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Abstract
Music is a fundamental human construct, and harmony provides the building blocks
of musical language. Using the Kunstderfuge corpus of classical music, we analyze the
historical evolution of the richness of harmonic vocabulary of 76 classical composers,
covering almost 6 centuries. Such corpus comprises about 9500 pieces, resulting in
more than 5 million tokens of music codewords. The fulfilment of Heaps’ law for the
relation between the size of the harmonic vocabulary of a composer (in codeword
types) and the total length of his works (in codeword tokens), with an exponent
around 0.35, allows us to define a relative measure of vocabulary richness that has a
transparent interpretation. When coupled with the considered corpus, this measure
allows us to quantify harmony richness across centuries, unveiling a clear increasing
linear trend. In this way, we are able to rank the composers in terms of richness of
vocabulary, in the same way as for other related metrics, such as entropy. We find that
the latter is particularly highly correlated with our measure of richness. Our approach
is not specific for music and can be applied to other systems built by tokens of
different types, as for instance natural language.
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1 Introduction
It is a well-known but nevertheless intriguing fact that the usage of natural language, as
reflected in texts or speech, displays very strong statistical regularities [1–4]. Although
the most popular and in-depth studied of these is Zipf ’s law of word frequencies [5–9],
the most fundamental linguistic statistical law is probably Heaps’ law, also called Herdan’s
law [10–13]. This law relates the two main quantities that are necessary to set the statistical
analysis of a text: the number of word tokens in the text, i.e., its length (in words), L, and
the number of word types, which is referred to as the size of the vocabulary of the text, V .
More precisely, Heaps’ law states that the relation between V and L is reasonably well
approximated by a power law,

V � KLα ,

with an exponent α ∈ (0, 1] and a proportionality constant K .
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Care has to be taken though when referring to Heaps’ law, as there are in fact two ver-
sions of it and considerable confusion between them. The first version deals, in principle,
with just one text, and studies the growth of the accumulated vocabulary size as the text
is read, from beginning to end. This yields a non-decreasing curve with no scattering that
ends in the total values of vocabulary size and length for the considered text [14–16]. Al-
though there are some derivations that relate this version of Heaps’ law with Zipf ’s law,
the situation is not so simple, and this version of Heaps’ law is usually a bad description
of type-token growth, even if some formulation of Zipf ’s law can be considered to hold
[12, 17]. Instead of a linear trend in a log-log plot, what is usually observed is a slightly
convex shape that has sometimes been confounded with a saturation effect [17].

The second version of Heaps’ law, the one considered in this study, needs a number of
texts, or a collection of documents, and compares the total (final) values V and L for each
one of the complete texts or documents. This results in a scatter plot, to which a power-law
curve can be fitted to account for the correlation between V and L. This version of the law
can be justified using the generalized central limit theorem [13], which has the advantage
that does not require that Zipf ’s law holds exactly, but only asymptotically. Overall, one
must distinguish between an intra-text Heaps’ law (type-token growth) and an inter-text
Heaps’ law (vocabulary-length correlation).

In practical applications, one is usually interested in quantifying attributes of the enti-
ties under study, and such quantification should be grounded on well-established statis-
tical laws. In the case of natural language, there is an old tradition of evaluating richness
of vocabulary [18], which has direct applications in authorship and genre analysis [19].
Comparing different texts (or authors), one could wrongly associate size of vocabulary V
with richness of vocabulary. But the longer the text, the larger the vocabulary (on average),
and texts of different length L cannot be compared in this way. One simple solution [20]
is to divide the vocabulary size by the text length, yielding the so-called type-token ratio,
V /L.

Nonetheless, the fulfilment of Heaps’ law tells us that this linear rescaling is unjustified
and, at the same time, suggests a natural solution. Several indices have been proposed
following this reasoning (also as variations or alternatives to Heaps’ law [18]); for instance,
Guiraud’s index,

IG =
V√

L
,

or Herdan’s index,

IH =
log V
log L

.

The former assumes Heaps’ law with the “universal” value α = 0.5 (and IG = K ), while the
latter fixes K = 1 (with IH = α). The choice of K = 1 is naively justified by the obvious
fact that V = 1 when L = 1; nevertheless, one should interpret Heaps’ law as a large-scale
emergent property of texts that does not necessarily describe small-scale behavior. Note
also that both indices are “absolute”, in the sense that they can be obtained for a single
text or document (as one of the parameters of Heaps’s law, either K or α, are considered
universal and fixed a priori).
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As language, music is an attribute that defines us as humans [21]. A number of authors
have pointed out similarities between language and music, and some have argued that
music is indeed a “language” [22], although the notion of grammar and semantic content
in music has been debated [21, 22]. Despite this, it is clear that there exist strong relations
between language and music, specially regarding rhythm, pitch, syntax, and meaning [23].
This way, one can consider music as a succession (in time) of some musical symbols (which
can be considered analogous to words in texts or speech), for which statistical analysis can
be performed in the same way as in quantitative linguistics [24].

