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Abstract
As survey costs continue to rise and response rates decline, researchers are seeking
more cost-effective ways to collect, analyze and process social and public opinion
data. These issues have created an opportunity and interest in expanding the
fit-for-purpose paradigm to include alternate sources such as passively collected
sensor data and social media data. However, methods for accessing, sourcing and
sampling social media data are just now being developed. In fact, there has been a
small but growing body of literature focusing on comparing different Twitter data
access methods through either the elaborate firehose or the free Twitter search or
streaming APIs. Missing from the literature is a good understanding of how to
randomly sample Tweets to produce datasets that are representative of the daily
discourse, especially within geographical regions of interest, without requiring a
census of all Tweets. This understanding is necessary for producing quality estimates
of public opinion from social media sources such as Twitter. To address this gap, we
propose and test the Velocity-Based Estimation for Sampling Tweets (VBEST)
algorithm for selecting a probability based sample of tweets. We compare the
performance of VBEST sample estimates to other methods of accessing Twitter
through the Search API on the distribution of total Tweets as well as COVID-19
keyword incidence and frequency and find that the VBEST samples produce
consistent and relatively low levels of overall bias compared to common methods of
access through the Search API across many experimental conditions.

Keywords: Twitter; Probability sampling; Tweets; Social media; COVID-19; Big data;
Survey research

1 Introduction
As survey response rates continue to decline at a time when survey costs are rising, sur-
vey researchers and social scientists alike are looking more broadly for alternative ways to
measure public opinion. Social Media Platforms and the data they produce is capturing
the attention of many researchers as one potential alternative not only for sample recruit-
ment (Sibona and Walczac [22], Schneider and Harknett [20] and Burke-Garcia et al. [2])
but also for substantive estimates about the economy or health, among others (see Con-
rad et al. [5] and Suzer-Gurtekin et al. [23], for example). There is specific interest in the
Twitter platform as it represents one of the largest such platforms that is freely accessi-
ble publically. But to properly mine these data for their full potential within the survey
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and social sciences, more work is needed to better understand how to systematically and
consistently access these data efficiently.

Currently, there are four broad avenues researchers can use to directly access Tweets
from Twitter using Application Programming Interfaces (API) including the Streaming
API, the Search API, the Decahose API, and the Firehose API. Usually each of these APIs
are used to access Twitter at the Tweet level (Hsieh and Murphy [12]), but access to users
can also be granted with varying degrees using these APIs. There are also marked differ-
ences in how these APIs capture Tweets, how many Tweets are captured, and the costs of
using them. The Streaming and Search APIs both offer free access to Twitter, albeit rate
limited (i.e., imposed limits on the quantity of Tweets that can be retrieved, notably at
most 18,000 Tweets (in increments up to 100) every 15 minutes, or 1.728 million Tweets
per day1). The Streaming API accesses about a 1% sample of Tweets prospectively in real
time, whereas the Search API gathers Tweets retrospectively within a 7-to-10-day time
frame. In contrast, the Decahose API offers a 10% sample from the full Twitter corpus
(going back through the history of Twitter), whereas the Firehose API offers access to the
full Twitter corpus. However, the Decahose and Firehose APIs have costs associated with
their use that can vary based on project needs and timelines and Firehose access is lim-
ited to a small set of vendors. Therefore, researchers must typically address the tradeoff
between coverage and cost when accessing the Twitter APIs.

Recent research has compared the performance of samples gathered from each of these
APIs with a focus on keywords, users, content, and Tweet volume (Tromble et al. [26],
Morstatter et al. [18], Wang et al. [27], Pfeffer et al. [19], Kim et al. [13, 14]). Wang et al. [27]
verified that the Streaming API and Decahose produces samples that are approximately 1%
and 10% of the entire Twitter corpus, but Pfeffer et al. [19] provided cautionary evidence
that samples from these APIs may not be random samples and may over-represent certain
users or groups. Kim et al. [14] reported differences across the Streaming and Search APIs
noting that the Streaming API captured more irrelevant Tweets over their field period and
noted impacts of rate limits on the completeness of samples retrieved using the Search
API, which was also a finding in the earlier work of Tromble et al. [26].

While Twitter users, or the content they post, within a given city or country may not
represent all residents of that geographic area, Twitter remains one of the primary alter-
nate sources of data used to study and understand public opinion and societal outcomes
of interest. Differences between users who are on Twitter and those who are not creates
the potential for coverage error as outlined by Hsieh and Murphy [12]. Some researchers
have explored methods for adjusting Twitter samples obtained from the APIs for possible
coverage errors using weighting adjustments (Wang et al. [28]) assuming that the target
population of interest is all residents of a city or country, for example. But if the underlying
samples obtained from the Twitter APIs are not random samples, such adjustments may
not be as efficient at reducing such coverage error as they could have been with random
samples.

It is also important to note that not all studies define target populations in the same
way. For example, Gerlitz and Reider [8] focused on understanding the so called medium-
specific behavior of Twitter users such as hashtagging and retweeting. So having a method

1https://developer.twitter.com/en/docs/twitter-api/v1/rate-limits
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for generating random samples of Twitter users would help efficiently, and affordably, an-
swer questions about the target population of all such Twitter users. Schober et al. [21]
focused on ways to maximize so called “topic coverage” where the full corpus of Twitter
content represents the target population and methods for generating random samples of
the tweets themselves could prove to be an efficient, cost-effective means of representing
various topics or concepts within the full Twitter corpus.

Recently, Kim et al. [13, p. 2] commented that “given the different nature of social me-
dia content, it is imperative that scholars not only evaluate existing sampling methods but
also look for alternative approach[es] for sampling procedures of social media content.”
Indeed, as Twitter content continues to increase in size and rate limits to accessing an
ever-increasing corpus are imposed, the need for intelligent sampling methods for effi-
ciently accessing this content in representative ways is fundamental to data quality and
the research enterprise. To date there have been a small number of studies that have de-
veloped or adapted methods to generate random samples from Twitter. These studies can
be grouped by whether the method focuses on the user, the tweets or a combination of the
two. The bulk of the work exploring sampling from Twitter has focused on creating sam-
ples of users or a combination of users and tweets. For example, Berzofsky et al. [1] devel-
oped a method for creating probability-based samples of U.S. Twitter users that leverage
the underlying format of User IDs and inferred stratum membership from selected users
based on information contained in associated Tweets of the selected users. This approach
leveraged sequential User IDs for Twitter in a similar way as Zhu et al. [30] leveraged con-
tent IDs to create random digit search samples for digital blog content akin to Random
Digit Dialing samples of telephone numbers.

Thirumuruganathan et al. [25] also developed a sampling algorithm that is user-
focused based on random walks that are informed by twitter user relationships (e.g.
follow/follower) called Microblog-Analyzer. This algorithm generates samples based on
Twitter user timelines to estimate aggregate measures for both user and tweet related out-
comes (e.g. number of users who posted tweets including “Masks” or the overall frequency
of tweets that contain “Vaccine”). This approach aimed to generate random samples that
could optimize estimation within platforms, such as Twitter, that have constraints on the
number of queries a user can request within a given time frame. One aspect of this al-
gorithm that is worth mentioning is the reliance on specific keywords identified a priori
to sampling to identify the users to be included potentially within the sample. Thus, esti-
mates about the number of tweets containing the keyword “Covid” would be derived from
a sample that relied on specifying the keyword “Covid” at the time the Microblog-Analyzer
was launched. If you are concerned about the actual prevalence of “Covid” on Twitter but
don’t include the keyword “Rona” this approach may actually underestimate the overall
prevelance as younger people tend to refer to Covid as “Rona.” Such an error has been
referred to as “specification error” in the Total Twitter Error framework as described by
Hsieh and Murphy [12] and is likely a real risk for any sampling method that relies specif-
ically on the identification of keywords for creating samples from Twitter. Moreover, we
note that while this method can produce fairly accurate measures of averages and counts
for any specific keyword, its reliance on keyword specification at the time samples are
generated means that separate samples and additional queries are required if you have
multiple outcomes of interest. In this way there is a tradeoff in accuracy and efficiency
that virtually every sampling method attempts to balance.
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Hino and Fahey [11] used a combination approach to generate a nationally representa-
tive sample of Twitter data for Japan. Specifically, these researchers first randomly selected
a set of User IDs and proceeded to gather all available Tweets from selected users using
the free Search API. The researchers found that their approach yielded more Twitter con-
tent than what would have been retrieved using the Streaming API and found reasonable
concordance between their accumulated sample and the Firehose on a number of metrics
including topic content and volume. Hino and Fahey [11] argued that their approach fo-
cused on gathering a representative sample from the content perspective. The researchers
also noted that loss of information is possible since the maximum number of Tweets that
can be gathered from a single user is 3200 resulting in possible truncation of content from
very active users. Suzer-Gurtekin et al. [23] also used a combination approach to gener-
ate estimates of health and social well-being that first randomly selected Tweets archived
by the Decahose for a given day and second, retrieved all tweets from those users who
were identified from the selected tweets in the first step. The volume of tweets for each
“represented” user were used as a weighting adjustment for generating estimates from the
sample of tweets. While their approach provides a weighting adjustment to create more
stable estimates that can represent the full Twitter corpus on a given day, it also requires
access to the Decahose which may be cost prohibitive for some researchers.

