over all routes, which does not include the TEU capacity information.
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Results are similar to the top 100 container throughput, where the strength and number of
routes measures have consistently strong correlations, and route node betweenness cor-
relates better than the other betweenness measures.

We take a similar approach to evaluating route edge betweenness, computing the rank
correlation between two external rankings and 7 edge centrality measures: route edge be-
tweenness, (inverse weighted) edge betweenness in each of the directed and undirected
coroute and path graphs. However, we must take care to properly evaluate the rankings
given that edges in the directed co-route and path graph are directed, while edges in the
undirected co-route graph are not. We achieve this by adding the values for the edge in
both directions together, then orienting each edge across all of the rankings so the nodes
are sorted alphabetically. For example, if the edges (i, j) and (j, i), i < j both exist in one
of the directed representations, we compute the sum of the measure of interest (e.g. be-
tweenness) on both edges, then assign it to the single undirected edge (i, j).

The first external ranking is the sum of TEU capacity for all of the routes in which each
edge appears, the same data as in Fig. 9(b). We construct a rank vector based on TEU
capacity using this data. Then we construct rank vectors based on the edge centrality
measures, and again compute Kendall’s τ correlation between the capacity ranking and
each of the centrality rankings. Results are shown in Fig. 9(c). Route edge betweenness is
consistently the best correlated with edge TEU capacity. The inverse-weighted topological
edge centralities correlate positively and reach low p-values by the top 500 edges, while
the unweighted topological centralities hover around neutral and insignificant coefficients
throughout.

The second external ranking is the bilateral trade value between countries. This analy-
sis is of practical relevance to understanding how the structural connectivity of the global
liner shipping network is associated with international trade, given the fact that liner ship-
ping accounts for about 70% of global seaborne trade by value [11]. Since our edges are at
the port level, we first aggregate the (now undirected) edge betweenness values by map-
ping each port to its country, then keeping a list of edge betweennness values for each
pair of countries that have an edge. We then compute the rank correlation between the
bilateral trade ranking and the centrality rankings, which we report in Fig. 9(d).

In this case, the directed and undirected co-route graph edge betweenness rankings are
most strongly correlated with the country level trade rankings. There is an intuitive rea-
son for the co-route graph betweenness measures to be the strongest: the country-level
rankings are based on bilateral trade without specific information about who mediates re-
lationships between countries. When the routes are transformed into fully connected and
undirected graphs in the undirected co-route graph, the bilateral relationships between
the countries are maintained, but the more fine-grained information about who mediates
trades – in terms of maritime transportation – between the countries is lost.

Finally, we report the pairwise Kendall’s τ for all importance measures in Fig. 10. As ex-
pected, route node and edge betweenness for different values of distance filtering thresh-
old α correlate highly with one another for both nodes and edges. This, along with the
results in Fig. 4, as well as Fig. 12 in Appendix B, suggest that while the choice of α does
change the route betweenness values and lower α reduces shipping distances, results ap-
pear to be robust to this parameter. All pairs of node importance measures have positive
and significant (at least p < 0.01) rank correlation coefficients. The edge betweenness rank
correlations for the directed and undirected co-route graphs have neutral and even slightly
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Figure 10 Pairwise Kendall’s τ rank correlation for port rankings between all importance measures for nodes
(left) and edges (right). “Capacity” means ranking by the sum of TEU capacity of all routes where a node or
edge appears; “# Routes” means ranking by the total number of routes in which the node or edge appears at
least once; and “Throughput” means ranking the top 100 ports by container throughput. “DCRG” means
directed co-route graph, “UCRG” means undirected co-route graph, and “betw” corresponds to betweenness
and “deg” to degree. “all” refers to the full set of minimum-route paths without filtering and “detour” refers to
detour factor filtering. Route node and edge betweenness measures correlate strongly across all values of
shipping distance filtering threshold α . All pairs of node importance measures have positive correlations.
Edge betwenness in the directed and undirected co-route graphs are either neutral or slightly negatively
correlated with other edge importance measures. Almost all p-values on the rank correlations coefficients
were small; an x indicates that the p-value on the correlation coefficient was not significant at p = 0.01. Note
that the correlations are symmetric

negative correlations with the unweighted route edge betweenness measures, suggesting
that these measures are indeed capturing different kinds of edge importance.