However, a remarkable problem is that, in contrast to language, the individual entities
to analyze in music are not immediately clear [25]. For instance, Manaris et al. [26] men-
tion diverse possibilities involving different combinations of pitch and duration, as well as
pitch differences. This, together with some difficulties to deal with musical datasets in an
automatized way, may explain the fact that the study of linguistic-like laws in music has
been rather limited, in comparison with the study of natural language. Nevertheless, let us
point out to Refs. [22, 27–30] as some of the pioneering analyses exploring the applicability
of Zipf ’s law in music (providing weak evidence in some cases).

In this paper, we deal with the suitability of statistical laws, in particular Heaps’ law,
to describe regularities and patterns in musical pieces and to provide a natural metric
to assess harmonic vocabulary richness. In contrast to previous metrics, this new one
is not absolute, but relative to a given corpus or collection, as we argue that richness is
more properly defined relative to an underlying probability distribution. Moreover, such
relativeness yields a considerable advantage of interpretability of the obtained values. We
also compare this metric with more common measures, finding that it is correlated with
the entropy of the type-count distribution. To perform this research, we analyze classical
music as captured by MIDI musical scores [31] and construct music codewords in a way
similar to the one of Ref. [29].

In the next sections, we describe the extraction of music codewords from MIDI files
(Sect. 2), overview the music corpus used (Sect. 2 too), present empirical results for
Heaps’ law (Sect. 3), develop and apply our metrics for the quantification of vocabu-
lary richness (Sect. 4), compare with entropy and codeword filling (Sect. 5), and test
the robustness of the results in front of the criteria employed in codeword construc-
tion (Sect. 6). Naturally, we end with some discussion and conclusions (Sect. 7). Our
work can be put in the context of culturomics, the rigorous quantitative inquiry of so-
cial sciences and the humanities by means of the analysis of big-data [32]. To facilitate
assessment and future work on the topic, the code used in this paper is available at
https://github.com/MarcSerraPeralta/chromagramer.

2 Processing and data
2.1 Construction of music codewords
In contrast to the famous composer Olivier Messiaen (and others), who considered
rhythm as the essence of music, we put our focus on harmony, understood here simply as
the combination of pitches (or, more precisely, pitch classes, as we will see immediately)
for a given time frame. Our starting point are MIDI files, with each MIDI file correspond-
ing to one electronic score of a musical piece (the corpus used is described at the end of
this section). MIDI stands for Musical Instrument Digital Interface (for more information
see the bibliography in Refs. [31, 33]).

https://github.com/MarcSerraPeralta/chromagramer
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One might complain that audio recordings are richer than MIDI files as expressions of
music, as the latter may lack the variability and nuances of interpretation [34] (some other
MIDI files may additionally not correspond to “original” scores, but are created from the
life performance of a musical piece). However, we may argue that a musical score contains
the core of a piece. As we will need to discretize the elements that form the pieces, scores
provide an objective first step in such discretization. The situation may be considered sim-
ilar to the relation between written language and speech [3, 35]. Moreover, as no original
recordings exist for classical music (except for the last 100 years or so), scores are our best
link with the spirit of the composer.

The procedure to obtain elementary units (codewords) from MIDI files is the following
(similar to the one in Ref. [29], and illustrated in Fig. 1):

• First, MIDI files are read using the program midi2abc [36] and converted into
standard text files containing the onset time, duration, and pitch of each note. Pitches
range from C-1 (fundamental frequency at 8.1758 Hz), MIDI note 0, to G9
(12,543.85 Hz), MIDI note 127. A4 (440 Hz) is MIDI note 69. For some pieces starting
and/or ending with silences (empty bars or beats), these are removed, in order to
avoid an artificial overestimation of L. The files also contain metadata about the key of
the pieces, which we disregard (due to some unreliability we found in some control
checks in the corpus we used).

• With the purpose of reducing dimensionality, all notes are collapsed into a single
octave, i.e., the pitches A0, A1, A2, etc., are considered to be the same note, or pitch
class, A (or la, in solfège notation), and the same for the rest of pitches. This leads to
12 pitch classes. This dimensional reduction has also a perceptual basis, rooted on the
prevalence of the Western reference system based on the octave [21, 37].

• In order to decrease temporal resolution, each score is divided into small discrete time
frames. By default, we chose this time unit to be the beat (as this is probably the most
relevant time scale in music [21]). For example, the 4

4 bar yields 4 beats per bar,
whereas the 3

8 bar yields 3.
• For each time frame we construct a 12-dimensional vector, with one component for

each pitch class, C, C#, . . . G#, A, A#, B, i.e., from do to si. Each component of the
vector contains the sum of all durations of notes of the corresponding pitch class in
the corresponding time frame. All notes coming from different instruments (or
different pentagrams) playing in parallel are counted at a given time frame (as seen in
Fig. 1), due to the fact that they are perceived together by the listener. In this way, if
the unit is the beat, in the 4

4 bar, each quarter note or crotchet counts as one, and each
eighth note or quaver counts as one half, whereas in the 3

8 bar, it is the eighth note
which counts as one. Notes that occupy more than one time frame are split according
to their duration in each of them (and thus, the maximum contribution coming from
an individual note in the score is one at each time frame). The vectors obtained in this
way are called chromas.