In this paper we propose and evaluate a novel method for randomly sampling Tweets
that is Tweet focused and keyword agnostic and leverages the relationship between time
and Tweet IDs. To our knowledge this approach is one of the first methods that focuses
on Tweets and utilizes the free version of the Twitter Search API (henceforth TSAPI) in
an optimal way that respects rate limits. This method provides a representative random
sample of Tweets that can efficiently represent the full corpus of Tweets that are available
and be used to make content related estimates such as the frequency or the total volume
of tweets containing a keyword. This method produces one random sample of Tweets that
can be used to estimate frequency or totals for any number of keywords of interest. We
test our method over several different days within specific Metropolitan Statistical areas
to show its behavior temporally and geospatially but the method can easily scale to larger
intervals of time or levels of geography as well. We find that our new method has generally
lower biases than current methods available from the Twitter Search API. In the remainder
of the paper we will describe the algorithm in more detail in Sect. 2 and outline the details
of our experimental design and evaluation metrics in Sect. 3. We present the results of our
field test in Sect. 4 and discuss future work and limitations and other considerations for
sampling Twitter in Sect. 5.

2 The VBEST algorithm for sampling tweets
We sought to leverage the theoretical framework of probability sampling within the con-
text of Twitter to generate samples that can represent the full corpus of tweets that are
available within a given time or area. Unlike the user-based methods that require sepa-
rate samples for estimating statistics about each keyword, our new method generates one
representative sample that can be used to create estimates of frequency and incidence for
any number of keywords of interest. The Velocity Based Estimates for Sampling Tweets
(VBEST) algorithm leverages an underlying relationship between Tweet IDs and time to
generate an estimate of the overall distribution of Tweets for a specified time period and
general location and consists of a four-step process including:
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(1) initially sampling a small collection of Tweets across a uniform sample of time, (2) an
estimation step to model twitter velocities across the entire day, (3) a third step that cre-
ates a collection of Primary Sampling Units (PSUs) comprised of time intervals with equal
Tweet volume, based on the velocities calculated in step 2, and terminates with (4) a fourth
and final step that selects a probability-based sample of the these PSUs and gathers corre-
sponding final sample queries from Twitter to obtain the VBEST final sample of Tweets.

Alternatively, if we did not include steps 2–4 and simply sampled all Tweets uniformly
across time, it would instead result in a biased sample. That is, Twitter activity fluctuates
through the day so that some periods of time are less active than others (citation). Uni-
form sampling over time would be biased to collecting more Tweets during periods of low
activity than high, hence not all Tweets would have an equal probability of selection and
the resulting sample would not be representative of all activity. The addition of Steps 2–4
directly address this source of bias by leveraging a sampling framework to which we can
apply probability based methods for selecting more representative and less biased samples
of Tweets. We discuss each of the steps in the VBEST algorithm below.

VBEST Step 1a: time point selection In order to generate estimates of twitter volume
from a given area and date, we first take a systematic sample of 48 time points by selecting
a random time point within the last 30 minutes of the day (from 11:30 to 11:59:999 pm
of the desired day) and then sequentially subtract 30 minutes to form a sequence of 48
systematically selected time points.2 We begin at the end of the day (represented by the
inclusive upper bound of 86,399.999 seconds as Twitter time stamps are recorded up to the
millisecond) and work our way towards the start of the day (represented as the inclusive
lower bound of 0 seconds) to be consistent with the mechanism Twitter uses to store and
process queries for Tweets. Specifically, as illustrated in Fig. 1, Twitter stores Tweets from a
given day as a corpus that stacks Tweets from most recent downward so the last Tweet of a
given day (whose time posting in seconds would be up to and including 86,399.9999) would
be on the top of the corpus stack, while the first Tweet of the day occurring somewhere
within the 0th second of the day onward (i.e. from 12:00 midnight or later) would be on
the bottom of the corpus stack.

VBEST Step 1b: initial tweet sample From each of the randomly selected time points
identified in Step 1a across a given day of interest, we submit two queries3 to the TSAPI,
where each query returns a maximum of 100 Tweets with a posting time no later than a
given time point. In order to ensure that the Tweets returned by each query are posted to
Twitter no later than the respective time point, we converted the time point to a synthetic
Tweet ID using the 64-bit representation of Tweet IDs that express time in milliseconds
as described in more detail by Pfeffer et al. [19].4 In particular, Pfeffer et al. (2018) doc-
ument that the first 42 bits of a 64-bit representation of a Tweet ID represent a date and

2Based on our pilot testing 30 minute time intervals produced reasonable estimates of the full Twitter distribution and
balanced our need to estimate this distribution while restricting the total number of queries for this “overhead” step.
3We use two queries per time point, instead of one, to increase the volume of Tweets collected to better estimate Tweet
velocity in Step 2a below. In our pilot testing we explored using both one and two queries and found using two yielded
more accurate estimates.
4See also: https://github.com/twitter-archive/snowflake/blob/snowflake-2010/src/main/scala/com/twitter/service/snow
flake/IdWorker.scala for more information.

https://github.com/twitter-archive/snowflake/blob/snowflake-2010/src/main/scala/com/twitter/service/snowflake/IdWorker.scala
https://github.com/twitter-archive/snowflake/blob/snowflake-2010/src/main/scala/com/twitter/service/snowflake/IdWorker.scala
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Figure 1 Visual depiction of the first several steps of the VBEST algorithm.: Illustration of the initial time point
selection (Step 1a) as well as querying Twitter at selected time points (Step 1b) and computing Tweet
Velocities (Step 2a)

timestamp down to the milliseconds. The remaining 22 bits represent Twitter adminis-
trative information that is not related to the timestamp. Following this relationship, we
create synthetic Tweet IDs5 which represent the last Tweet that theoretically could have
been sent before each time point, down to the millisecond. This is an important step since
these synthetic Tweet IDs now index different locations in the stack of Tweets illustrated in
Fig. 1, enabling us to query for the Tweets directly below that index location representing
those Tweets sent immediately before the corresponding time point.

The operationalization of this step is similar to the approach of Zhu et al. [30] who lever-
aged a simple relationship between blog posts and blog ids. While the density of actual
tweets to the total number of possible Tweet IDs is likely too low to apply their method
here, we are making use of the chronological nature of Tweet IDs to time and the fact that
queries made to the TSAPI can be bounded by Tweet IDs which essentially allows us to
bound the query down to the nano-second. This step is also similar in spirit to the work of
Dalvi et al. [6] who also address the problem of creating estimates from an unknown data
set (like our full Twitter corpus) by randomly querying an API. In their work, they focus
on data with a geospatial component and leverage that spatial information to determine
where to query the API. We take a similar approach using temporal information instead of
geospatial information. Interestingly, Dalvi et al. [6] propose that understanding the den-
sity of data points in the unknown data set affords more accurate population estimates,
for which they rely on external information (e.g., density estimates of where people live
geospatially). In the next step of our method, we use the Tweets collected in this step to
create analogous density estimates (Tweet volumes) from the API itself without requiring
external information which will be leveraged in Step 3.

5We note that the synthetic Tweet IDs are a byproduct of our engineered process to create correspondence between time
points and twitter content. They have the same format as Tweet IDs but based on our process cannot equal the value of
any real Tweet ID since we append a constant string of 1’s in the bit locations following the time stamps.
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VBEST Step 2a: computation of tweet velocities from initial Twitter sample The back-
bone of our sampling approach relies on our ability to estimate the unknown distribution
of Tweet volume in a day. Estimating this unknown distribution, in the context of Twit-
ter, proves to be challenging due to the imposed rate limits that significantly reduce the
number of samples one can take. We introduce a volume estimator which is built around
the imposed rate limitations, denoted as Tweet Velocity. When a query is submitted to the
TSAPI, a collection of up to 100 Tweets is returned. The Tweet Velocity is simply the num-
ber of Tweets returned from a single query divided by the time spanned between the first
and the last Tweets returned. This calculation results in a measure of Tweets per second
for a single query, which gives us insight into the slope of the underlying volume distribu-
tion at a given time point. Combining this estimation method with our ability to sample
Tweets at any given time in a day (as we will discuss), we can then estimate the underlying
distribution from an entire day using the least resources possible.

Using the returned Tweets from the queries for each of the respective time points in the
initial sample, we estimate Tweet velocity using the collection of all Tweets obtained from
the two queries we submitted to the TSAPI for each of the initial time points (e.g. the total
number of Tweets gathered from the two queries made at a given time point divided by the
time spanned to collect Tweets from both queries). The initial sample of time points, the
corresponding Twitter queries, and the calculation of the velocity estimates is illustrated
in the right side of Fig. 1.

VBEST Step 2b: estimating the Twitter velocity curve Using the 48 velocity estimates
computed in Step 2a, a daily Twitter Velocity Curve is estimated by applying locally es-
timated scatterplot smoothing (LOESS) models using 2nd degree polynomials (Cleveland
and Devlin [4], Cleveland [3]). The span parameter for the LOESS model was tuned across
a grid ranging from 0.1 to 0.6 using 3-fold cross validation. We selected 3-fold cross val-
idation as the total number of data points used in these models was a factor of 3 (e.g. 48
total points). An example of a Twitter Velocity Curve computed from the Tweet velocities
is shown in Fig. 2.