Taken together, these results indicate that node and edge importance measures that take
the service route data into account – including both our proposed route betweenness mea-
sures as well as simple counts of appearances in routes – correlate with external rankings
as well as or better than measures that use shortest paths defined over the network struc-
ture. However, in some cases, such as when aggregating importance measures from ports
up to countries, importance measures derived from the structure of the denser co-route
graph representations may be better correlates than the route betweenness measures.

6 Conclusion
We presented analysis of liner shipping service route data using multiple network repre-
sentations. We showed that the choice of representation has implications for the paths
that can be inferred from the data, and that the choice of paths is important to analyzing
the role of a structural core in the global maritime shipping network. Our analysis using
an alternative set of paths, which we called minimum-route paths and compute using an
algorithm called IMR, suggests that previous work underestimated the role of core edges
in paths between peripheral ports and overestimated the role of core edges in the subset of
paths that passed through at least one core edge. Based on this analysis we also found that
previous work underestimated the importance of local edges. Despite this misestimation,
the main conclusion from the previous work, that the structural core plays an outsized
role in mediating navigation of cargo through the network, still follows from our analysis.
Finally, we used our minimum-route paths to compute a measure of route betweenness
centrality for both nodes and edges, and validated this measure against external measures
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of port and edge importance, finding that our measure is at least as good as other indi-
cators for throughput and capacity based node and edge ranking, but simpler network
indicators are better correlated with country-aggregated edge importance.

Our results suggest several criteria for choosing a representation when analyzing liner
shipping service route data. If the research question is principally focused on dyadic trade
relationships between entities, a coarser grained representation, such as the directed and
undirected co-route graphs studied here, may be a reasonable and potentially advanta-
geous representation. However, if the goal is to study the movement of cargo through the
network, then either analyzing the routes themselves – as in route node or edge between-
ness – or a representation that respects the directionality and direct connections in the
network – as in the path graph – is likely to produce more accurate results.

In future work, results should be compared with fine-grained ship and cargo movement
data that was not the focus of this study. In particular, our path-based analysis, though
an improvement over the undirected co-route graph analysis, does not take the timing of
ship movements into account. It is well known that the temporal ordering of edge appear-
ances can break apparent transitivity in network dynamics [17, 18]. Future analyses should
also combine liner shipping service routes with data that captures the temporal patterns
of ship movements, such as AIS data, to further our understanding of temporally viable
minimum-route paths by ensuring paths are time-respecting [27]. This could have impor-
tant implications for which minimum-route paths through the network are truly viable in
practice, since the temporal ordering of the trips could both limit the overall set of paths,
as well as significantly alter the amount of time a path would take to realize.

Appendix A: IMR algorithm description, analysis, and related work
In this Appendix, we give a detailed description, including pseducode and runtime analy-
sis, for the IMR procedure for computing minimum-route paths.

We iteratively construct minimum-route paths directly from the shipping routes. Algo-
rithm 1 contains pseudocode for our proposed procedure, IMR. We are given as input the
set of routes R. Using R, we construct the directed co-route graph representation of the
routes Gc = (Vc, Ec) where Vc is the set of ports and an edge (u, v) exists in Ec if either (1)
there is a closed route containing both u and v, or (2) there is an open route such that u
appears before v. A port t is reachable from a port s if there is at least one path that fol-
lows the directed edges in Ec from s to t. Using Gc, we compute the set of all reachable
pairs using Breadth First Search from every source node in Vc and add each to the set of
remaining pairs PR. At the same time, we compute the shortest path distance dist[s, t] for
all pairs (s, t) in the directed co-route graph, which is the same as the minimum-route dis-
tance. This allows us to identify which pairs have minimum-route paths at each distance.
We use Dmax to denote the maximum minimum-route distance among all pairs of ports.

