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Abstract
Contact tracing is one of several strategies employed in many countries to curb the
spread of SARS-CoV-2. Digital contact tracing (DCT) uses tools such as cell-phone
applications to improve tracing speed and reach. We model the impact of DCT on the
spread of the virus for a large epidemiological parameter space consistent with
current literature on SARS-CoV-2. We also model DCT in combination with random
testing (RT) and social distancing (SD).
Modelling is done with two independently developed individual-based (stochastic)

models that use the Monte Carlo technique, benchmarked against each other and
against two types of deterministic models.
For current best estimates of the number of asymptomatic SARS-CoV-2 carriers

(approximately 40%), their contagiousness (similar to that of symptomatic carriers),
the reproductive number before interventions (R0 at least 3) we find that DCT must
be combined with other interventions such as SD and/or RT to push the reproductive
number below one. At least 60% of the population would have to use the DCT
system for its effect to become significant. On its own, DCT cannot bring the
reproductive number below 1 unless nearly the entire population uses the DCT
system and follows quarantining and testing protocols strictly. For lower uptake of the
DCT system, DCT still reduces the number of people that become infected.
When DCT is deployed in a population with an ongoing outbreak whereO (0.1%)

of the population have already been infected, the gains of the DCT intervention come
at the cost of requiring up to 15% of the population to be quarantined (in response to
being traced) on average each day for the duration of the epidemic, even when there
is sufficient testing capability to test every traced person.
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1 Introduction
Tracing and isolation of people who were in contact with an infectious person (contact
tracing) can be used to control the spread of communicable diseases [1, 2]. In the tradi-
tional understanding of contact tracing (CT), public health employees interview known
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carriers (index cases) of the disease and then track down people who had the type of
close contact with the index case necessary to transmit the disease. Contacts are then
diagnosed and isolated. This implementation is only suited for infections that spread rela-
tively slowly, and where cases can be easily diagnosed [3]. SARS-CoV-2, with its unspecific
symptoms, high number of asymptomatic carriers, and incubation times as short as a day,
does not fit this mold.1 Recent studies indicate that an outbreak of SARS-CoV-2 could be
controlled using fast and efficient digital contact tracing (DCT) [4, 5]. DCT systems using
cellphone applications based on Bluetooth proximity measurements are currently being
developed and/or deployed in many countries [6–15]. Predicting the effect of DCT on an
outbreak is challenging, especially since the values of many epidemiological parameters
that describe the outbreak dynamics have not been determined accurately yet, with clin-
ical studies yielding conflicting results. Almost no practical experience for DCT is avail-
able. Partly automated CT systems were in use during the Ebola outbreak 2014–2016 [16]
and it turned out that the technical difficulties that come with that approach must not be
underestimated.

Simulation studies focusing on classical CT for COVID-19 consistently indicate that
around 70% of the contacts need to be traced, and that the tracing delay has to be as short
as 1 day [5, 17]. For these reasons, [17] doubt that COVID-19 can be controlled by tra-
ditional CT in practice. Ferretti et al. [4] however point out that DCT could significantly
reduce tracing delays, so that the outbreak could be controlled for tracing probabilities
much smaller than 70%. Meanwhile, several other simulation studies indicate that a high
tracing probability and a combination of fast CT and testing is required to control SARS-
CoV-2 [16]. However, it also became clear that not only the reduction of the reproduction
number, or the final size of the epidemic, need attention, but also the number of persons
that go to quarantine [18]: A naive application of DCT leads to a situation that resembles
a lock-down as a large fraction of the population is quarantined. An appropriate choice of
the tracing and testing protocol is central.

We developed individual-based models with the Monte Carlo (MC) simulation tech-
nique, flanked and cross-checked by deterministic models, to evaluate the dynamics of a
COVID-19 outbreak under different intervention protocols, focusing on DCT and DCT
combined with random testing (administering a SARS-CoV-2 test to some fraction of the
population at random, that is regardless of each person’s symptoms or contact history) and
social distancing. We determine not just the immediate effective reproductive number Re,
but also the daily Re, the number of healthy people in quarantine, and the number of peo-
ple infected, for up to a year of continuous interventions. The sensitivity of all outcomes
to the reported ranges of values of the epidemiological parameters is studied in detail.

The goal of this paper is to study quantitatively under which conditions and to which
degree DCT combined with fast testing and social distancing can replace rigorous shelter-
in-place policies for keeping the effective reproduction rate Re ≤ 1.

All abbreviations used can be found in Table 2.

2 Model inputs
Table 1 presents an overview of all model input parameters and the values considered for
them. They will be discussed in detail in the following subsections.