The critical part of this step in the VBEST algorithm involves the use of some type
of curve estimation or smoothing method to facilitate estimation of the Twitter Velocity
curve from the velocity measures derived in Step 2a. We chose LOESS as our smoothing
method due to our familiarity with the method and its popularity in the R programming
language (which we used for implementing this step of the method). In our pre-testing, we
also found that LOESS had good performance in estimating the true Twitter volumes with
an overall error that was no larger than 3 percentage points. At the same time, other ap-
proaches to smoothing functions such as the more recent wavelet transform and Fourier
transform methods could also be used in this step, and a comparison of the quality of the
velocity estimates achieved by each is an interesting direction for future work to possibly
further improve our method.6

VBEST Step 3: create primary sampling units (tweet PSUs) The area under the estimated
Twitter Velocity Curve represents our best estimate of total Twitter volume for any range

6Based on prior literature we would hypothesize that the LOESS method would be no worse than Wavelets for estimating
the Twitter Velocity Curve (see Moosavi et al. [17] or Tate et al. [24], for example).
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Figure 2 Plot of Tweet velocities and estimates the Twitter Velocity Curve (Step 2b), as well as creation of
Tweet PSUs from estimated Twitter Velocity Curve (Step 3)

of time during the given day of interest. Because the LOESS curve does not have a func-
tional form, we relied on numerical estimation methods to compute the integral of the
estimated Twitter velocity curve. Specifically using the best fitting LOESS model (i.e. with
the optimal span value), we estimated the total area under the Twitter velocity curve for a
sequence of time points between 0 and 86,400 seconds in increments of 0.01 seconds using
the Trapezoidal Rule with 2 subintervals per time point. With these area computations,
we then create a sampling frame of primary sampling units that are defined as consecu-
tive time segments that we estimate will contain approximately 100 consecutive Tweets,
as illustrated in Fig. 2(B). We compute these segments consecutively from the end of the
day down to the beginning of the day and will refer to them as Tweet PSUs. We set 100
Tweets as the expected target for these intervals since the TSAPI accesses Tweets using
queries that return up to 100 Tweets per query.

To minimize the greediness inherent in this sequential approach and thus to minimize
the cases where the final PSU (with final endpoint of 0 seconds) has considerably fewer
than 100 Tweets expected, we devise a tolerance check prior to PSU construction. Specif-
ically, denoting the estimated total daily Twitter volume derived in Step 2b as ETV, we
determine the PSU target size to be the integer between 96 and 104 that evenly divides
the ETV. If the ETV is not a factor of one of these integers, then the PSU target size is
taken to be the integer in this range with the largest remainder in the quotient of ETV
and itself. The total time covered by each Tweet PSU can vary depending on expected
Twitter volume (due to the varying velocities during the day: slower velocities result in
longer time spans, whereas higher velocities result in shorter time spans), but each Tweet
PSU has approximately the same expected number of Tweets under the Twitter Velocity
Curve.
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VBEST Step 4: final sample of tweets With a sampling frame of Tweet PSUs constructed
in Step 3, several sampling approaches can be taken to select a probability-based sam-
ple from this frame. The Tweet PSUs can be viewed as clusters of approximately the
same number of Tweets. Because Tweets occur throughout the day, the default sam-
pling method would be systematic random samples of Tweet PSUs to ensure Tweets from
throughout the day can be represented (Lohr [15]). Regardless of the specific sampling
method (e.g. systematic sample or simple random sample of Tweet PSUs) there is a con-
version step between Tweet PSU selection and the corresponding query that is issued to
Twitter via the Search API. Tweet PSUs represent time segments with a lower and up-
per endpoint expressed in seconds. The upper endpoint for each selected Tweet PSU is
converted into a synthetic Tweet ID (similar to Step 1a) that is then used as the max_id
parameter in a Search API query to extract the Tweets within the selected Tweet PSU’s
time span. Finally, the queries corresponding to the sampled PSUs are sent to the TSAPI,
and the returned Tweets together represent the VBEST random sample of Tweets. More
information about the specific content and syntax of queries is provided in Table A1.1 in
Appendix 1 and discussed in Sect. 3.2. The VBEST algorithm has been implemented using
a combination of R and Python code which is available through the following repository:
https://github.com/bpblakely/VBEST-Algorithm.

3 Comparing methods for generating Twitter samples
To evaluate the quality of samples collected by the VBEST sampling algorithm, we con-
ducted a multifactorial field experiment that varied the sampling method and total num-
ber of queries (determining sample size) within select Metropolitan Statistical Area re-
gions. Replicates for the experiment were generated by fielding independent samples for
each combination of method and size within each of the MSAs across multiple days in our
field period. Samples will be evaluated using three specific metrics aimed at estimating:
(1) the incidence rate of COVID-19 related topics, and (2) the frequency of Tweets from
COVID-19 related topics and (3) total volume of Tweets in each of the MSA’s. We will
compare these sample estimates to values we obtain from our Twitter Firehose Vendor
(TFV), Meltwater who used advanced filtering and query parameters to access incidence,
frequency and total volume of Tweets from each of our 5 MSAs using the same set of
principal cities and keywords we will discuss in detail in this section. We note that in or-
der to create as comparable measures as possible to those obtained from our TFV we had
to establish some post-processing steps for our samples of Tweets since the TSAPI did not
have the same query parameters that were available for the Firehose API. We constructed
these post-processing filters, also described in this section, using the same logic as that
used in the Firehose API queries.

3.1 Experimental factors
(1) Metropolitan Statistical Area Regions: We included five medium to large sized

MSAs as our blocking factor including: Pittsburgh, Baltimore, Phoenix, Atlanta and
Chicago. To retrieve samples using the Twitter API, we specified the latitude and
longitude of the geographic center of the major primary city within each of the
MSAs as determined by a query to Google Maps. We also determined a sufficiently
large radius so that the circle centered at the primary city would encompass all
principal cities in a given MSA region. A complete list of each of the 5 MSAs along

https://github.com/bpblakely/VBEST-Algorithm
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Table 1 Listing of the 5 MSAs and Principal Cities, geo-coordinates and search radius specified for
each of the Twitter queries for our experiment

Metropolitan statistical area
(MSA)

Center:
Lat, Long

Radius Principal cities

Chicago-Naperville-Elgin,
Illinois–Indiana–Wisconsin

41.905170,
–87.624664

50 miles Bolingbrook, IL; Chicago, IL; Des Plaines, IL;
Elgin, IL; Evanston, IL; Hoffman Estates, IL;
Naperville, IL; Schaumburg, IL; Skokie, IL;
Gary, IN; Kenosha, WI

Atlanta–Alpharetta–Sandy
Springs, Georgia

33.6937280,
–84.3999113

40 miles Alpharetta, Atlanta, Marietta, Sandy
Springs, GA

Phoenix–Mesa–Chandler,
Arizona

33.448400,
–112.074000

53 miles Casa Grande, Chandler, Mesa, Phoenix,
Scottsdale, Tempe, AZ

Baltimore–Columbia–Towson,
Maryland

39.297002,
–76.676317

16 miles Baltimore, Columbia, Towson, MD

Pittsburgh, Pennsylvania 40.437202,
–79.982197

28 miles Pittsburgh, PA

with the principal cities, geo-coordinates used, and size of the specified radius are
provided in Table 1. An example of the specification of an MSA in terms of a circular
region used in the Twitter queries is provided for Atlanta in Appendix Fig. A1.1. The
primary interest in our experiment is to understand broad applicability of these new
sampling methods across local areas of varying sizes, so while we do not have
particular interest in these specific regions, we chose them purposely based on their
varying sizes and geographic shapes. In our analyses we treat them as fixed effects as
they represent typical regions with varying sizes over which comparisons may be
desired. We refer to the MSA factor as region in what follows.

(2) Twitter Sampling/Gathering Method: There are three options for using the TSAPI to
gather Tweets including the so-called Popular, Mixed (default), and Recent
methods. Because these methods are standard in the Twitter API we include them
for comparison with three other approaches that include (1) Uniform sampling,
which represents a systematic sample of equally spaced time points throughout the
day from which to query Twitter (i.e., a systematic sample uninformed by Tweet
velocities); (2) the VBEST-SYS systematic random sample proposed in Sect. 2, and
(3) the VBEST-SRS simple random sample of Tweet PSUs that are constructed as
part of the VBEST algorithm. The uniform, VBEST-SYS and VBEST-SRS samples
make use of the recent search type option along with a max_id parameter that uses
a synthetic Tweet id to constrain the time interval over which Tweets are requested.
A brief description of each of the 6 sampling/gathering methods we are including in
our experiment for the Method factor is provided in Table 2.

(3) Sample Size: To understand the impact of total queries (e.g. sample size) on
sampling performance we varied the number of queries used for each method as a
second experimental factor with values of 720, 540 or 360.7 For the first four
methods described in Table 2, the total number of queries for generating samples of
Tweets was exactly 720, 540 and 360. The corresponding sample sizes for both the
VBEST-SYS and VBEST-SRS methods were 624, 444 and 264 queries, respectively,
in order to reserve an overhead of 96 queries (e.g. 2 queries at each of the 48 initial

7We note that current TSAPI terms of use limit the number of queries to be 180 per 15 minute time period. In order to
efficiently maximize the API without pause in data collection time, we considered values that were factors of 180.
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Table 2 Description of the 6 different methods we used in our experiment. The first three methods
are possible settings for the TSAPI and the last three are new variants we are introducing and
comparing in our experiment

Tweet access method Description

1. Popular One of three methods available for the result_type parameter in the TSAPI
that returns the most popular results, as determined by Twitter, in the query.

2. Mixed The current default method for the result_type parameter of the TSAPI:
returns both “popular” and “recent” Tweets as part of the query. Popular Tweets are
determined by Twitter.

3. Recent Another option for the result_type parameter of the TSAPI that can be
selected by the user in which the most recent Tweets are returned. If there are
more than 100 Tweets that occurred most recently then additional queries can be
submitted in sequence to obtain collections of Tweets that follow chronologically
from 11:59:59:999 pm of a given day back to midnight at the beginning of that day
as described in https://developer.twitter.com/en/docs/twitter-api/v1/Tweets/
timelines/guides/working-with-timelines.

4. Uniform A series of evenly spaced time points from a given day are determined a single
query is submitted for each of the selected time points using the TSAPI with
result_type parameter set to “recent”. For this method we randomly select a
starting time point within a sampling interval determined by the number of
queries desired and then determine subsequent, evenly spaced points. The
identified time points are then converted to Tweet IDs and used as the max_id
parameters in the TSAPI.