We build the set of paths iteratively, starting with pairs that can be connected using 1
route. For this, we loop over each route r ∈ R, checking if the route is open, meaning the
first and last nodes are not the same, or closed, meaning r starts and ends at the same port.
In the case where r is open, we add all of the paths between each pair of indices i, j, i < j.
If r is closed, we add all paths between all pairs i, j ∈ r, i �= j, allowing paths to continue
from the end of the route to the beginning. Finally, we iterate over each minimum-route
distance d, finding all minimum-route paths for pairs of nodes that require d routes. At
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Algorithm 1 IMR(R): Algorithm for computing Iterative Minimum Routes
Input: R (set of shipping routes)
Output: mr (minimum route paths)

1: Construct directed co-route graph Gc = (Vc, Ec) from routes R
2: Compute shortest path distances dist[s, t] in Gc (BFS)
3: Dmax ← maxs,t dist[s, t]
4: Initialize minimum-route distance d ← 1
// Compute all minimum-route paths that use exactly 1 route

5: for all routes r ∈ R do
6: if r is open then
7: Add all paths from i to j in r s.t. i < j to mr[d, i, j]
8: else
9: Add all paths between all pairs (i, j) ∈ r, i �= j to mr[d, i, j]

// Compute paths for pairs with minimum-route distance d > 1
10: for d ∈ 2, 3, . . . , Dmax do
11: for pairs (s, t) s.t. dist[s, t] = d do
12: for w ∈ mr[d – 1, s] s.t. t ∈ mr[1, w] do
13: Concatenate all paths from s to w with all paths from w to t and add to

mr[d, s, t]

each distance, we loop over all pairs (s, t) that are reachable using the current number of
routes d. Then, we loop over all d – 1-route paths from s searching for any intermediate
nodes w that have a 1-route path to t (by definition such a path exists). For any ports w
such that a path s · · ·w · · · t exists, we record all such paths. When minimum-route paths
have been computed for all pairs at distance d, we restart the while loop until all pairs have
been evaluated.

A.1 IMR runtime analysis
The runtime of the IMR algorithm is the sum of the runtimes of (I) the construction of Gc

from R (line 1), (II) the runtime of computing shortest path distances between all reachable
pairs in Gc (line 2), (III) the runtime of the first loop (lines 5–9), and (IV) the final for loop
(lines 10–13).

Steps (I) and (III) can be computed together in one loop over the full set of routes R. We
let �r be the length of a given route r ∈ R. Regardless of whether a route is open or closed,
the operations that compute the minimum-route paths and add edges to Gc require O(�2

r )
time to process every pair of nodes in r. Therefore the running time is bounded by the
number of routes |R| multiplied by �2

max, the length of the longest route squared, resulting
in the worst case running time O(|R|�2

max).
Step (II), computing shortest path distances between all reachable pairs in Gc, can be

done in O(|Vc|(|Vc| + |Ec|)) by running Breadth First Search (BFS) from each node in V .
Finally, step (IV) is the doubly nested for loops (lines 10–13). We defined Dmax to be the

maximum minimum-route distance among all pairs; for notational convenience we will
refer to it as just D here. We note that the worst case value of D is the total number of
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routes |R| (the case where all routes chained together in at least one ordering connect a
pair of nodes that cannot be connected otherwise).4