1For references on the properties of the Covid-19 disease please see Table 1.
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Table 1 Key model input parameters and settings. The models are evaluated for all possible
combinations of all parameter values shown in black. Parameter values in grey are used only with
select other parameter combinations

Parameter/Setting Values Notes/References

Disease and population

Size of population 10k, 100k , 1M
Population structure uniform , social graph
Transmission prob.(βi) 1.89, 2.87, 3.74, 2.0, 4.67 [%]
Contact rate (nc) 10, 14, 6
R0 2.0, 3.0, 4.0 Calculated from βi and nc .
Trans. prob. curve (μ,γ ,β) (–2.42, 2.08, 1.56) (–1, 1.9, 1.4) [26, 35, 38, 41]
Incubation time curve (μ,γ ,β) (0, 3.06, 2.44) , (0, 3.06, 1.3) [25, 28, 42]
Fraction symptomatic (α) 0.4, 0.6, 0.8, 0.95 [29–33, 43, 44]
Asymptomatic trans. scaling (ηas) 0.1, 0.5, 0.8, 1.0 [4, 35–37, 39]

Interventions

Interventions start (fi) 0.00, 0.004, 0.04 The fraction of the population
exposed when interventions start.

Quarantine duration 14 days

Tracing
Reported from symptoms (fm) 0.5, 0.75, 1.0 Fraction of symptomatic carriers that

see a doctor.
Trace back (�Ttrace) 7 , 14 [days] Time window for CT.
App coverage (papp) 0.0, 0.6, 0.75, 0.9, 1.0 Fraction of the population that uses

the DCTS.
Tracing efficiency (ηDCT) 0.5, 0.75, 1.0 Chance that a contact between two

users of the DCTS is successfully
traced.

Tracing order 1, 2
Trace uninfected contacts True, False
Tracing delay (Tdelay) 0 , 2, 4, 6 [days]

Social distancing
SD upper limit, factor (60, 1.0), (12, 0.6), (16, 0.8) Maximum number of contacts per

day, factor by which mean number of
contacts is scaled.

Testing
Random testing rate (fRT) 0.00,0.01, 0.05, 0.1, 0.15, 0.2 [1/day] Fraction of population tested per day.
Days to test result 0 [days]
False positive rate 0.00, 0.01
Re-test interval (δTre-test) 5 [days] Traced people that test negative on

tracing day are tested again after this
time interval.

True positive rate (pm) 0.9 , 0.0 (no testing) For the POC test on days with peak
test efficiency

Many model inputs that are properly described by a distribution rather than just a mean
value are modelled using a shifted Gamma distribution, defined as

G(x;μ,γ ,β) =
( x–μ

β
)γ –1 exp(– x–μ

β
)

β�(γ )
, (1)

where x ≥ μ. The gamma distribution can describe the shapes of and interpolate between
several other probability distributions and is widely used to model skewed distributions
for which the underlying true probability distribution is not known [19, 20]. As this dis-
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tribution is flexible, we also use a discretized version (n ∈N0)

Ĝ(n;γ ,β) = G(n; 0,γ ,β)

( ∞∑
i=0

G(i; 0,γ ,β)

)–1

. (2)

2.1 Social contact structure
Our deterministic models describe contacts between individuals in a population by the
usual mass action law. The stochastic models allow for a more detailed investigation. Par-
ticularly, two different strategies are considered: For the first, in the following referred to
as homogeneous population, we choose the contacts for each person randomly out of the
entire population. The probability for a person to have n unique contacts close enough
to transmit a respiratory virus on a given day is taken from the empirical distributions
reported in [21]. These are well described by

Psocial(n) = Ĝ(n;γ = 2,β = nc/2), (3)

where nc is the mean number of contacts per day. We also consider a more realistic con-
tact pattern, in the following referred to as social graph population. The population is
described by a social graph, were each individual is represented by a node and contacts
are represented by edges. Each individual is given a fixed set of contact persons for the en-
tire simulation. We employ a modified version of the Lancichinetti–Fortunato–Radicchi
benchmark graph (LFR) [22] as shown in [23] (therein referred to as LFR-BA). In this
model, the population is divided into communities with sizes distributed according to
a power-law distribution. Node edges are constructed according to the linear preferen-
tial attachment model [24] under the constraint that an average fraction of (1 – μ) of the
edges of each node connect nodes within the same community. A graph constructed in
this manner results in a power-law probability distribution with index a = 2 for the node
degree n [24]:

Psocial;SG(n; a, nmin) ∼ a · na
minn–(a+1), (4)

where nmin is the minimum node degree. Here, the mean number of contacts per day is
given by nc = a·nmin

a–1 . We assume that each edge is active once per day, so that the node
degree corresponds to the number of contacts per day.