5. VBEST-SYS A systematic random sample (without replacement, circular) is taken of a desired
size from the universe of Tweet PSUs identified from the VBEST algorithm. The
right-most endpoint of each of the Tweet PSU intervals is then used in a TSAPI
query with result_type set to “recent”. One query is submitted per selected
Tweet PSU.

6. VBEST-SRS A simple random sample (without replacement) is taken of a desired size from the
sampling frame of Tweet PSUs constructed from the VBEST algorithm. The
right-most endpoint of each of the Tweet PSU intervals is then used in a TSAPI
query with result_type set to “recent”. One query is submitted per selected
Tweet PSU.

Note: For more information on Twitter Search API search options please refer to Twitter documentation available at:
https://developer.twitter.com/en/docs/twitter-api/v1/Tweets/search/api-reference/get-search-Tweets.

time points) to estimate the Twitter Velocity Curve and resulting Tweet PSUs. Thus
when comparing methods the net total number of queries is equivalent and sample
sizes will be referred to as either 720, 540 or 360, henceforth. Neither the popular
nor mixed methods had fixed sample sizes associated with them.8

(4) Day: The primary time point for sampling was a given day since many studies
looking to compare methods for generating samples of online content have used day
as the unit of analysis (Kim et al. [13]). However, the distribution of Tweets can
fluctuate from one day to another (Kim et al. [13]), so rather than selecting one or
two days in the week and then selecting weekend days as is done for so called
“constructed week samples”, we instead generated independent samples for each
region, method and size combination for each of 38 consecutive days beginning on
November 24, 2020 through December 31, 2020.9

8In our pilot studies neither the popular nor mixed methods required more than 200 queries to gather all the Tweets from
queries issued with these sample types. And in our actual field experiment the total number of queries required to capture
Tweets from either of these methods was fewer than 200 across any of the regions on any of the days in our experiment.
9In this case, Day serves as a replication factor for assessing the quality of sampling methods over a wider assessment period
that can take into account natural fluctuations in the Twitter distribution within each of the regions and is thus considered
a random effect in our analyses.

https://developer.twitter.com/en/docs/twitter-api/v1/Tweets/timelines/guides/working-with-timelines
https://developer.twitter.com/en/docs/twitter-api/v1/Tweets/timelines/guides/working-with-timelines
https://developer.twitter.com/en/docs/twitter-api/v1/Tweets/search/api-reference/get-search-Tweets
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3.2 Data collection and processing
3.2.1 Twitter queries
Tweets were gathered for each of the methods within each of the MSA regions across
each of the days in our field period based on varying sizes of queries. Each corresponding
Twitter query was issued to the TSAPI based on a set of parameters that varied according
to the sampling method, region and day. The specific parameters we used and values of
them are provided in Table A1.1 in Appendix 1. All calls to the TSAPI (version 1.0) were
made via the Python package Tweepy. Because the geo-location of a reTweet is assigned
the value from the original Tweet and not the location of the user who reTweets and be-
cause we wanted to make comparisons of sample performance within each of the MSAs
relative to benchmarks that were geographically specific, we excluded reTweets. The key-
word setting used to exclude reTweets by default included all original Tweets without any
additional exclusions. To allow for queries made at specific time points (as is the case
for Uniform, VBEST and SRS methods) we made use of the max_id parameter to re-
strict gathered Tweets to be within respective time intervals as previously described. The
default number of Tweets returned from any particular query is 10, but to be consistent
across all sampling methods, we fixed the query size to the maximum possible value of 100
for every query. More specific information about the TSAPI parameters can be found at:
https://developer.twitter.com/en/docs/twitter-api/v1/Tweets/search/api-reference/get-
search-Tweets.

3.2.2 Geo-filtering cities within MSA queries
Tweets gathered across a given size of queries to the TSAPI for a given region, using a
specific method on a given day, were further filtered using a geographic filter (i.e. geo-
filtered) to identify all sampled/gathered Tweets that had a user location specified as one
of the principal cities within the MSA listed in Table 1. This step was necessary to en-
sure geographic comparability between samples and information sourced from our Twit-
ter Firehose vendor (TFV), Meltwater, who accessed Tweets directly based on the listing
of principal cities given in Table 1. We note that user location fields may contain abbre-
viations and misspellings of a given city, and unlike the Firehose API, user location infor-
mation is not translated into a city or place_id code. We note that the Firehose API
has more parameter choices for geo-tag filtering at the time a query is issued, and they are
based on geo-ids that take into account city name categorization. In order to maximize the
sensitivity of our geo-filter, we aggregated one month of Twitter data for each region prior
to our field period and identified the most frequent strings included in the location fields.
This information was used to create a larger list of alternate spellings of the principal city
names to use in our geo-filters. This approach allowed us to incorporate common abbre-
viations such as “phx” and misspellings like “Pheonix” for Phoenix, Arizona, for example.
It is important to note that both the geo-filters we applied as well as those applied by our
TFV made use of user location metadata and not Tweet geo-tagged metadata.

3.2.3 Filtering tweets based on keywords
In order to compare the samples retrieved from each of the methods to so called popu-
lation benchmarks that we obtained via our TFV, Meltwater, we first needed to identify
a common set of outcomes, akin to survey items (Suzer-Gurtekin et al. [23]). At the time
our study was envisioned, the COVID-19 pandemic was a salient topic in the news and

https://developer.twitter.com/en/docs/twitter-api/v1/Tweets/search/api-reference/get-search-Tweets
https://developer.twitter.com/en/docs/twitter-api/v1/Tweets/search/api-reference/get-search-Tweets
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in the life of our country. We identified eight COVID-19 related topics including: Covid,
Social Distancing, Working, Masks, Sanitizing, General Virus, Symptoms and Treatment.
For each of these topics we identified a set of specific keywords to use in our coding of
Tweets and these are provided in Table A1.2 in Appendix 1. By using a combination of
standard string matching, star and near operators, we were able to construct a string filter
that determined whether any of our sampled Tweets belonged to any of our eight Topics.
The filtering was implemented in Python and matched the keyword filtering parameters
used by our TFV. The filtering assigned a 1 or 0 per Topic to each sampled Tweet based on
whether the Tweet contained at least one keyword within that Topic. We coded Tweets
at the Topic level since the incidence of any one keyword could be quite small across the
regions and days in our field period.

3.3 Evaluation metrics
Incidence rates or sample proportions are common parameters of interest in many sample
surveys. We evaluate how well the estimated proportion of Tweets (referred to as “inci-
dence”) from each of our eight topics of interest compared to the values obtained from
our TFV across each combination of region, method, and sample size. Here we define in-
cidence for any of the eight topics as the proportion of geo-filtered Tweets from a given
sample that contain Tweets with any of the corresponding keywords for that specific Topic.

Because we want to assess the overall performance of sampling methods and sizes, we
focus on metrics that offer a summary across the various topics of interest. Such an ap-
proach has been taken by Yeager et al. [29] and more recently by Dutwin and Buskirk [7] to
compare quality of non-probability samples to those of probability samples where many
different outcomes are assessed by virtue of an overall summary statistic. A detailed de-
scription of each of the metrics along with formulae illustrating how they are computed
is provided in Table A1.3 in Appendix 1. As in these prior studies, we use the Mean Per-
cent Absolute Relative Bias for Incidence (MPRAB(I)) for quantifying the absolute biases
across all eight topics as a summary measure of sample performance. This metric is the
arithmetic mean of the eight Percent Relative Absolute Bias (PRAB) incidence measures
computed for each topic for daily samples from a combination of region, method, and
sample size.

Incidence rates are not always of interest for researchers who turn to Twitter data for
mining tasks such as event detection, Tweet content summarization, or sentiment analy-
ses. For these and related tasks, estimates of term or topic frequency are essential (Wang et
al. [27]). To this end, we also assess topic frequency for each of our eight topics. Specifically,
as detailed in Table A1.3 of Appendix 1, we use the Mean Percent Relative Absolute Bias
for Topic Frequencies (MPRAB(F)) which represents the percent relative absolute biases
of the frequency estimates daily for a combination of region, method and size, averaged
across the eight topics.10 We note that the computation of frequencies for the VBEST-SRS
and VBEST-SYS measures leverage the inherent cluster sampling design and sampling
frame information to create an average total per sampled Tweet PSU multiplied by the
total “frame size” (e.g. total number of created Tweet PSUs). But neither the Uniform nor
Recent sampling methods have an associated “sampling frame” nor do they provide an

10Note that when we aggregate the MPRAB(I), MPRAB(F) metrics over all days of the experiment for a given combination
of region, method and size we will refer to the measure as the overall average metric value.
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estimate of the number of Tweets in a given region for a given day. So, we use a velocity-
based projection measure akin to that used for VBEST-SRS and VBEST-SYS methods that
is consistent with the information available for those sampling methods.11 While the topic
frequency estimators differ across the two sets of methods (e.g. VBEST-SRS/VBEST-SYS
versus Uniform/Recent), they are the most appropriate and commonly used estimators for
the sampling design/collection method, and use all available information that is present
within the sample and the design.