• To further simplify, and in order to get well defined countable entities, chroma vectors
are discretized, with components below a fixed threshold (0.1 by default) reset to zero
and components above the threshold reassigned to one. In this way, a value equal to
one in a component of the discretized vector means that the corresponding pitch class
has a significant presence (above 0.1) in that time frame, whereas a value of zero
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Figure 1 Example of a sequence of discretized chromas (chromagram) arising from a MIDI score. Note that
the two pentagrams constituting the score have to be read in parallel

means that the pitch class has null or very little weight and can be disregarded. We
refer to the resulting discretized vectors as discretized chromas.

Note that the procedure of codeword construction has just two parameters: the time
unit, which we take to be the beat, and the discretization threshold, which we have equated
to 0.1. These values can be considered somewhat arbitrary (in particular the threshold).
Therefore, to demonstrate the generality of our approach, we also test the robustness of
our results in front of different prescriptions for them (Sect. 6).

Discretized chromas constitute our music codewords, and turn out to be nothing else
than 12-digit binary numbers (from 0 to 212 – 1 = 4095, which also represent the vertices
of a 12-dimensional hyper-cube). One could argue that these entities would be closer to
music letters than to music words; however, previous statistical analysis [29] shows that
the complexity contained in them is enough to treat them as music words. Further, our
codewords have “temporal structure”, as they can be composed by the succession of several
shorter notes (for example, in the 3

4 bar, the duration of one beat is that of two consecutive
quavers, or four semiquavers, etc.). Perhaps, the fundamental difference with words is
that our music codewords have a fixed length (that of the selected time unit), whereas in
linguistics the length of words is variable (given by the number of letters, for instance) and
determinant for the validity of Zipf ’s law [4].

2.2 Transposition
An additional step of the procedure is to transpose all pieces to a common key, so that all
major keys are transposed to C major and all minor ones to A minor (the reason of using
A minor instead of C minor is that the former is the relative minor of C major, sharing
the same key signature and leading thus to a more similar usage of chromas). For example,
if a piece is in G major, all G pitches in the piece are transformed to C pitch class, all
G# pitches to C#, and so on. This is just a shift in pitch-class space. Although keys are
directly provided by the MIDI file (at least for the majority of files), an initial inspection
showed that this information is unreliable, and thus we perform our own analysis of key
(see Appendix B for details). No attempt is performed to identify changes of key inside a
piece, so we calculate the predominant or more common key for each piece.
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If a piece keeps a constant key, transposition has no influence on the size of its vocabu-
lary, but if different pieces are merged into a single dataset (as we will do), it can be con-
venient to merge them after they are transposed to the same key. In this case, if the pieces
come in different keys, transposition leads obviously to a different vocabulary, where one
does not deal with pitch classes but with tonal function (and thus, the resulting C pitch
class represents the tonic, G represents the dominant, etc. [38, 39]). Transposition can
be useful also to unveil a reduced vocabulary, where a given composer could show what
seems a broad apparent richness that arises from a limited vocabulary transposed into a
number of different keys.

In some sense, for listeners with absolute pitch [21], it makes sense to keep the original
key of different pieces when they are merged to form a larger dataset (these listeners natu-
rally distinguish the different pitches and also the keys). However, for the vast majority of
listeners (those with relative pitch), it is more natural to merge pieces while transposing to
a fixed key (at least in the usual equal-temperament tuning system [21]). For this reason,
we will only work with transposed pieces in our analysis.

2.3 Concatenation and elementary statistics
As we are particularly interested in studying individual composers, we concatenate all the
pieces corresponding to the same composer into a single dataset. Each dataset turns out
to be constituted by a succession of discretized chromas. Each repetition of a particular
discretized chroma is a token of the corresponding codeword type. The number of differ-
ent types in the dataset (the types with absolute frequency greater than zero) is then the
vocabulary size, denoted by V (this number will be smaller than 4096, in practice). The
sum of all the absolute frequencies of all types yields the total number of tokens, which
corresponds, by construction, to the dataset length L measured in number of the selected
time units. In a formula,

∑V
r=1 nr = L, where r labels all the codeword types in the dataset

and nr denotes the absolute frequency of type r.

2.4 Musical corpus
We perform our study over the Kunstderfuge corpus [40], which, at the time of our analysis,
consisted of 17,418 MIDI files corresponding to pieces of 79 classical composers, from
the 12th to the 20th century (Ref. [41] has scrutinized the Kunstderfuge corpus looking
for properties different than the ones we are interested in). Removing files that were not
clearly labelled or corrupted (files that we are not able to process) and files for which we
could not obtain the bar (and thefore could not determine the beat), yields a remainder
of 9489 files and 76 composers, ranging from Guillaume Dufay (1397–1474) to Messiaen
(1908–1992). The names of all composers are provided in Table 1 (Appendix A). The total
length of the resulting corpus is L = 5,131,159 tokens, with a total vocabulary V = 4085.