2.2 Epidemiological parameters
Figure 1 schematically shows the probability distributions for symptom onset, transmis-
sion, and true positive test results. The parameters are explained in the following para-
graphs.

Incubation period P(TInc ). The distribution of incubation periods is taken as

P(TInc) = G(TInc,μ,γ ,β) (5)

(Fig. 1 upper curve) with shape parameters chosen to match the curve reported in [25],
which has median and mean incubation periods of 7 days and 7.44 days, respectively, with
a range from 0–23 days. The authors included a relatively large group of patients (n = 587)
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Figure 1 Course of the disease with probability distribution for the incubation period TInc (top) [25] and the
fully correlated probability density function for the contagiousness Tcon (bottom) [26]. The dotted vertical
lines corresponds to the median of TInc . The probability for a true–positive point-of-care (POC) test is
displayed on the bottom left (grey line). The diamonds correspond to exposure (contact, black), end of
latency/begin of contagious period (magenta) and symptom onset (teal)

with a wide age (0–90 years) and symptom (asymptomatic to severe) range. Other studies,
albeit with smaller number of patients and with a bias towards more severe symptoms,
have reported lower medians [27, 28]. Therefore, in addition to the parameters matching
[25] (printed in black in Table 1) we also model a curve with shorter median and mean
incubation periods of 3.6 days and 4 days (printed in gray in Table 1).

Latent period Tlat. The latent period for SARS-CoV-2 is shorter than the incubation
period, meaning pre-symptomatic transmission can occur [1, 29]. The latent period is dif-
ficult to determine empirically, as it requires exact information about the time of exposure
and contagiousness. As, to our knowledge, no reliable, large-scale studies have been pub-
lished on the latent period of SARS-CoV-2 so far, we use the measured contagiousness
relative to the incubation time as an auxiliary means to infer latency,

Tlat = max{TInc – 2.5, 0},

where the value of 2.5 days comes from the transmission probability curve discussed in
the next paragraph.

The transmission probability curve Ptrans(τ ). The transmission probability is the proba-
bility that a contagious person infects someone they have contact with. This probability
is often given as an average “infectivity per day”, βi, even though it changes significantly
as a function of the time since infection τ . The infectivity was measured as a function of
the time since onset of symptoms by He et al. [26]. They find that carriers become conta-
gious approximately 2.5 days before the onset of symptoms, and that approximately 44%
of transmissions occur during this pre-symptomatic phase.

We take as the contagious period Tcon the time from the end of the latent period until
99% of the cumulative transmission probability is reached; a person is considered to be
recovered afterwards. Therewith, the transmission probability as a function of time since
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infection is given by a scaled and truncated Gamma distribution (Fig. 1 lower curve). After
infection, an individual has a (random) latent period Tlat, during which the transmission
probability is zero. Afterward, for τ = Tlat + t (and t ≥ 0), we have

Ptrans(Tlat + t) = TconβiG(t;μ,γ ,β)χ (t < Tcon), (6)

where χ is 1 if the condition in the argument is met, and 0 otherwise.
The shape parameters shown in black in Table 1 are our defaults, taken to match the

curve in [26]. Pre-symptomatic infectivity is strongly debated. Therefore, we model a sec-
ond shape where only 18% of the transmission occurs during the pre-symptomatic phase
(shape parameter values printed in gray).

The course of the disease for asymptomatic carriers is the same as that for symptomatic
carriers as shown in Fig. 1, and the incubation time is the time when symptoms would
have started.

Fraction of asymptomatic cases 1 – α. The proportion of asymptomatic carriers (1 – α)
described in the literature ranges from ∼ 4% [30] to ∼ 40%[31] of all cases. Initial reports
for (1–α) derived from testing of specific cohorts (cruise ship, returning travellers) ranged
from 17–31% [29, 32, 33], however larger studies suggest even higher numbers. Analysis
of the mass screening of the full population of the municipality of Vo’, Italy [31] report
that 41.1% of the confirmed SARS-CoV-2 infections were asymptomatic (as defined by the
absence of fever and/or cough). Ferretti et al. [4] analyzed 40 selected transmission pairs
and also derived a value of 40% for the proportion of asymptomatic infected individuals.
We model several different values for α to cover the reported ranges.