The metrics for evaluating incidence and frequencies could be applied to any particular
topic or set of keywords. In our application we evaluated them specifically for the COVID-
19 topics, but these topics may not be of primary interest to other researchers seeking to
sample Tweets from Twitter. To this end we have included a metric that evaluates how
well samples from each method and size estimate the total number of Tweets within the
principal cities of an MSA region: the percent relative absolute bias (PRAB(N)), as de-
scribed in Appendix 3. Similar to the frequency estimates already described, the method
for estimating this topic-agnostic total is based on the VBEST sampling design for VBEST-
SRS and VBEST-SYS methods and the velocity-based method for both the Uniform and
Recent methods, regardless of sample size.12

3.4 Analytic approach
Our primary analyses will focus on three key metrics including: MPRAB(I), MPRAB(F)
and PRAB(N). For each metric we explore the relationship between it and region, method,
and size using a multifactor analysis of variance model that included region, method and
size as fixed effects along with Day as a random effect. The full model for each primary
metric included main effects as well as two and three-factor interactions. We make com-
parisons of methods, sizes and regions as appropriate (e.g. either as main effects or via
interactions that are significant) using Tukey’s Honest Significant Difference (HSD) post-
hoc tests where the overall, experiment-wise Type I error rate was constrained to be 0.15
for each respective metric given the overall number of post-hoc comparisons that might
need to be made.

4 Results
In total, we collected over 112 million Tweets across the 5 MSA regions over our 38-day
field period. While we sought an equal number of queries, there was some variability
in the total number of Tweets gathered from each region as shown in Table 3. There is
no guarantee from the TSAPI that the number of requested Tweets will be equal to the
number returned for various technical reasons, and we did see some variations consis-
tent with this limitation. But in general, we collected approximately 22.4 million Tweets
in total per region across the field period. The geo-filter rates within each region var-
ied as we expected since the initial queries had to include a circular geospatial bound-
ary. Some regions (e.g., Atlanta) were better approximated by a circle compared to others

11In particular, for both Uniform and Recent samples, we use the entire set of queries to determine the average rate at
which Tweets within a given topic occur within the total time required to collect all Tweets from the given set of queries.
This gives us an estimate of the velocity for a given topic (i.e., related Tweets per second). We create a total estimate by
multiplying this rate by the total number of seconds in a given day (i.e. 86,400), as detailed in Table A1.3 of Appendix 1.
12We also computed the respective Frequency and Total N metrics for VBEST-SRS and VBEST-SYS samples using the
identical approach to that used for both Recent and Uniform and saw relatively consistent results in our analyses (available
upon request of the first author). Because interest is on using estimates that are most compatible and applicable to the
sampling designs/collection methods we report the analyses with the metrics computed as described here.
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Table 3 Distribution of sampled Tweets, geo-filtered Tweets and Tweets filtered into one our Topics
by MSA and overall for our experiment. These counts represent samples gathered from all methods
and sizes included in our experiment over the 38 days in our field period

Metropolitan statistical area
(MSA)

Total tweets
sampled

Total tweets
geo-filtered
into principal
cities

Total tweets
filtered in to
one of our 8
topics

Tweets from
sample
missing user
geography
metadata

Chicago–Naperville–Elgin,
Illinois–Indiana–Wisconsin

22,442,771 18,525,841 531, 402 178

Atlanta–Alpharetta–Sandy
Springs, Georgia

22,413,310 17,624,013 329, 958 90

Phoenix–Mesa–Chandler,
Arizona

22,607,714 17,191,865 640, 358 60

Baltimore–Columbia–Towson,
Maryland

22,435,821 16,087,382 446, 228 29

Pittsburgh, Pennsylvania 22,424,971 11,099,119 393, 554 309

Grand Total from All MSA
Regions in the Experiment

112,324,587 80,528,220 2, 341, 500 666

(e.g., Baltimore), and still others had a large number of principal cities within the circular
border (e.g., Chicago). Generally, we saw geo-filtering rates for our samples range from
an average of approximately 83% in Chicago, 79% in Atlanta, 71% in Baltimore, 76% in
Phoenix and 50% in Pittsburgh. The geo-filtering rates were consistent across the differ-
ent sizes of queries for the sampling methods where queries were issued (e.g. Recent, Uni-
form, VBEST-SYS and VBEST-SRS). However, we did see some significant differences in
the geo-filtering rates across these four methods, with Uniform usually having the lowest
geo-filtering rate, VBEST-SYS and VBEST-SRS having similar geo-filtering rates and re-
cent having the highest rates. The differences noted were quite small (usually occurring
in the third or fourth decimal place) and given the sizes of samples we were collecting
daily, were not practically significant. Tweets without user location metadata could not be
geo-filtered and the rate at which this information was missing was quite low across our
field period, as illustrated in the last column of Table 3. Generally speaking, most Tweets
we captured had some information included in the user city metadata, but not all was rel-
evant for our geo-filters (e.g. someone in Atlanta indicated their city was CandyCastle).
In this case, our geo-filters would not have included those Tweets since the information
on city location did not match our list of cities. So, it is possible that the geo-filter could
have a higher number of false negatives as it relates to MSA inclusion. However, there is
no indication that these false positive rates would be higher for one sampling method ver-
sus another but may vary overall by MSA depending on the Twitter culture for posting
locations in the local regions.

The overall average values of our three metrics (and their standard deviations) are given
by combination of region, method and size in Table 4. Of particular note is the sheer mag-
nitude of difference between the metrics derived from samples gathered using both the
Mixed and the Popular methods. In nearly all instances, the Popular method returned
very few, if any, geo-filtered Tweets and among those, contained no Tweets associated with
any of our topics. This resulted in constant mean percent relative absolute bias measures
of 100. The Mixed method produced estimates that were slightly more varied in com-
parison to Popular, but overall, estimates of bias for topic incidence, frequency and MSA
Tweet population size from samples using both the Mixed and Popular methods were
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consistently several orders of magnitude higher than any of the other methods. Given the
near ubiquitous poor performance of both the Mixed and Popular methods, we excluded
them in the statistical analyses comparing methods, sizes and regions for each of our three
metrics in order to more readily focus on the other four methods which might be more
appropriate for research inquires of Twitter.

4.1 Topic incidence
The multifactor analysis of variance model fit using daily MPRAB(I) metrics computed
for samples selected from each combination of Region, Method and Size indicated a sig-
nificant three-factor interaction between Method, Size and Region (F(24, 888)) = 2.699;
p-value < 0.0001). The distribution of MPRAB(I) metrics for each Region by Method and
Size are presented in Fig. 3 where we see that, across Method and Region, mean MPRAB(I)
decrease with increasing Size. Within Region, Recent is usually the worst performer with
the exceptions of Size = 720 in Baltimore and Phoenix. Also, VBEST-SRS and VBEST-SYS
have very similar performance and are generally better than Recent and Uniform.

To explore the nature of the interaction between Region, Method and Size, we investi-
gated the differences in MPRAB(I) means for each of the 12 Method-Size combinations (66
pair-wise comparisons) within each Region based on Tukey’s HSD procedure with a type-I
error rate of 0.03 within Region and an overall experiment-wise error rate of 0.15. Specific
results of these pair-wise comparisons are summarized in Table A2.1 in Appendix 2 but
generally, the Recent method produced metrics that were on average larger than those
derived from other samples at each of the sample sizes with few exceptions as noted. The
larger values of MPRAB(I) values were more likely a result of overestimated incidence as
generally these samples had higher rates of positive relative biases (between 45% to 65%)
compared to samples from the other methods (between 30% to 50%) but this rate var-
ied by region and to some extent sample size. For 360 Size, the other methods performed
about the same as Recent with the 540 Size. This indicates a slight gain in efficiency in
terms of sample effort, queries needed, and overall mean absolute relative bias for Uni-
form, VBEST-SRS and VBEST-SYS methods in comparison to Recent. Therefore, apply-
ing a sampling method to the “recent” result_type offered by the TSAPI is beneficial

Figure 3 Boxplots depicting the mean percent relative absolute bias measures for topic incidence (MPRAB(I))
for each of the methods and sample sizes within each of the five MSA regions. Here we note that lower values
are better
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in the representation of the Tweets returned by the API, especially when the number of
available queries is most limited (e.g., when trying to spread the 180 queries allowed by
the TSAPI per 15 minutes across numerous geographic regions).

We also examined the standard deviation of the MPRAB(I) metrics over the 38-day pe-
riod as shown in Table 4 and found that samples gathered using the Recent method had
about 35% higher standard deviation in MPRAB(I) metrics across the field period com-
pared to any of the other methods (all p-values < 0.005).

4.2 Topic frequency
Examining biases in the topic frequencies or totals gives us a way to zoom in on the perfor-
mance of these sampling methods since virtually all our topics have rather low incidence
relative to daily twitter activity over our field period. Since the incidence rates are rather
low and use a rather large denominator (e.g. number of geo-filtered Tweets), small misses
in total numbers of Tweets within associated topics may not change the low incidence rates
by a discernable amount. Since the MPRAB(F) metrics use the total number of Tweets,
the scale is much more sensitive to small misses in associated Tweets. Therefore, evaluat-
ing frequency rather than incidence rates focuses more carefully on the total topic recall
of the sampling methods.

We used a second multifactorial model to examine differences in the Mean Percent Rel-
ative Absolute Biases in Topic frequencies (MPRAB(F)). In this analysis, the total number
of Tweets identified for each topic within each Region and Day were obtained from our
TFV and used as the “gold standard” value in computing the MPRAB(F) metrics described
in Table A1.3 in Appendix 1. The distribution of MPRAB(F) metrics across the 38-day field
period are displayed in Fig. 4 by MSA Region, Method and Size. The multifactorial analysis
of variance model fit to MPRAB(F) metrics indicated a significant three-factor interaction
between Region, Method and Size (F(24, 888) = 19.34; p-value < 0.0001).

We can draw some general conclusions from Fig. 4. The mean MPRAB(F) for Uniform
is about the same regardless of Size and is consistently the worst of the four Methods.