Figure 2(a) shows, for each piece, its length L and the size of its vocabulary V , by means
of the corresponding distributions (probability mass functions f (L) and f (V )). Both L and
V show a variability of around three orders of magnitude, with a maximum (i.e., a mode)
around 100 tokens for L and 50 types for V . The distributions of L and V would correspond
to intrinsic properties of classical musical compositions, which can nevertheless be biased
due to subjective or arbitrary criteria employed when creating the Kunstderfuge corpus.

As mentioned, for statistical purposes we aggregate all the compositions by the same
author into a single dataset for that author. Figure 2(b) does the same job for authors as
Fig. 2(a) was doing for single pieces. Since L is a purely additive quantity (by definition of
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Figure 2 Probability mass functions of length L and vocabulary size V . (a) For individual pieces. (b) For
individual authors. A power-law fit to the tail of f (L) is shown as an indication (straight line), with an exponent
1.95± 0.18 (the fitting method is the one in Refs. [42, 43])

token), the values of L increase when going from pieces to authors, but the variability of
three orders of magnitude is more or less maintained. The tail of f (L) can be fitted by a
decreasing power law, with an exponent around 1.95, although the number of data points
(composers) in the tail is small. (in Ref. [9], a power-law tail with an exponent close 3 was
proposed for the distribution of text lengths, but for individual written works, i.e., without
author aggregation). In contrast to L, the size of vocabulary V decreases its variability
when going from pieces to composers, as types are not additive. The distributions f (L) and
f (V ) at the author level do not show any musical characteristic, as we expect them to be
incomplete, in principle (not all the pieces from each author are present in Kunstderfuge).
So, they characterize the corpus, and not the creativity of the composers.

3 Fulfilment of Heaps’ law
As an illustration of the data we deal with, we report in Table 2 (in Appendix A) the values
of length L and size of vocabulary V for the 15 composers with the largest values of V , as
derived from the Kunstderfuge corpus. All of them turn out to be very well-known com-
posers, except perhaps Ferruccio Busoni (an Italian virtuoso pianist). The top-3 most rep-
resented composers in terms of length L are Bach, Beethoven, and Mozart, with L � 760,
670, and 500 thousand tokens, respectively. Figure 3(a) shows the corresponding scatter
plot for all 76 composers. The average increase of V with L is apparent, but with consid-
erable scattering.

In order to obtain the parameters of Heaps’ law, we fit a regression line to the relation
between log V and log L, from which we obtain a Heaps’ exponent α � 0.35, with a linear
(Pearson) correlation coefficient ρ � 0.64 (the value of log10 K turns out to be 1.47). All
the results of the fit are available in Table 3 (Appendix A), and the resulting power law is
represented in Fig. 3. For completeness, we perform the same power-law fit for individual
pieces, see Fig. 3(b). The results, also in Table 3, show a much higher exponent, α � 0.66
(clearly above 0.5 this time), and also a higher linear correlation coefficient, ρ � 0.85.

Thus, the supposedly universal values of α and K for texts mentioned in the introduc-
tion (either α = 0.5 or K = 1 [18]) clearly do not hold for music, at least at the level of
composers. In any case, it is apparent that the larger the value of L, the larger (on aver-
age) the vocabulary size, but the increase in V is rather modest, due to the small value
of the exponent α (in other words, we need a 7 times longer piece for seeing a doubling
of the vocabulary size). The relative large value of the constant K reported above for the
composers arises as a compensation for the small value of α.
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Figure 3 (a) Scatter plot of size of vocabulary versus number of tokens (length) for the 76 composers in the
corpus, who are grouped chronologically, as represented by the points of different color (one point is one
composer). The year of each composer is the mean between the birth year plus 20 and the death year. Heaps’
law is given by the central straight line and the parallel lines denote one standard deviation σc . Notice that
when a limited chronological span is considered, the scattering is reduced. (b) Analog scatter plot for the
9489 individual pieces. Year of a piece is approximated to the year of its composer. The results of the fits are in
Table 3 (in Appendix A)

4 Richness of vocabulary
Due to the existence of Heaps’ relation between V and L, as explained in the introduction,
it is erroneous to identify vocabulary size with vocabulary richness. For each composer,
Heaps’ law provides a natural way to correct the changes in V due to the heterogeneities
and biases in L. We have also mentioned how the Giraud’s and Herdan’s indices are based
on supposedly universal properties of Heaps’ law. However, notice that in the case of mu-
sic, such universal properties do not hold anymore, as α �= 0.5 and K �= 1.

Therefore, we develop here a measurement of richness based on the empirical (non-
universal) validity of Heaps’ law, which will be relative to the rest of authors in a given
corpus. In short, composers (or datasets, in general) with V above the “regression line” in
the scatter plot (for the corresponding value of L) will have a vocabulary richness greater
than what the Heaps’ power law predicts, whereas composers below it will have lower
richness.