We further define ηd to be the number of pairs at minimum-route distance d and pd to
be the maximum number of minimum-route paths between any pair of ports at distance d.
The maximum value of ηd is |Vc|2 – |Vc| in the case where all ports are mutually reachable
at the same distance d. For example, given the route A-B-C-A-B, all pairs of nodes are
mutually reachable in 1 route, meaning η1 = 32 – 3 = 6 corresponding to pairs A-B, A-
C, B-A, B-C, C-A, C-B. In fact this maximum can only be reached when D = 1, since by
definition edges can be navigated using exactly 1 route and so it is impossible for all ports
to be connected at the same minimum-route distance d > 1. Thus our upper bound on ηd

is loose when d > 1.
We also want an upper bound for the quantity pd . An upper bound on the maximum

number of minimum-route paths using d routes between a pair of nodes is the maximum
number of walks between any pair. Since walks through a graph can in principle contain an
infinite number of cycles, we will use the fact that the set of routes R is finite and compute a
bound on the maximum number of walks between any pair of nodes using up to d routes.
For a given value of d, the loose upper bound we arrive at is the maximum value of the
adjacency matrix A of the path graph representing the routes raised to the sum of the
lengths (in edges) of the d longest routes �d :

max
i,j

A�d
i,j .

This quantity represents the maximum number of paths between any pair that use the
maximum number of edges among d routes. We note that the distribution of route lengths
has a tail in larger values (see Fig. 2).5

Each iteration of the outermost for loop (line 10) involves ηd iterations of the next for
loop (line 11). In the worst case an iteration of the outer for loop requires ηd–1 iterations
of the inner for loop, each of which takes worst case time pdp1, the maximum number
of paths using d routes times the number using 1 route. Thus the total running time for a
particular value of d is the product of these terms: O(ηdηd–1pdp1). An upper bound on this
running time is the maximum of this time over all values of d multiplied by the number
of distances (iterations of the for loop in line 10)

max
d∈1...D

ηdηd–1pdp1,

which we can upper bound as

|Vc|4
(

max
i,j

A�D
i,j

)2

Putting the three terms together, we have the running time

O
(
|R|�2

max + |Vc|
(|Vc| + |Ec|

)
+ D|Vc|4

(
max

i,j
A�D

i,j

)2)
.

4In our dataset, D is 8 while |R| is 1622.
5The minimum length of a route in our dataset is a single edge, the median length is 6 edges, mean length is 6.9 edges, and
the maximum length is 30 edges. We further note that the number of edges used from a route in a minimum-route path is
about half of the edges in the route on average (see Fig. 7(d)).
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When D is 1, ηD is equal to the total number of reachable pairs, meaning the second
for loop will not be entered and the last term will be irrelevant. As D grows toward its
maximum |R|, the last term dominates the runtime. However, the upper bound approxi-
mation is worse at higher D, since the upper bound on ηd is only tight at D = 1, and the
upper bound on pd weakens as D grows because the approximation monotonically in-
creases with D (e.g. �D+1 > �D for all D and so A�D+1

i,j > A�D
i,j ) and is tightest for of a pair of

nodes that is connected using all of the D largest routes in R.6

A.2 Filtering algorithms
We present pseudocode for the filtering procedures discussed in Sect. 4 in Algorithms 2
and 3. The input to the algorithm is mr, the data structure output by Algorithm 1; a pair
of ports s and t; the minimum-route distance between the ports d; the distance filtering
threshold α; and sd, a data structure containing the pairwise shipping distances between
all ports. In the first outer loop we iterate over the paths pL from longest (in terms of
edges) to shortest, then in the inner loop we iterate over all paths ps that are shorter than
the current pL. For each pair of paths, we check if pL ∩ ps ≡ ps, which indicates that the
longer path subsumes the shorter path and thus should be marked redundant. If a path pL

is not redundant, we compute and store in dist[pL] its total shipping distance as the sum
of the distance between all adjacent ports in the path. We also compute the minimum
distance in distmin. Finally, we filter the remaining paths based on distance in one of two
ways presented in the next subsection.