Recent is the next worst and has approximately the same performance regardless of Size
in Chicago and Atlanta but improves with increasing Size in other regions. VBEST-SRS

Figure 4 Boxplot depicting the distribution of daily MPRAB(F) metric values for topic frequencies for each
Method and Size within Region. Here we note that lower values indicate smaller biases
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and VBEST-SYS are very similar and improve with larger Size. Table A2.2 in Appendix 2
presents more specific differences across Method and Size within each of the regions based
on a series of post-hoc comparisons using Tukey’s HSD method with an overall experi-
mentwise error rate of 0.15.

The MPRAB(F) values capture the magnitude of the biases in estimating topic frequen-
cies for our eight topics, but do not offer much insight into the direction of the biases.
We investigated the nature of the biases inherent in combinations of Method and Size
within Region by estimating a series of separate linear regression models that predicted
FT

RD from F̂T
RDMS and kept the intercept fixed at 0. Each regression model used frequency

estimates from the eight topics across the 38-day field period (n = 304 per model) to pre-
dict the actual frequency values obtained from the TFV. Regression slopes larger than 1
would indicate a tendency for estimated frequencies to underestimate the actual frequen-
cies (i.e. negative relative biases) and slopes smaller than 1 would indicate a tendency to
overestimate the actual frequencies (i.e. positive relative biases).

The correlation between the predicted frequencies and actual frequencies for each com-
bination of region, method and size were quite high: ranging from 0.979 to 0.998 and
scatter plots (not shown here) indicated strong consistent linear patterns. The estimated
regression slopes for each combination of region, method and size are plotted in Fig. 5.
From the graph, we can see that topic frequencies tended to be overestimated for the Re-
cent method, regardless of region and sample size (except for the 624/720 sample size for
Phoenix and Baltimore) and underestimated for the other methods. However, the degree
of underestimation was consistently much smaller for both the VBEST-SYS and VBEST-
SRS regardless of region and sample size. So in context, we saw large MPRAB(F) values for
both Uniform and Recent methods, but these were large for different reasons—Uniform
samples had large absolute biases based on a consistent pattern of grossly underestimat-
ing actual topic frequencies, whereas Recent samples tended to consistently produce esti-
mated frequencies that were too large, with few exceptions as already noted. VBEST-SYS

Figure 5 Estimated regression slopes from predicting FTRD from F̂TRDMS by region, method and size. The
regression models each use the frequency estimates from the 8 topics of interest across the 38 days of the
experiment and are fitted separately for each region, method and size combination and fix the intercept at 0
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and VBEST-SRS, on the other hand, had closer estimates to the actual topic frequencies,
more consistently than the other methods.

4.3 MSA tweet population size
We also utilized our geo-filtering indicators from the original Tweet sample to estimate
the total number of Tweets within the MSA Regions for each Method and Size, regard-
less of the topics or content of the Tweets. This estimated total N was compared to in-
formation obtained from our TFV who used the same list of principal cities in order to
determine a comparable “gold standard” estimate within each of the MSA regions on each
day. The multifactorial analysis of variance model fit to the PRAB(N) values indicated
a strong three-factor interaction between Method, Size and Region (F(24, 888) = 23.65;
p-value < 0.0001). The average PRAB(N) metric values across the 38-day field period are
displayed in Fig. 6 by MSA Region, Method and Size.

As can be seen in Fig. 6, there is virtually no difference in PRAB(N) values across levels
of Size for Uniform, VBEST-SRS and VBEST-SYS. However, for Recent samples PRAB(N)
values from are smaller for larger values of Size, only in smaller Regions (Phoenix, Bal-
timore, and Pittsburgh). Generally, PRAB(N) values are higher (e.g. worse) for Uniform
samples while both VBEST-SRS and VBEST-SYS have among the smallest values of
PRAB(N) that are virtually indistinguishable across these two methods. As we have done
with the two other metrics, we explored the nature of the interaction between Method,
Size and Region using Tukey’s HSD post hoc comparisons where we set the overall er-
ror rate to be 0.15 and these more specific findings are summarized in Table A2.3 in Ap-
pendix 2. Of note, the PRAB(N) values from both VBEST-SRS and VBEST-SYS samples
were consistently smaller than that from the other methods across Regions. Smaller values
indicate that samples from the two VBEST methods consistently achieved closer estimates
of total Twitter volume than the alternative methods, and they needed only the smallest
number of queries to achieve these results which is important to note given rate limits
imposed for queries by the TSAPI.

Based on a similar regression analysis we performed for the topic frequencies, we ex-
amined relationship between the estimated Tweet population sizes and the gold standard

Figure 6 Boxplots depicting the percent relative absolute bias (PRAB(N)) values for estimating the total
number of Tweets by Method and Size for each of the 5 MSA regions
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Figure 7 Estimated regression slopes from predicting NRD from N̂RMDS by Region, Method and Size. The
regression models each use the total Tweet Population estimates across the 38 days of the experiment and
are fitted separately for each Region, Method and Size combination and fix the intercept at 0

values in a series of linear regression models to examine whether or not there are system-
atic patterns in the biases. The resulting slopes from these analyses are presented in Fig. 7.
The analyses revealed that for the larger regions, Atlanta and Chicago, the Recent method,
regardless of size, tends to overestimate the total Tweet population size in these MSAs,
but the degree of this overestimation shrinks as the sample size increases for Baltimore,
Phoenix and Pittsburgh. For the Uniform method, samples tend to grossly underestimate
the total Tweet population. Samples from both the VBEST-SYS and VBEST-SRS methods
tend to underestimate the total Tweet population, but to a much lesser extent.

5 Discussion and conclusion
Our experiment sought to compare the proposed novel VBEST algorithm for sampling
Tweets to alternate approaches that were either available through the TSAPI, such as
Recent, Mixed and Popular, or ones that could be adapted for use based on creation of
synthetic Tweet IDs that correspond to selected time points from which Tweet samples
were desired (Uniform). We varied the sample size, operationalized as the total number of
queries made to the TSAPI for a given sampling method, and collected data using combi-
nations of method and sample size across five MSA regions that varied in population size
and geographic shape. We evaluated these methods at various sample sizes across these
regions based on measures that aggregated absolute relative biases for incidence and fre-
quency from across eight COVID-19 related topics. We also assessed the performance of
these methods on a topic-agnostic measure of the Tweet Population within each of the
five MSAs. While we assessed the performance of the VBEST algorithm using local area
geo-coordinates, we note that the geo-coordinates are flexible in that they are not limited
to within the U.S. and they are not required to generate samples.

The results of our analyses revealed that there were some methods that were clear losers,
others that were weak performers and yet others that were consistently reasonable per-



Buskirk et al. EPJ Data Science            (2022) 11:9 Page 23 of 32

formers across our metrics. Our initial descriptive analyses of the three metrics across
the sampling methods revealed that samples obtained from either the Mixed or Popular
methods had consistently bad performance, regardless of day or region, and that biases
were consistently several orders of magnitude higher than metrics derived from samples
using the other methods. In light of these very consistent findings, we would not recom-
mend either the Popular or Mixed methods for generating samples of Tweets, despite the
fact that the Mixed method is the default for use in the TSAPI.

While the analyses for Incidence seem to suggest some consistency in biases across many
of the methods, there were stark differences for the biases in Recent samples, especially
for the small and middle sample sizes. When examining frequencies and total Tweet size
within an MSA, we saw clear distinctions between the methods with Uniform samples
producing the largest biases across sample sizes and Regions due to consistent underes-
timation of the parameter values. We saw similar, but slightly varied results for samples
from the Recent method that tended to have biases that were lower than those from Uni-
form samples, but in large part driven by consistent overestimation of the parameter val-
ues. Generally, the VBEST-SYS and VBEST-SRS samples produced biases that were lower
than either of the other methods and were generally on par with each other and were more
consistent in their magnitude. Recent samples of the largest size tended to perform on par
with VBEST-SYS and VBEST-SRS but only in the smaller regions of Phoenix, Baltimore
and Pittsburgh.

To understand why Recent and Uniform samples tended to over- and under-estimate
population parameters, respectively, we need to understand a bit more about the shape
of the Tweet distributions we consistently observed throughout our pre-testing and again
during our field experiment. These Tweet distributions across the MSAs exhibited a pat-
tern very similar to that reported by Gerlitz and Rieder [8] who used the streaming API to
capture samples of Tweets over a 24-hour period for English language Tweets. Their work,
which is consistent with our experimental results, shows that in general, daily Tweet distri-
butions have a “trough region” that has far fewer Tweets corresponding to typical sleeping
hours (e.g. 1 am to 5 am) surrounded by areas of much greater volume in the early morning
and in the evening hours. Because the Uniform method likely captures more time points in
the trough region than may be needed (where frequencies are typically lower) and on bal-
ance takes fewer queries from either of the plateau areas (where frequencies are typically
higher), the resulting estimates from Uniform samples will likely tend to underestimate
frequencies and totals. Similarly, because the Recent method collects Tweets from the end
of the day backwards, there may be a tendency for samples gathered using this method to
overestimate activity since Recent samples are pulling from the right-most plateau where
there are more Tweets, overall. A depiction of this phenomenon for the Recent method
along with a visualization of a common shape of the daily Tweet Distribution using a full
corpus of Tweets for Baltimore and Atlanta for the first day of our experiment is provided
in Fig. A3.1 in Appendix 3 along with the location of Tweets associated with the topic of
COVID. From these graphs, you can see that for smaller regions like Baltimore, the Recent
sample with 720 queries nearly captures all of the day’s Tweets, making estimates derived
from the sample more akin to a census with smaller error. However, in Atlanta, even the
largest size of queries only captures a small share of the total Tweets within a day, so bias
measures can be larger.
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One other aspect of the Uniform method that we observed during our experiment was
that at larger sample sizes in smaller areas, Uniform samples would have a higher propor-
tion of duplicate Tweets (due to queries that overlapped in the trough region) compared
to any of the other sampling methods. VBEST and SRS experienced some duplication as
well but generally the duplication rates for these methods was well below 4% in Pittsburgh,
Baltimore and Phoenix compared to duplicate rates between 5 and 18 percent for Uniform
samples from these three regions. For larger regions duplication was not an issue for any
of the sampling methods.