Thus, we will calculate the difference log10 V – log10 K –α log10 L from the empirical data
(using the fitted values of K and α), and will rescale the result in “units” of σc = σy

√
1 – ρ2,

as the theory of linear regression tells us that the standard deviation of log10 V at fixed L is
σc, with σy the standard deviation of log10 V for all values of L. So, the vocabulary relative
richness R of each composer is defined as

R = log10

(
V

KLα

)1/σc

. (1)

With that, R > 0 will correspond to high vocabulary richness (higher than average) whereas
R < 0 is, obviously, negative richness, i.e., poverty of vocabulary. This easiness of interpre-
tation of our relative richness is an additional advantage in comparison to the indices of
richness IG and IH , whose values are not directly interpretable. The rescaling of the loga-
rithm in terms of σc in Eq. (1) is not necessary if we deal with a single corpus (as it is the case
here), but could be useful to compare different corpora or even different phenomena, such
as musical richness with literary richness. Rescaling also provides further interpretability
for the values of R, in terms of standard deviations from the mean (in logarithmic scale).
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Figure 4 Vocabulary relative richness R for each composer in chronological order. Horizontal axis is birth
+20+ death, divided by 2. The straight line is a linear regression with slope 0.72± 0.04 “units of richness” per
century and a linear correlation coefficient ρ = 0.90 (and intercept –12.9). Some particular composers are
highlighted, for the sake of illustration

When applied to our data, the composer with highest value of R turns out to be Paul
Hindemith (R = 1.68), closely followed by Serguéi Rajmáninov (with nearly the same R).
The lowest R corresponds to Tomás Luis de Victoria (R = –2.49). In Table 4 (Appendix A)
we provide some more details on the ranking of composers by different metrics. General
information on these composers can be found in Table 5 (Appendix A).

Interestingly, the chronological display in Fig. 4 of the relative richness R of each com-
poser shows a clear increasing trend of this richness across the centuries, with a linear-
slope increase of 0.72 “units of richness” per century (and linear correlation coefficient
ρ = 0.90). It is interesting to note that Ref. [29] reported a decreasing trend for contem-
porary Western popular music; nevertheless, it should be also noted that, besides the dif-
ferent genres and epochs, richness was measured by modeling transitions between code-
words using a complex network approach. Figure 5 compares our relative richness R, for
each composer, with the logarithms of other composers’ characteristics (L, V , type-token
ratio, IG, etc.). Figure 5(a) shows all pairs of scatter plots between the metrics of the com-
posers and Fig. 5(b) shows the corresponding matrix of linear correlation coefficients. The
high correlation between the relative richness and the year of each composer is apparent
(below we will discuss this figure in more detail).

5 Comparison with entropy and filling of codewords
A quantity of relevance in this context is the entropy of the distribution of type fre-
quency [44]. Each codeword type r (with r = 1, 2, . . . , V ) has a relative frequency given
by its number of tokens divided by L, which we can assimilate to the probability of the
type Pr in the selected dataset, which in our case corresponds to individual composers.
The Shannon entropy (in bits) characterizing the vocabulary of each composer is simply

S = –
V∑

r=1

Pr log2 Pr .
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Figure 5 Comparison of the different metrics characterizing each composer. (a) Scatter plots. (b) Matrix of
linear correlation coefficients

In the hypothetical (unrealistic) case of uniform use of all possible types, V would reach
its maximum value, 212, and we would obtain the maximum possible entropy, Smax =
log2 212 = 12 bits.

In our composers’ corpus, the highest entropy is given by Stravinsky (S = 9.95 bits), fol-
lowed by Gustav Mahler (S = 9.91 bits). The lowest value of entropy corresponds to Or-
lande de Lassus (or Orlando di Lasso, with S around 5.8 bits). We see that, as in the relative
richness, the composers with the lowest entropies are from the 15th or 16th centuries,
whereas those with the highest entropies are from the end of the 19th or the 20th century.
The systematic increase of the entropy when the composers are ordered chronologically
is analogous to the increase shown in Fig. 4. Linear regression shows that the increase in
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entropy is 0.69 bits per century (with a linear correlation coefficient equal to 0.83). Thus,
the history of classical music (on average) seems to extend the law of the increase of en-
tropy with time beyond the usual physical systems considered in thermodynamics [45].
The comparison of the entropy with the other metrics is included in Fig. 5.

Finally, another metric of potential interest is the average filling of the codeword types
for each composer, calculated as 〈F〉 =

∑V
r=1 PrFr , with Fr the number of ones in the dis-

cretized chroma corresponding to codeword type r (if the codeword r is represented as a
12-component vector, then Fr =

∑11
i=0 ri, with ri the i-th component of the vector r, tak-

ing values ri = 0 or 1, as we have defined). The composer with more average filling is
Nikolai Medtner (〈F〉 = 4.46), and the one with less value is Niccolò Paganini (the most
ancient composer in the corpus, with 〈F〉 = 2.62). This metric also shows an increasing
trend across the years, but, in contrast to R and S, its correlation with time is not high.
The scatter plot, included in Fig. 5(a), has an upper envelope that increases linearly in
time, but the lower envelope is rather constant. In this way, Messiaen (the most modern
composer included in the corpus), shows one of the lowest values of 〈F〉. The average fill-
ing is compared with the rest of metrics also in Fig. 5(b), where we see that it is not very
highly correlated with any of them.