Reduced asymptomatic transmission probability ηas. While initial studies assumed that
asymptotic cases were less contagious [4, 34], newer reports indicate that the viral load of
asymptomatic cases is similar to symptomatic cases, which suggests similar contagious-
ness [35–40]. We nevertheless introduce the parameter ηas ∈ [0, 1], which scales the trans-
mission probability for pre- and asymptomatic cases, and vary that parameter to explore
its effects. We note that when we model with ηas < 1, we apply the scaling to both pre-
and asymptomatic phases; since there most likely is no difference in viral load, if asymp-
tomatic transmission is suppressed, this is likely due to circumstantial factors, like lack of
coughing, which apply to the pre-symptomatic phase as well.

The basic reproductive number R0. If the contagiousness is independent of the symptom
status, i.e. ηas = 1, the reproductive number is given by the number of contacts during the
contagious period, ncTcon, times the average probability to transmit the infection in one
contact, βi. However, we need to distinguish between symptomatic, pre-symptomatic, and
asymptomatic cases in order to allow for ηas < 1. We find

R0 = nc

[
ηas

∫ TInc

Tlat

Ptrans(t) dt +
(
(1 – α)ηas + α

)∫ Tlat+Tcon

TInc

Ptrans(t) dt
]

. (7)

Note that—though Ptrans is a random function—the random part of the function is a pure
translational offset (the latency period), s.t. the integral is deterministic.

R0 is expected to be different in different populations because nc is different by factors of
up to 4 just within the populations of different European countries. Values of R0 ranging
from 1.4 to 6.5 have been reported [45], though it is not always clear whether or not the
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Figure 2 The distribution of the number of people a carrier infects (Eq. (8)) for 3 combinations of nc (the
mean number of contacts per day) and βi (the average transmission probability per day) that result in R0 = 3
(see Tab. 1) (left) and for a fixed nc but different social structures (right). Default values for the infection
probability curve are used, ηas = 1, and no interventions are applied. Compared to a Poisson distribution with
mean of 3, the distribution is over-dispersed

reported R0 is for the case where symptomatic individuals are quarantined. Furthermore,
R0 is usually not corrected for the contact rate in the population where it is studied. We
consider R0 the reproductive number without any form of interventions. We take R0 of 3
(approximately the median reported in [45]) as our default, but also run the models for R0

of 2 and 4.
Following [46], we introduce the random reproduction number for an individual R0,i.

R0 is the expectation value over the R0,i. For simplicity (and since two of our models
are not based on continuous time but on discrete time/days), we state the time-discrete
formula for P(R0,i = n). Assume that an individual did infect n persons. These n per-
sons can be arbitrarily distributed over the contagious period. In a slight abuse of no-
tation, let Tc denote the number of days that a person is contagious for. Furthermore, let
Cn = {�n ∈ N

Tc
0 :

∑Tc
i=1 �ni = n} be all possible ways to distribute the n infectees to Tc days.

Then, for a homogeneous population,

P(R0,i = n) =
1

|Cn|
∑
�n∈Cn

[Tcon∑
i=1

Binomial
(�ni, Ptrans(Tlat + i), m

)
� Psocial(m)

]
, (8)

where the convolution � is over the parameter m. This distribution is shown for some
parameter combinations in Fig. 2.

2.3 Intervention protocols
The interventions considered here are (1) DCT, (2) quarantining, (3) testing, and (4) social
distancing. Reported symptomatic cases are quarantined starting right at the beginning
of the epidemic. The remaining interventions are turned on once a fraction fi of the pop-
ulation has become exposed.

(1) DCT. We assume that a fraction papp of the population uses the DCT system and
that we can trace all contacts between users of this system with time delay Tdelay. In case
that both infector and infectee have a DCT device, the probability for successful tracing
is ηDCT, while tracing always fails if either infector or infectee do not use the system. ηDCT

accounts for situations where cell phones run out of battery, are not with the owner at
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all times, Bluetooth is turned off, or where an alert is ignored. The DCT system (DCTS)
identifies contacts within the past �Ttrace days.

In the literature, the overall tracing probability across the population is often taken as
ptrace = p2

appηDCT (e.g. in [4]). We note that this formula is not correct but becomes approx-
imately right if papp

2ηDCT is small (see the Appendix).
To become an index case for tracing, a person must be reported. We assume that from

the group of symptomatic carriers, a fraction fm sees a doctor to get tested with a reliable
laboratory test and is then reported. A fraction (1 – α) of cases will go unreported because
they do not exhibit symptoms, unless they get tested due to being traced. A fraction α(1 –
fm) of symptomatic cases will go unreported due to lack of access to medical tests. In the
case where ηas = 1, α and fm are degenerate.

First order tracing refers to a protocol where contacts of an index case are traced. DCT
also allows immediate tracing of contacts-of-contacts. We refer to this as second order
tracing. If the �Ttrace is big enough, DCT will identify the infector. Second order tracing
then can trace not just the people infected by an index case, but also the people who were
infected by the same infector as the index case.