In cases such as Baltimore or Pittsburgh, one could argue that if such a large sample size
is possible in terms of resources and query limits within the TSAPI, one would be better
served by taking a full census of the area rather than sample almost all of it. However,
it is not possible to know the size of the corpus of Tweets prior to issuing a query. The
VBEST algorithm in Steps 1 and 2 does provide an estimate of total Tweet volume within
the area specified in the TSAPI geo-location parameters that is equivalent to the area un-
der the estimated Twitter Velocity Curve. In our pilot work, we compared this estimate to
full-corpus censuses from a select number of days and regions and found that our overall
relative absolute bias measures for total Tweet volume was about 3 percent or less. We see
this aspect of the VBEST algorithm as one of its strengths in terms of use for sample plan-
ning purposes, in addition to powering the VBEST sampling frames. If one were trying to
perform a study to collect Tweet samples from multiple areas and wanted to know how
to best allocate a limited number of queries, they could use the VBEST algorithm Steps 1
and 2 to get estimates of Tweet volume from each of the areas and use this information
in allocation planning. While it is certainly a noted strength of the VBEST algorithm, it
can be a limiting factor that can influence bias if the estimated Twitter Velocity Curve is
highly different than the actual distribution of Tweets from which samples are desired.
This difference can create inefficiencies in the yield of the resulting samples in that they
may overlap and contain duplicates or may miss sections of a day’s Tweet distribution. We
are currently designing a field experiment to test different methods and hyperparameter
settings for alternate methods for estimating both the Tweet velocities as well as the Twit-
ter Velocity Curves that will include splines with automatic knot detection (Goepp et al.
[9]) and wavelets, among others.

Our experiment did not examine the interaction between topic and method since most
of our topics were related to the ongoing COVID-19 pandemic, and there was no the-
oretical reason to suspect that Tweets related to the topics we were investigating would
occur only during certain times or the day. In fact, in Fig. A3.1 for the COVID topic in Ap-
pendix 3, we did not see any particular time association with when Tweets about COVID
were posted. Other studies have noted that Twitter content can vary throughout the day,
however. Golder and Macy [10] used data collected from Twitter from several countries
throughout the globe to show how mood and positive affect changes throughout were as-
sociated with changes in the nature of Tweets posted throughout the day. Mislove et al.
[16] also use Twitter data to show how Twitter posts and sentiment can vary considerably
throughout the day and that time zones within the U.S. can explain some of the variability
in these Tweet patterns. Kim et al. [13] also note that Tweets about entertainment top-
ics are more common on weekends than weekdays. As a general rule then, the method
for accessing Tweets to obtain a representative sample should account for the possibility
that time patterns may exist relative to certain topics of interest. One might expect that
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estimates of incidence of Tweets related to the topic of “Insomnia”, with larger number of
posts in the middle of the night, may be better from samples gathered from methods that
cover the trough region sufficiently well like uniform and VBEST.

Because Twitter volumes can fluctuate from day to day, it is hard to imagine a researcher
would be able to know, a priori, which part of the day may be associated with higher vol-
umes of Tweets over a particular topic or keyword of interest. If this were known, one
could use a uniform sample or stratify the Tweet PSUs derived from the VBEST algorithm
to vary sampling rates from time periods associated with expected volumes. However, in
the absence of information noting the nature of a time trend for posting of Tweets on top-
ics of interest, we would suggest a method that forces coverage from across the entire day,
such as Uniform or VBEST. Uniform time points are equally spaced throughout the day,
whereas VBEST Tweet PSUs are wider in the trough region to account for an expected
number of Tweets that is approximately 100. So, while VBEST and Uniform samples both
provide coverage across a given day, VBEST is more efficient in terms of samples that
produce smaller biases and fewer duplicates, on average. We note that as the number of
queries increases, there is little difference between the VBEST and SRS samples, as one
might expect from a theoretical perspective given that both of these methods were select-
ing PSUs from the same sampling frame.

We also limited the scope of assessment to primary metrics measuring Twitter volume
within each of our five MSA regions, as well as assessments of quality related to estimates
of incidence and frequency for topics related to the COVID-19 pandemic. Similar to other
studies that have limited the scope of topics, such as Kim et al. [13], the results here may
differ if different topics were considered. We do note however, that our topics, although
germane at the time we began this study, represented less than 8% of the overall content
on twitter during the field period for any one of our MSAs based on information from
our TFV. For topics that are more common or more varied, we might expect more dif-
ferentiation across the methods since the underlying incidences will not all hover close to
zero, for example. It seems reasonable that comparisons of the methods employed in our
experiment may be comparable for other topics, but this assertion needs further work to
corroborate.

Finally at the time of the writing of this article Twitter announced the release of the
TSAPI, version 2.0 which allows academic researchers full access to the historical Twitter-
sphere and greater limits on queries (e.g. from a max of 100 to 500). The VBEST algorithm
is forward compatible with the new TSAPI but there are some changes in the parameters
for the new version that may make geographic filtering at the time a query is submitted
more complex. While one might imagine there is no need to consider a method for sam-
pling Tweets in light of greater access to the full historical corpus of Tweets for academic
researchers, this is far from reality. While there is now access to a much larger and unre-
stricted historical corpus of Tweets, there is also a reduction in the number of total queries
a researcher has per day. So, gaining insights from this much larger corpus given more
limited queries seems to imply that now more than ever is work needed to sample Twitter
content more efficiently. The VBEST-SYS and VBEST-SRS samples have demonstrated a
tendency for lower biases and more consistent measures of topic frequency and total esti-
mates and comparable estimates of incidence than other sampling methods we examined.
In fact, for frequency and total Tweet population estimates the VBEST methods showed
greater efficiency than any other method by producing smaller biases using a smaller num-
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ber of queries. As studies seek to compare Twitter content across areas and domains within
a rate limited infrastructure of the Twitter APIs, it is paramount to have sampling methods
that can efficiently retrieve representative samples while remaining conscious of a fixed
“budget” of queries. VBEST is certainly a step in this direction, and we look forward to
seeing more studies that can leverage the power of probability sampling methods within
the social media context.

Appendix 1: Detailed information for the comparison of various
Twitter samples

Figure A1.1 Example specification of the Atlanta–Alpharetta–Sandy Springs, Georgia MSA using the center
and radius specified in Table 2. Twitter queries based on geographies in the public TSAPI require that a
latitude, longitude and radius be specified rather than a place keyword or location name. Underlying Map
accessed from Google Maps (https://www.google.com/maps)

Table A1.1 Twitter Search API parameters and values used in sampling and gathering Tweets for our
experiment

Twitter API
parameter

Values used in our
experiment

Notes

keyword ‘-filter:reTweets’ We exclude reTweets. This parameter setting allows us to gather
all non-reTweet Tweets regardless of content.

result_type ‘recent’ Options include ‘recent’, ‘mixed’ or ‘popular’. For the popular and
mixed sampling methods we selected ‘popular’ and ‘mixed’,
respectively but for all other methods we selected ‘recent’.

count 100 The count values range from 10 to 100 for the TSAPI version we
used in our experiment.

lang ‘en’ We gathered English language Tweets within the MSAs.
Tweet_mode ‘extended’ This setting allows the user to receive the full text of the Tweet

rather than the default option which truncates the body of the
Tweet beyond a character limit set by the API.

https://www.google.com/maps
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Table A1.1 (Continued)

Twitter API
parameter

Values used in our
experiment

Notes

geocode Latitude, Longitude and
Radius in Miles

These parameters provide the geographic center of a circle of a
given radius for the TSAPI to use as the location filter of the
Tweets. This step is not the geo-filtering we discuss in Sect. 3.2.2,
but rather a first step at filtering Tweets into the samples that are
in the approximate geographical areas of the MSAs. The values
entered for geocode varied according to the MSAs themselves
as illustrated in Table 1.

max_id various Time of desired query was converted to a Tweet ID as described
and this parameter was used with only the Uniform, SRS and
VBEST methods.

until 2020-11-26; 2020-11-27
and so on. . . to
2021-01-01

This parameter value was set to the date of the day following
the field period date for which data collection is desired. This
parameter provides a non-inclusive upper bound for the date of
the Tweets for the TSAPI.

since_id various This parameter represents a time stamp corresponding to
midnight of the day for which Tweet samples are desired to
ensure that our daily samples do not go beyond the given day.
We converted a midnight time stamp into a synthetic Tweet id
and used these values for this parameter.

Table A1.2 Topics used in our evaluation and a complete listing of keywords that defined each
topic. The specific keywords were identified in early spring of 2020 just as more information about
tracking of COVID-19 became available in the U.S.

Topics and keywords

Covid Social
distancing

Working Masks Sanitizing General
virus

Symptoms Treatment

covid social
distance

wfh face mask
(s)

hand
sanitizer

virus can’t smell ventilator

covid-19 social
distancing

working
from home

mask
(s, ed)

disinfect flu no Smell remdesivir

covid19 six feet apart work from
home

PPE disinfectant pandemic can’t taste vaccine

covid test
(ing)

6 ft apart not working
now

N95 lysol sars no taste contact
tracing

covid cases 6 feet apart furlough face cover
(ing)

sanitize pneumonia cough

coronavirus hunker
down

reopen face
shield

sanitizing Fauci fever

rona lockdown reopening sanitizer chills
cv19 quarantine stimulus

checks
hand wash sore throat

quarantining remote work hand
washing

asymptomatic

working
remotely

bleach

unemployed washing
hands
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Table A1.3 Calculation of the metrics we will use to evaluate the methods in our experiment.
Bold-faced metrics represent the key outcomes of interest

Statistic/metric# Description and calculation

R, D, M, S, T R refers to one of the five MSA regions; D refers to one of the 38 days in our Field Period;
M refers to one of the 6 sampling methods S refers to one of the four sample size settings (e.g.
number of queries). T refers to one of the 8 topics including: COVID, Social Distancing,
Working, Masks, Sanitizing, General Virus, Symptoms or Treatment.