6 Robustness of results
We have tested the robustness of our results in front of the arbitrariness contained in the
process of codeword construction. For that purpose, we have investigated the effect of
changing the value of the discretization threshold. We find that thresholds ranging from
0.025 to 0.2 lead to very minor changes of the Heaps’ exponent α, with values comprised
between 0.350 and 0.355. A threshold equal to zero leads to α around 0.355. Thresholds
higher than 0.3 lead to progressively increasing α, e.g., for 0.5 we get α � 0.39. The inter-
cept in Heaps’ regression (K ) shows higher variability; nevertheless, although the specific
values of the relative richness R depend on K , their statistical properties do not change (as
K is only bringing a shift in logarithmic scale). The stability of α ensures the robustness
of R.

We have also explored the effects of changing the time unit over which the codewords
are built, finding that an increase in the time unit from 0.5 to 1.5 beats leads to a modest
increase in α from 0.33 to 0.39 (with very little influence in the value of the threshold, in
the same way as explained above). Taking a time unit as large as 4 beats leads to α close
to 0.5. This is a considerable change, but not unexpected, as, for instance, in a 4

4 bar, 4
beats correspond to one bar and conventional musical knowledge tells us that bar-based
codewords are entities with different properties than beat-based codewords.

7 Summary and discussion
Summarizing the results, the highest linear correlation between all the metrics character-
izing the composers is the one relating the relative richness R with the entropy (around
0.95, Fig. 5(b)), but R is also highly correlated with the Giraud index. The Herdan index
is also highly correlated with Giraud and with the type-token ratio. The correlations ob-
tained between 〈F〉 and the other indices are not so high. Interestingly, the highest cor-
relation of the year characterizing each composer is with the proposed relative richness
R (taking a value of 0.90, Fig. 5(b)). The correlation of R with log L is zero by construc-
tion. Replacing Pearson linear correlation with Spearman or Kendall correlations does
not qualitatively change very much this pattern of correlations (not shown).
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So, we conclude that relative richness presents very interesting properties, as it shows
maximum correlation with entropy and with year. Nevertheless, the correlation of relative
richness with entropy is so high that one could consider instead to use entropy to account
for vocabulary richness. This has the advantage that one does not need to have a whole
corpus to obtain the Heaps’ law in advance; rather, it can be calculated even for a single
author or piece, or it can be used for the comparison of just two authors. Nonetheless, the
entropy has the disadvantage that one does not know what a high entropy or a low entropy
is, in principle, and thus, the apparent advantage of entropy is lost in a practical situation.
Interpretability is further hampered by not having a direct notion of “above/below aver-
age” richness, which is corpus dependent. From the comparison with the relative richness
we see that the value of S separating low richness and high richness is around 8 bits (for the
present codification of 12 bits per codeword and for the present corpus). Very low rich-
ness is around 6 bits and very high around 10. This also corresponds to an average filling
of codewords (mean number of ones) ranging from 2.7 to 4.5. Another disadvantage of
entropy is that one needs to count the repetitions of all codeword types (the V values of
Pr), whereas for the richness one only needs to know how many types there are (the value
of V ).

In conclusion, we have analyzed the harmonic content of a large corpus of classical music
in MIDI form. The definition of music codewords allows us to quantify the size of the
harmonic vocabulary of classical composers, and relate it to their musical productivity
(the total length of their compositions, as contained in the considered corpus). We obtain
that the relation between the two variables is well described by an increasing power law,
which is analogous to the Heaps’ law previously found in linguistics and other Zipfian-like
systems. Nevertheless, the obtained power-law exponent turns out to be somewhat small
(α � 0.35), if we compare it to typical values found in linguistics.

Heaps’ law allows us to develop a proper measure of vocabulary richness for each com-
poser in relation to the rest of the corpus. Remarkably, we find that vocabulary richness
undergoes a clear increasing trend across the history of music, as expected from quali-
tative musical wisdom. Our approach provides a transparent quantification of this phe-
nomenon. We also show that our relative richness is highly correlated with the entropy of
the distribution of codeword frequencies, so entropy can be equally used to measure vo-
cabulary richness, once it is properly calibrated. Our metric has several advantages with
respect to previous indices of richness, such as being relative to the richness of the rest
of composers and a better interpretability of the values. At our level of resolution (that of
individual composers) the evolution of richness does not show any revolutions or sudden
jumps; instead, it seems to be rather gradual, and well fitted by a linear increase. (the vari-
ability is too high to allow one to obtain meaningful results beyond the linear increasing
trend).