A DCT system will identify all contacts, regardless of their infection status. Since many
models assume perfect accuracy in identifying only contacts that became infected (e.g.
[4, 5, 47]), we run all parameters both with (closer to reality) and without (to be comparable
to other models) tracing of the uninfected contacts.

All traced people immediately go into quarantine. This is necessary to suppress the pre-
and asymptomatic transmission rates.

(2) Quarantining. Quarantining refers to any intervention that reduces the transmis-
sion probability significantly; this includes self-quarantine at home as well as being hospi-
talized. We assume that all reported symptomatic patients are immediately quarantined,
regardless of any other interventions. This already reduces the reproductive number to

Re,Q = nc

[
ηas

∫ TInc

Tlat

Ptrans(t) dt

+
(
(1 – α)ηas + α(1 – fm)

)∫ Tlat+Tcon

TInc

Ptrans(t) dt
]

. (9)

Figure 3 shows Re,Q for combinations of α, fm, and ηas. In Fig. 3 (top), ηas = 1, so only the
product of α and fm is relevant, and results are shown for R0 = 3 and for R0 = 2. In Fig. 3
(bottom), ηas < 1, so both R0 and Re,Q depend on α and on fm. For each combination of α

and fm, the transmission probability βi was adjusted to obtain R0 = 3.
In response to being reported or being traced, people are quarantined by default for 14

days. Symptomatic cases may leave quarantine 8 days after the symptoms start. Uninfected
contacts can leave quarantine early following a testing protocol.

(3) Testing. We consider two types of tests. A reliable laboratory test for symptomatic
carriers seeing a medical professional, and a fast point of care (POC) test that can be per-
formed at home or at mobile testing stations. In either case, carriers only test positive
while they have a high enough viral load. We assume the tests have ptrue positive = 0.0 while
the carrier is in the latent period, that is up to approximately 2.5 days before symptom
onset. The viral load rises quickly after the end of the latent period. We further assume
that the laboratory test then has a true positive rate of 100% until the carrier has recov-
ered. The POC test on the other hand has pmax

true positive = 0.9 until approximately 5 days
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Figure 3 The effective reproductive number reached just from quarantining reported symptomatic carriers,
Re;Q , is shown for four different values of ηas (asymptomatic infectivity scaling) as calculated from Eq. (9). Top
panel: In the case of ηas = 1, Re;Q depends only on the product of α (symptomatic fraction) and fm (fraction
reported and tested) and is shown for two values of R0. Lower three panels: For each combination of ηas and
α , the infection probability was adjusted to obtain R0 = 3

after symptom onset.2 After this time, the true positive rate falls at the same rate as the
transmission-probability curve; the true positive rate as a function of days since symptom
onset is shown in Fig. 1 (bottom gray curve).

All people who are traced must be tested for two reasons: (a) A positive test result is the
only way for asymptomatic individuals to become index cases for tracing, and index cases
are needed for tracing to be effective, and (b) so uninfected traced people can be released
from quarantine. Keeping all traced people in quarantine for the full quarantining duration
means that a large fraction of the uninfected population may end up quarantined on any
given day of the outbreak. We use the following release protocol: All traced people go into
quarantine and get tested with a POC test. Regardless of the test result, everyone stays in
quarantine, because the person may still be in the latent period. Those who tested negative
on the first day are re-tested δTre-test days later. If both tests were negative, the person may
leave quarantine, but is tested again after another δTre-test days in case they were still in
the latent period when the second test was done.

2Initial studies of POC tests that will soon be available commercially indicate a true-positive rate of better than 90% for
these tests [48, 49].
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In addition to testing in response to being traced, we simulate the option of randomly
testing a fraction fRT of the population each day. This is done with a testing protocol as-
sumed to have a negligible number of false positives.

(4) Social Distancing. Social distancing includes both a reduction of the total number of
contacts per day nc to nc · fSD, and limiting the maximum number of contacts per day. In
the absence of second-order effects, and if the upper limit does not change the distribution
mean significantly, this reduces the reproductive number to

Re,SD = fSDR, (10)

where R is the reproductive number without social distancing.

3 Models
Epidemiological modelling is a well established scientific discipline and different ap-
proaches, including contact tracing, are described in the rich literature [50–53]. Epidemi-
ological models that account for CT date back to the 1980s [54]. The main challenge to
modelling a CT system is the individual-based character of CT, and the handling of the
resulting stochastic dependencies between individuals. Individual-based simulation mod-
els [55] readily describe this process. For the scope of this paper, we developed two de-
terministic and two individual-based models. While, for reasons of brevity, most of the
results that will be presented here come from the individual-based models, the redundant
modelling approach served to cross-validate and understand the results.