τRDMS(q) Total number of geo-filtered Tweets in the qth query of a sample of size S taken from Region
R on Day D using Method S. Note q = 1, 2, 3, . . . , S.

τ T
RDMS(q) Total number of geo-filtered Tweets containing any of the keywords for topic T in the qth

query of a sample of size S taken from Region R on Day D using Method S. Note
q = 1, 2, 3, . . . , S.

ÎTRDMS Estimated Incidence rate of Topic T among all geo-filtered Tweets within the sample of size S
taken from region R on day D using method M and is computed as:
ÎTRDMS =

∑S
q=1 τ T

RDMS(q)/
∑S

q=1 τRMDS(q)

ITRD ; F
T
RD Incidence rate and Frequency of topic T, respectfully, among all Tweets in region R on day D

based on full twitter corpus data accessed through a TFV.

PRAB(I)TRDMS ;
MPRAB(I)RDMS

Percent Relative Absolute Bias for the Incidence of topic T based on geo-filtered Tweets from
a sample of size S taken from region R on day D using method M and is computed as:

PRAB(I)TRDMS = 100× | Î
T
RDMS–I

T
RD

ITRD
|

Mean Percent Relative Absolute Bias for the Incidence is the average of the PRAB across all 8
Topics derived from a sample of size S taken from Region R on day D using method M,
computed as:
MPRAB(I)RDMS =

∑
T PRAB(I)

T
RDMS/8

F̂TRDMS Estimated Frequency of the number of Tweets from topic T among all geo-filtered Tweets
within the sample of size S taken from region R on day D using method M and is computed
for SRS and VBEST methods as:
F̂TRDMS = NTPSUs × (

∑S
q=1 τ T

RDMS(q)/S)
And for all other methods, computed as:
F̂TRDMS = 86,400× (

∑S
q=1 τ T

RDMS(q)/
∑S

q=1 DRDMS(q))

where NTPSUs is the number of Tweet PSUs in the VBEST sampling frame and
∑S

q=1 DRDMS(q)
represents the total amount of time (in seconds) (e.g. duration) required to gather all the
Tweets (both geo-filtered and non-geo-filtered) across the S queries for the sample of size S
taken from region R on day D using method M.

PRAB(F)TRDMS ;
MPRAB(F)RDMS

Percent Relative Absolute Bias for Frequency of Topic T and Mean Percent Relative Absolute
Bias for Topic Frequencies are derived in the same manner as for the incidence-based metrics
described above except using FTRD as the reference value.

N̂RMDS ; NRD Estimated (and actual) total number of geo-filtered Tweets in region R for day D based on a
sample of size S taken using method M. The actual value is based on TFV data supplied from
our vendor. The estimate totals are computed for SRS and VBEST as:
N̂RMDS = NTPSUs × (

∑S
q=1 τRDMS(q)/S)

And for all other methods, computed as:
N̂RMDS = 86400× (

∑S
q=1 τRDMS(q)/

∑S
q=1 DRDMS(q))

PRAB(N)RDMS Percent Relative Absolute Bias for Total Tweets within region R on day D based on geo-filtered
Tweets from a sample of size S taken using method M. This statistic is computed as:

PRAB(N)RDMS = 100× | N̂RMDS–NRD
NRD

|
#Note: when we aggregate the MPRAB(I), MPRAB(F) and PRAB(N) metrics over all days of the experiment for a given
combination of region, method and size we will refer to the measure as the overall average metric value.

Appendix 2: Pairwise comparisons of experimental factors for each of our
primary outcomes

For each of the three outcomes (MPRAB(I), MPRAB(F) and PRAB(N)), we separately in-
vestigated differences, on average, for each of the 12 Method-Size combinations (66 pair-
wise comparisons) within each Region using Tukey’s HSD procedure with an error rate of
0.03 within Region for an approximate overall error rate of 0.15. The main results of the
three separate post-hoc analyses are provided in the tables that follow.
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Table A2.1 The difference between two overall average MPRAB(I) values within a row (Region) in
Table 4 is declared significant (based on α = 0.03) if it exceeds 2.58 in absolute value. The primary
results of the post-hoc analysis for differences in overall average MPRAB(I) values are listed within this
table

1) In Chicago, we cannot distinguish the performance between the Methods for any Size.
2) When the Size = 360, we cannot distinguish between the Methods in Phoenix and Pittsburgh. In Atlanta,

VBEST-SYS is significantly better than Recent while in Baltimore, VBEST-SYS and Uniform are better than
Recent.

3) At Size = 540, Recent has the worst performance in Phoenix and Pittsburgh. Recent is worse than
VBEST-SRS in Atlanta and VBEST-SRS and VBEST-SYS in Baltimore.

4) With the Size, 720, Recent has significantly worse performance in Pittsburgh than VBEST-SRS and VBEST-SYS
and it is worse than VBEST-SYS in Atlanta. Baltimore shows an anomaly with Recent having the lowest
mean MPRAB(I), although not significantly better than VBEST-SRS and VBEST-SYS with Uniform being
significantly worse than Recent.

5) At Size = 540, the mean MPRAB(I) for Recent is not significantly better than those from any other Method
using Size = 360. Similarly, Recent with Size =720 is no better than the others with Size = 540 (with the
exception of the Baltimore Region).

6) The MPRAB(I) means for a given Method with Size = 540 fall between those values of the Method using
Sizes of 360 and 720 respectively. This result generally holds for each of the Methods across the Regions.

Table A2.2 The difference between two overall average MPRAB(F) values within a row (Region) in
Table 4 is declared significant (based on α = 0.03) if it exceeds 3.70 in absolute value. The primary
results of the post-hoc analysis for differences in overall average MPRAB(F) values are listed in this
table

1. For the Recent Method, the average MPAB(F) values are very consistent across Size within Atlanta and
Chicago. In Phoenix, Baltimore, and Pittsburgh, the overall average MPRAB(F) values decrease with Size.
Notably, the former represent the most populous MSAs in our experiment, whereas the latter represent the
least populous MSAs. Thus, the methods consistency was inversely proportional to both MSA population
and correspondingly, Twitter volume.

2. Across all Regions, the average MPRAB(F) values for the Uniform Method were not distinguishable across
the different Sizes. The average MPRAB(F) values from Uniform samples were consistent and significantly
the highest across Regions and Size with values between 30% and 40%. One exception is that of Size = 360
in Baltimore where Recent and Uniform are indistinguishable. Another exception is in Pittsburgh where for
Sizes 360 and 540, Recent performs worse than Uniform but Recent is much better than Uniform for
Size = 720.

3. For Chicago, Atlanta and Phoenix, MPRAB(F) values for Uniform samples, regardless of Size, were
significantly larger, on average, than for samples of any Size gathered from the Recent method. Uniform
samples of any size in Baltimore produced larger MPRAB(F) values, on average, than Sizes of 540 and 720
from the Recent Method and in Pittsburgh Uniform samples had smaller mean MPRAB(F) values compared
to those from Recent samples of Size 360 and 540 but larger than Recent for Size = 720.

4. VBEST-SRS and VBEST-SYS average MPRAB(F) values were indistinguishable from each other in all Regions
for all Sizes and were better than Recent and Uniform in all cases with three exceptions. They were not
significantly better than Recent in Baltimore, Phoenix or Pittsburgh for Size = 720.

Table A2.3 The difference between two average PRAB(N) values within a row (Region) in Table 4 is
declared significant (based on α = 0.03) if it exceeds 2.65 in absolute value. Key findings from the
post hoc analysis of differences between average PRAB(N) values are included in this table

1. Average PRAB(N) values from Uniform samples ranged from about 30% to about 45% across the regions
and were very consistent across Size within Region. They were significantly larger than those from any
other method with one exception—for query size 360, average PRAB(N) values from Uniform samples were
not significantly different from that of Recent in Pittsburgh.

2. Recent samples from Atlanta had PRAB(N) values that were consistent across all levels of Size. In Baltimore
and Pittsburgh, the Recent PRAB(N) averages improved significantly with larger sample sizes. In Phoenix,
PRAB(N) averages for 540 and 720 queries were indistinguishable but significantly better than with 360
queries. For Chicago, we saw the opposite behavior—the performance degraded for larger sample sizes
with 720 queries performing significantly worse than 360.

3. Across Regions and query sizes, Recent samples produced significantly higher PRAB(N) values, on average,
than VBEST-SRS and VBEST-SYS which were indistinguishable.

4. VBEST-SYS and VBEST-SRS clearly had the best performance among the four Methods averaging between
about 7% and 11% depending on Region.
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Appendix 3: Exploring the performance of samples obtained using the recent
method across size and region

Figure A3.1 Distribution of a full corpus of Tweets for the first day of our experiment (11/24/2020) along with
the Geo-Filtered Tweet Distribution and the Proportion of Total Tweets represented by 330, 540 and 720
queries (vertical lines) used in conjunction with the Recent method for Baltimore (A) and Atlanta (B). We also
plot the distribution of Tweets associated with the COVID Topic (full Tweets and geo-filtered Tweets) for
illustration at the topic-level of analysis
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