Appendix A: Tables
In this appendix we include the tables cited in the text. Table 1 contains the names of the
76 composers in the corpus, in chronological order. Table 2 provides the values of L and V
(together with other relevant figures) for the 15 composers best represented (in terms of
V ) in the corpus. Table 3 yields the results of fitting Heaps’ law to the values of V and L for
the individual composers and for the individual pieces. The results for the composers with-
out performing any transposition are also included, for the sake of comparison. Observe
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Table 1 Name of the 76 classical composers in the Kunstderfuge corpus analyzed in this paper. The
order is chronological (established by the year of birth)

G. Dufay J. Desprez C. de Morales G. P. da Palestrina
O. Lassus W. Byrd T. L. de Victoria J. Dowland
C. Gesualdo C. Monteverdi G. Frescobaldi S. Scheidt
J. J. Froberger J.-H. d’Anglebert J. B. Lully D. Buxtehude
J. Pachelbel F. Couperin T. Albinoni A. Vivaldi
G. P. Telemann J.-F. Dandrieu J.-P. Rameau J. S. Bach
G. F. Händel D. Scarlatti D. Zipoli J. Haydn
J. G. Albrechtsberger M. Clementi W. A. Mozart L. van Beethoven
J. B. Cramer N. Paganini F. Schubert H. Berlioz
F. Mendelssohn F. Chopin R. Schumann F. Liszt
C.-V. Alkan C. Franck A. Bruckner L. M. Gottschalk
J. Brahms C. Saint-Saëns A. Guilmant G. Bizet
M. Mússorgsky P. I. Tchaikovsky A. Dvořák E. Grieg
G. U. Fauré L. Janáček I. Albéniz G. Mahler
C. Debussy F. Busoni E. Satie S. Joplin
L. Godowsky A. Scriabin S. Rajmáninov M. Reger
A. Schoenberg M. Ravel S. Karg-Elert O. Respighi
N. Médtner B. Bartók Í. Stravinsky S. Prokófiev
P. Hindemith G. Gershwin D. Shostakóvich O. Messiaen

Table 2 Length L in number of tokens and size of vocabulary V for the 15 composers that are best
represented in the Kunstderfuge corpus (after transposition). Year of birth, year of death, and number
of pieces (# pieces) are also included

Composer Birth Death L V # pieces

Johann Sebastian Bach 1685 1750 757,945 2630 2169
Joseph Haydn 1732 1809 401,162 2155 641
Wolfgang Amadeus Mozart 1756 1791 504,386 2516 685
Ludwig van Beethoven 1770 1827 670,380 3146 638
Franz Schubert 1797 1828 292,007 2356 270
Frédéric Chopin 1810 1849 128,373 2947 220
Robert Schumann 1810 1856 103,432 2423 109
Franz Liszt 1811 1886 116,044 2739 136
Johannes Brahms 1833 1897 159,998 2612 148
Piotr I. Tchaikovsky 1840 1893 156,749 2748 252
Antonín Dvořák 1841 1904 110,855 2350 145
Gustav Mahler 1860 1911 43,877 3034 33
Claude Debussy 1862 1918 91,600 2728 194
Ferruccio Busoni 1866 1924 26,898 2370 42
Ígor Stravinsky 1882 1971 20,481 2443 39

All 76 1397 1992 5,131,159 4085 9489

Table 3 Results of fitting a regression line to the scatter plot between log10 V and log10 L, as
log10 V = log10 K +α log10 L (Heaps’ law), with correlation coefficient ρ . The value of σc is also shown.
Three cases are compared: composers with transposition (our main case of study), composers
without transposition (for the sake of comparison), and individual pieces (for which transposition has
no effect on L and V )

Dataset α log10 K ρ σc

authors, transposed 0.35 ± 0.05 1.47 0.64 0.25
authors, no transposed 0.35 ± 0.05 1.53 0.67 0.23
pieces 0.659 ± 0.004 0.31 0.85 0.19

how the exponent α remains essentially the same. Table 4 shows the top-5, medium-6,
and bottom-5 composers regarding relative richness, entropy, and average filling. Table 5
gives the general details of the composers highlighted in the previous table.
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Table 4 Top-5, middle-6, and bottom-5 composers as ranked by relative richness R, entropy S, and
average filling 〈F〉
Rank by R R Rank by S S (bits) Rank by 〈F〉 〈F〉
Hindemith 1.683 Stravinsky 9.945 Medtner 4.462
Rajmáninov 1.680 Mahler 9.914 Rajmáninov 4.316
Stravinsky 1.595 Rajmáninov 9.777 Stravinsky 4.314
Gershwin 1.530 Hindemith 9.746 Reger 4.285
Bartók 1.521 Gershwin 9.709 Gershwin 4.087

Grieg 0.212 Mendelssohn 8.265 Scheidt 3.277
Berlioz 0.150 Clementi 8.222 Gesualdo 3.266
Gottschalk 0.130 Schubert 8.190 Liszt 3.258
Satie 0.112 Cramer 8.065 Albrechtsberger 3.257
Paganini 0.057 Scarlatti 7.984 Fauré 3.256
Guilmant 0.016 Pachelbel 7.898 Dowland 3.255