A.3 Filtering runtime analysis
In this section we analyze the runtime of the filtering procedure. Let pL represent the
longest path (by edges) in MR[d, s, t], and let m = |MR[d, s, t])|, the number of minimum-

Algorithm 2 FilterPaths(mr, s, t, d, α, sd)
Input: mr (minimum route paths), s (source port), t (target port), d (minimum-route

distance), sd (pairwise shipping distances)
Output: F (set of paths to filter)

1: F ← ∅
// Filter longer paths if they subsume any shorter paths

2: for longer path pL in mr[d, s, t] do
3: for shorter path ps in mr[d, s, t] s.t. |ps| < |pL| do
4: if pL ∩ ps ≡ ps then
5: F ← F ∪ pL

6: break
// Compute shipping distance for non-redundant paths

7: dist[pL] ← ∑
i=1,...,|pL|–1 sd[pL[i], pL[i + 1]]

8: Filter distances using ThresholdFilter(F ,α, mr[d, s, t]) or DetourFil-
ter(F , mr[d, s, t])

9: Remove all paths p ∈ F from mr[d, s, t]

6We have some evidence that this case is unlikely to appear often in real-world data. The longest minimum-route path
in our dataset uses 81 edges and 4 routes, while �4 = 119. Similarly, the longest path using D = 8 routes is 44 edges, while
�8 = 228.
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Algorithm 3 Procedures for distance filtering
1: procedure ThresholdFilter(F ,α, P = mr[d, s, t])

// Filter paths with shipping distance longer than the mini-

mum times α

2: distmin ← minp∈P dist[p]
3: for path p ∈ dist do
4: if dist[p] > α · distmin then
5: F ← F ∪ p

6: procedure DetourFilter(F , P = mr[d, s, t])
// Filter paths with relative detour fac-

tor larger than the minimum factor

7: distmin ← minp∈P dist[p]
8: DRmin

s,t ← distmin
sd[s,t]

9: for path p ∈ dist do
10: if dist[p]

distmin
> DRmin

s,t then
11: F ← F ∪ p

route paths between s and t. The redundancy filtering dominates the computational
complexity since it requires O(m2) time to loop over all m paths. For both distance fil-
tering methods, we need to compute the total distance for every path, which requires
O(|pL| · m) time in the worst case where all paths have the longest length. We can com-
pute the minimum distmin at the same time. Then we need to loop over the m paths again
to decide which need to be filtered. Therefore an upper bound on the running time is
O(m2 + |pL| · m + m) = O(m2 + |pL| · m). We observe that m grows much faster than pL (see
Fig. 11 in the next section), thus in practice this running time is dominated by O(m2).

The main factor in determining the running time for a specific pair of ports is the dis-
tribution of path lengths. If all paths have the same number of edges (which is unlikely),
the redundancy computation can be skipped completely, since paths of the same length
cannot be redundant. The more unique path lengths there are, and especially the more
long paths that need to be compared with all shorter paths, the slower the computation
will be. Further, the runtime of distance filtering is determined not only by the length of
the longest path, but also by how many redundant paths are filtered before the distance
filtering process begins, since these paths can be ignored.

A.4 Relationship between number of paths and path length
In Fig. 11 we show the relationship between the number of minimum-route paths and the
maximum length among those paths for all pairs of ports. In the left plot we plot these
quantities for every pair, while in the right plot we show the average number of paths
for each length, with error bars shown in the inset plot. As the maximum path length
increases, the number of paths per pair also increases, but at a much faster rate. This is
evidence that m (number of paths) dominates pL (maximum path length) in the runtime
calculation for filtering minimum-route paths in Sect. A.3.