3.1 Deterministic models
The early phase of an outbreak can be quantitatively described with compartmental mod-
els based on ordinary differential equations (ODE) [56] or with age-since-infection mod-
els [57].

The deterministic models used here bridge the different scales utilizing the mathemati-
cal analysis of the underlying, microscopic stochastic branching process with contact trac-
ing. The effect of contact tracing on the removal rates is determined. These effective re-
moval rates are then used in the deterministic models. Our first deterministic, compart-
mental model explicitly predicts the status (exposed/infectious) for a newly infected per-
son, when he/she will eventually be traced. Eventually traced and never-traced individuals
go to different compartments. In that, the (exponentially distributed) waiting times can be
readily adapted. Particularly, the model is close to standard SEIR-models (see Fig. 4), and
is feasible to analytical analysis (Appendix A.1). In contrast, the second model, based on
age since infection, does not explicitly formulate an exposed and an infectious period. The
basic assumption is that the state of an individual is a function of his/her age of infection,
that is the time that has passed since he or she became infected. The structure is less pro-
nounced, but it is possible to use transition rates that are more realistic (supplemental ma-
terials A.2). At the present time, the analytical treatment of the interdependence of contact
tracing and correlations between infected individuals at the plateau phase of an epidemic
is not well understood. Therefore, both models focus on the onset of the epidemics, where
the reduction of the number of susceptible people by quarantine or recovery does not play
a central role. The main outcomes of these two models are the doubling time T2 and effec-
tive reproductive number Reff for interventions starting on the first day of the epidemic,
though both models are able to predict in a heuristic way the total course of the epidemic.
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Figure 4 Simplified structure of the compartmental model. The model is based on a SEIR-type model from
Ref. [58] and distinguishes between untraced (gray) and traced (blue) individuals. A detailed description of the
model and its variables can be found in Appendix A.1

3.2 Individual-based models
We developed two independent individual-based models (IBMs), which use the Monte
Carlo (MC) technique to simulate social interactions, the progression of the viral disease,
and interventions, at the level of individual people. The code for the models is available
from [59] and [60]. The MC simulations proceed through the outbreak in steps of one day.
Each day of the outbreak, every infected person not in quarantine has contact with a num-
ber of other people randomly drawn either from Psocial(n) (for a homogeneous population
structure) or from the person’s social graph. The probability to infect each contact is given
by Ptrans(τ ). When a contact becomes infected, the incubation time is drawn from P(TInc).
The intervention protocols are implemented as described in Sect. 2.

Figure 5 shows a chain of infections from one of the simulation runs. Each box represents
a person, and arrows between boxes represent infections and tracing.

In this example, P936 is exposed to the virus on day 147 of the simulated epidemic and
has a latent period of 5 days, but never develops symptoms (light blue background) or
tests positive and is therefore never reported (R–). He or she infects three others—P576
on day 152, P747 on day 154, and P277 on day 155. All three infectees develop symptoms
(purple background). P576 sees a doctor on day 155, tests positive, and is reported. This
triggers tracing of his infector, P936, and of the person he or she infected, P392. Tracing
to P392 fails because this person does not use the app. Since P392 also does not develop
symptoms, he or she is never reported or quarantined and infects three others. The back-
ward trace from P576 to P936 puts P936 in quarantine on day 155 and thus prevents him
or her from infecting more people after this time. P936 does not test positive (dashed out-
line of the box indicates the person was traced but never reported), so never becomes an
index case him- or herself. However, since second order tracing is active in this simula-
tion, the ‘siblings’ of P576 are identified. P747 is put in quarantine before he or she can
infect anyone else, and tests positive the same day. This makes him or her an index case,
so that the common infector, P936, is traced again. P277 does not use the app, therefore
the trace fails. However, P277 happens to not meet many people on the first two days of
infectiousness, then develops symptoms, sees a doctor, and is quarantined.
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Figure 5 Spread and containment of SARS-CoV-2 using tracing and quarantine interventions in a Monte
Carlo simulation including 1st and 2nd order tracing. The downward arrow indicates the time axis. Shown is a
small sub-tree of the full infection tree. This sub-tree starts with simulated person P936, who was exposed on
day 147, and includes the infection chains for the first three generations of infectees. The input settings for the
simulation were: R0 = 2.0, �Ttrace = 7 days, papp = 0.6, ηDCT = 0.9, α = 0.6. Each box represents a person. The
leftmost column in each box gives the person ID and whether or not they use the DCT app. The middle
column indicates the days when the person was exposed, became infectious, and recovered. The rightmost
column indicates if and when the person was traced, reported, and quarantined

In this example, the chain of infections was stopped at P747 through second order trac-
ing, the chain was stopped at P277 due to luck, but the chain could not be interrupted at
P576 because the person he or she infected did not use the tracing app.