Dufay –1.663 Scheidt 6.169 Bizet 2.906
Desprez –1.714 Morales 6.128 Messiaen 2.791
Palestrina –2.087 Victoria 5.982 Lully 2.756
Morales –2.277 Palestrina 5.938 Dufay 2.751
Victoria –2.492 Lassus 5.803 Paganini 2.621

Table 5 As Table 2, but for the composers that appear in Table 4 (and do not appear in the former),
in chronological order. The horizontal line separates composers in the top-5, middle-6, and bottom-5
categories for relative richness and entropy (not for 〈F〉)
Composer Birth Death L V # pieces

Guillaume Dufay 1397 1474 3008 190 10
Josquin Desprez 1450 1521 7118 250 32
Cristóbal de Morales 1500 1553 40,380 333 88
Giovanni P. da Palestrina 1525 1594 20,369 292 70
Orlande de Lassus 1532 1594 10,988 304 70
Tomás Luis de Victoria 1548 1611 113,162 423 333
John Dowland 1563 1626 12,376 372 61
Carlo Gesualdo 1566 1613 8347 396 37
Samuel Scheidt 1587 1654 3878 233 8
Jean-Baptiste Lully 1632 1687 17,917 477 107

Johann Pachelbel 1653 1706 48,081 892 182
Domenico Scarlatti 1685 1757 12,874 747 43
Johann Georg Albrechtsberger 1736 1809 4760 511 13
Muzio Clementi 1752 1832 41,458 1250 46
Johann Baptist Cramer 1771 1858 3949 657 29
Niccolò Paganini 1782 1840 7692 713 23
Hector Berlioz 1803 1869 9333 805 8
Felix Mendelssohn 1809 1847 48,262 1506 50
Louis Moreau Gottschalk 1829 1869 19,675 1035 36
Alexandre Guilmant 1837 1911 3397 522 11
Georges Bizet 1838 1875 12,955 783 21
Edvard Grieg 1843 1907 43,033 1430 30
Gabriel Urbain Fauré 1845 1924 49,608 1704 97
Erik Satie 1866 1925 14,179 913 47

Max Reger 1873 1916 12,205 1725 32
Serguéi Rajmáninov 1873 1943 13,783 2231 16
Nikolai Medtner 1880 1951 4653 1233 7
Béla Bartók 1881 1945 9203 1766 18
Paul Hindemith 1895 1963 10,626 2039 22
George Gershwin 1898 1937 9988 1827 12
Olivier Messiaen 1908 1992 4386 541 9
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Appendix B: Transposition procedure
The method we use for the analysis of the key is the Krumhansl-Schmuckler Key-Finding
Algorithm [46]. This algorithm is based on the key profiles described in Ref. [37], which
were obtained by empirical experiments where subjects rated how well each pitch fitted a
prior context establishing a key. The values for the major key profile are 6.35, 2.23, 3.48,
2.33, 4.38, 4.09, 2.52, 5.19, 2.39, 3.66, 2.29 and 2.88, where the first number corresponds
to the mean rating for the tonic of the key, the second to the next of the 12 tones in the
chromatic scale, etc. The values for the minor key context are 6.33, 2.68, 3.52, 5.38, 2.60,
3.53, 2.54, 4.75, 3.98, 2.69, 3.34 and 3.17 [47].

The procedure of the algorithm to calculate the key of a piece is as follows:
1. Average, in terms of tokens, the discretized chromas in the considered piece.
2. Calculate the Pearson linear correlation of the major key profiles with the average

discretized chroma and all their circular shifts (12 values).
3. Repeat step 2 using the minor key profiles.
4. The transposition shift is the shift that maximizes the correlation from both steps 2

and 3.
The key is obtained directly from the transposition shift, with the following correspon-
dence: 0 = C, 1 = C#/D�, 2 = D, 3 = D#/E� . . . For the Kunstderfuge corpus we find that the
most common keys are G Major, C Major, and D minor, as shown in Fig. 6, whereas the
least common are E� minor and B� minor.

We do not use the information about the key provided by the metadata in the MIDI
file, as this seems to refer to the key signature rather than to the key. To check that the
transposition is being done correctly, we verify that the most common codewords after
transposition are CEG, CFA, CEA, DGB, and the empty codeword, corresponding to a
silent beat. Table 6 shows the top 10 codewords, in terms of absolute frequency, making
clear how these can be related to chords or tonal functions that are common in C major
or A minor. in C Major or A minor.

Figure 6 Absolute abundance of each key in the corpus, counted in number of pieces, before transposition,
obviously. Zero corresponds to C Major, one to C#/D� Major. . . up to B Major; 20 corresponds to C minor and
so on
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Table 6 Ten most common codewords in the corpus (after transposition), in terms of number of
tokens (absolute frequency)

Codeword Chord Frequency

100010010000 CEG I 257,252
100001000100 CFA IV 145,967
100010000100 CEA vi 119,734
001000010001 DGB V 105,361
000000000000 99,761
100010000000 CE I 86,179
100000000000 C I 78,009
001001000100 DFA ii 75,462
001001010001 DFGB V 70,802
000000010000 G V 58,966
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