A.5 Related work: paths in transportation networks
Here we supplement the discussion of previous work in the Introduction section of the
main text by reviewing some computational work related to computing paths through
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Figure 11 Maximum path length against the log of the number of paths per pair of source and target ports
(left) as well as the log of the average number of paths (right, main plot) and including the amount of
variation measured by one standard deviation (right, inset plot). As the maximum path length between a pair
increases, so does the average number of paths between pairs with that maximum path length. An intuitive
explanation for this trend is that longer minimum-route paths are concatenations of shorter minimum-route
paths between intermediate source and target pairs (e.g. the loop on line 12 of Algorithm 1) that are all
interchangeable. This implies that the number of paths between a pair with large maximum path length is a
function of the product of the number of minimum-route paths at smaller lengths, and so the number of
paths grows much more quickly than the maximum path length. However, at the highest maximum path
lengths this trend does not hold. We attribute this to the fact that the very longest paths are likely to appear
between ports that are not well-connected, thus there are few (perhaps only 1) viable minimum-route paths
between some of these pairs, dragging the average down. Put another way: very long paths usually occur
between poorly connected nodes, meaning they are more likely to be unique or few in number

transportation networks. Sequential data is the basis for many studies of transportation
networks, especially in public transportation. For example, Barrett et al. presented an algo-
rithm for solving the label-constrained shortest paths problem in road and rail transporta-
tion networks, taking a formal languages approach [28]; Bast et al. proposed algorithms for
solving time-constrained shortest-path problems in public transportation networks [29];
Lozano et al. presented a solution to the shortest viable path problem for multi-modal net-
works [30]; and Lewis et al. reviewed algorithms for computing shortest-paths with vertex
transfer penalties [31] (we do not have transfer times for our shipping routes).

A closely related problem is finding walks through edge-colored graphs, for example the
algorithms proposed in [32]. However, typically the optimal solution is paths that use the
maximum number of different colors, which in our case would correspond to using the
largest number of unique routes, rather than the smallest.

The work that comes closest to our own is [33], which proposed algorithms for list-
ing shortest paths in public transportation networks. However, the proposed algorithms
assume that there are no cycles in the routes, e.g. that the routes are paths through the
network, not walks. This assumption does not hold in the service route data.

Paths were constructed from public transit data for path-based analysis of the London
Tube in [17, 34]. However, the method for constructing the paths was to compute shortest
paths through the combined network of routes, which did not take the number of transfers
into account.

Although similar to much of the above work, our study differs on a few key points. First,
many transportation systems, especially public transportation, evaluated in the previous
studies are based on paths through the network, since nodes are rarely if ever repeated
in public transit routes. However, our shipping routes are not paths but walks, since the
same ports can be visited multiple times in a single route. Second, previous work has often
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Figure 12 Percentage of edges and shipping length by edge type for various values of distance threshold α ,
the detour factor threshold (“detour”), as well as using the entire set of minimum-route paths (“all”). As in
Fig. 8, numbers in parentheses correspond to length-to-edge percentage ratios. Results are similar for paths
between all peripheral ports and paths between peripheral ports that include at least one core edge, and
results are broadly similar across threshold values. Looking at all of the paths between peripheral ports, when
only the minimum shipping distance path is kept (α = 1.0), core edges account for about 17.1% of the total
length, but after adding a small number of paths close to the minimum distance (α = 1.05) the involvement
of the core increases to 26.8%. As α increases, the percentage of core edges varies between 23.6% and 28.1%,
while the detour threshold percentage is 20.3%. Turning to the paths between peripheral ports that pass
through the core, at α = 1.0 core edges account for about 28.5% of the total length, but at α = 1.05 the
involvement of the core increases to 35.9%. As α grows and fewer paths are filtered, the length percentage
accounted for by the core decreases to 26.1% when all minimum-route paths are included, and is 25.3% using
detour factor filtering

(though not exclusively) focused on shortest paths, but our work will focus on minimizing
the number of route transfers.

Appendix B: Comparison of structural core results for varying thresholds
In the main text we showed the edge and length percentages for minimum-route paths us-
ing the distance filter α = 1.15. In Fig. 12, we present results using all thresholding schemes,
including detour factor thresholding (“detour”) and no filtering (“all”). Regardless of the
extent of filtering, we find the same result: the statistics of core edges were simultaneously
underestimated and overestimated in previous work, while the statistics of local edges
were underestimated; for detailed illustration, refer to Fig. 8 and its associated main text.
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