For a given set of input parameters, that is for a specific scenario, each run of the MC
simulation represents one possible course of the epidemic. To find the most likely outcome
for a scenario, the simulation is run 50 to 1000 times and the outcomes are averaged. As an
example, Figs. 6 shows the course of the epidemic for 50 MC runs. The stochastic nature of
the processes involved creates a spread in outcomes. Especially near the beginning of the
epidemic where only few people are infected, statistical fluctuations cause large differences
in the outbreak dynamics.

The Re shown for each day is given as the average number of people infected by everyone
who recovered on that day. After the interventions are turned on, Re begins to decrease
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Figure 6 Stochastic variation in outbreak dynamics. The results are from 50 runs of the MC simulation; each
run has the same input parameters (papp = 0.9, α · fm = 0.95, ηas = 1, trace uninfected = true). Top: The fraction
of infectious (green), quarantined (blue) and cumulative exposed (yellow) people for each day of the
simulated outbreak. Curves for only 20 out of the 50 runs are shown to improve legibility. Outcomes from one
selected run are drawn as bold lines. Middle: Re each day is shown for the MC run drawn in bold in the top
plot. The red vertical line indicates the time when 0.4% of the population have been infected, which is when
interventions (other than quarantining of reported symptomatic cases, which is enabled from the beginning)
are turned on. To measure their effectiveness, Re is averaged over 18 days (red area), starting 10 days after
interventions commence. Bottom: Outcomes from the 50 MC runs, such as the maximum fraction of the
population quarantined, are histogramed to show the statistical variation more clearly

and in the absence of non-linear effects reaches a plateau after approximately 10 to 14 days.
In runs where more than a few percent of the population has been exposed at that time, Re

declines naturally due to an increasing chance that contact persons are already infected or
recovered, and therefore cannot be infected again. When reporting the Re for a simulation
run, Re(t) is averaged in the time span of 10 days to 28 days after interventions start, or from
10 days to the day more than 50% of the population has been exposed, whichever period
is shorter. This time window is a compromise between being far enough away from the
start of interventions for the effect of the interventions to fully manifest, and not getting
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to close to the region where Re changes naturally. The Re reported for a scenario is the
average Re over all the simulation runs for that scenario.

We consider the following outcomes:
• The fraction of the population exposed after one year of continuous interventions.

The one year is counted from the day interventions start.
• The fraction of the population sick on the day when most people are sick.
• The average fraction of the population in quarantine each day over one year of

continuous interventions.
• The fraction of the population in quarantine on the day when most people are in

quarantine.
• The effective reproductive number after interventions.
• The fraction of simulations that did not generate an outbreak, where an outbreak is

defined as at least 0.4% of the population becoming exposed in runs where
interventions do not start on day 0, and is defined as at least 50 people becoming
exposed in runs where interventions start on day 0. These numbers are chosen since
they represent a robust threshold separating simulation runs where exponential rise in
the number of people infected (i.e. an outbreak) takes place from those where it does
not.

4 Results
We highlight three outcomes for select scenarios and as function of the app coverage. Un-
less stated otherwise, the values printed in black in Table 1 are used for those parameters
not explicitly varied in the figures or stated in the figure captions. The full set of outcomes
for all scenarios is shown in the Appendix. Note that the size of the simulated population
and the number of MC runs was chosen such that the uncertainties on the outcomes are
very small. Hence the error bars on most points are smaller than the marker size.

4.1 The effect of instantaneous contact tracing on an ongoing epidemic
Figure 7 and Fig. 8 show three outcomes each for the four simulated symptom/reporting
fractions and for R0 = 3 (Fig. 7) and R0 = 2 (Fig. 8). Results are shown for the realistic case
where tracing identifies contacts regardless of their infection status, and for the case where
only infected contacts are traced. The latter is included so that results can be compared to
other models, and because the difference in the number of quarantined people between
the two cases indicates how many healthy people are quarantined when uninfected con-
tacts are also traced. R0 = 2 is likely too optimistic, the results, however, are also valid in
the situation where R was lowered to R = 2 by other interventions, such as mask wearing,
before tracing and quarantining starts.

The Re shown in the top panels of Fig. 7 and Fig. 8 should be compared to Fig. 3. For
example for R0 = 3 and α · fm = 0.6, just quarantining reported symptomatic cases yields
Re;q = 2.2, so DCT only lowers Re by another 0.5 (if tracing is independent of infection
status), or 0.3 (if tracing finds only infected contacts).

Assuming that α is about 60% in European populations and that not everyone who has
symptoms sees a doctor or is tested, the region between α · fm = 0.4 to 0.6 is likely relevant
for Europe. If the reports of higher α in Asian countries are due to true differences in
symptom fraction rather than to differences in study methods, the higher α · fm values
simulated should be more relevant to Asian countries.
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Figure 7 The effect of α · fm (tested symptomatic fraction) for different app coverages on the reproductive
number after interventions (DCTS and quarantine) (top), the average of daily quarantined people as a
percentage of the total population (middle) and the percentage of the population exposed after 1 year of
continuous interventions (bottom). The points for 60% app coverage and 60% symptomatic fraction, outlined
in red, will be studied further. This is for R0 = 3 and ηDCT = 1

We will use R0 = 3, papp = 0.6, α · fm = 0.6, and ηDCT = 1 (points outlined in red in Fig. 7)
as defaults.

In Fig. 9, the lightest-coloured points correspond to these defaults. The other colors
indicate what happens when the tracing efficiency is reduced. For the lower app coverages,
the results are barely sensitive to ηDCT because DCT is not very effective to begin with.

In the realistic case where traced uninfected contacts are quarantined until two test
results are negative (see Sect. 2.3), as many as 15% of the population are in quarantine on
each day of the simulated outbreak, most of them healthy. Without a POC test to release
healthy contacts, this number rises to 25%. At the peak of the outbreak, approximately
30% of the population is quarantined and half of those quarantined are actually sick.

People are not available to be infected while in quarantine, so the mean number of con-
tacts per day, and with it the effective reproductive number, goes down and fewer people
become exposed. The number of people quarantined rises with higher app coverage (be-
cause more people are traced in that case) and with a higher number of people exposed
(because there are more index cases). A higher app coverage eventually leads to fewer ex-
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Figure 8 The same as Fig. 7 but for starting conditions where R = 2. R = 2 could be achieved by interventions
other than DCT

posed people though. Hence for a given reported symptomatic fraction, the number of
people quarantined rises until an app coverage of approximately 75% (for lower reported
symptomatic fractions) or 90% (for higher reported symptomatic fractions) and then falls
sharply.

Contact tracing cannot reduce R below 1 in any of the simulations presented here except
for α · fm ≥ 0.8 and papp ≥ 0.9 (if R0 = 3) or papp ≥ 0.7 (if R when tracing and quarantining
is started is (2), and perfect tracing probability.

We note that in some cases, the fraction of the population exposed after 1 year is higher
than the herd immunity level. The herd immunity level is defined as the fraction of the
population that must be immune for the increase in new infections to not be able to grow
exponentially, that is for Re to become 1. In an ongoing epidemic, many people are in-
fectious when this point is reached, and the number of exposed people continues to rise
until enough people are immune for Re = 0, therefore the curve overshoots herd immunity
level.
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Figure 9 The effect of the tracing probability ηDCT for different app coverages (R0 = 3, α · fm = 0.6)

4.2 Contact tracing in combination with random testing and social distancing

To control the epidemic, R must be reduced by additional measures. We simulated the
effect of random testing (RT) and social distancing (SD). Figure 10 shows the outcomes
for our standard scenario with the addition of RT of 5% and 20% of the population per
day, and social distancing bringing nc to 0.8 and 0.6 of its original value. The reduction in
contact rate is always connected to an upper limit in the number of contacts as shown in
Table 1.

Random testing even at 20% of the population per day in combination with contact trac-
ing can only achieve Re ≤ 1 for papp ≥ 0.75. It does however bring Re close enough to 1 to
significantly reduce the fraction of the population that becomes exposed, even for lower
app coverages.

Social distancing reliably reduces the reproductive number. Social distancing to just 80%
of the contact rate does as well as randomly testing 20% of the population each day. Re-
ducing the contact rate to 60% pushes Re below 1 for 60% app coverage.
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Figure 10 The effect of social distancing (SD) and random testing (RT) for different app coverages in
combination with CT (R0 = 3, ηDCT = 1, α · fm = 0.6)

Figure 11 Outcomes when the contagiousness of a- and pre-symptomatic carriers, ηas , is smaller than 1.
Settings are R0 = 3, papp = 0.6, ηDCT = 1.0, trace uninfected contacts = false. The values printed for Re
correspond to: (first number) the mean minus the standard deviation, and (second number) the mean plus
the standard deviation, of the distribution of Re from 100 simulations (compare Fig. 6 bottom right panel),
while the color of the field shows the mean. Where values are exactly 0.0, none of the 100 simulations had an
outbreak (compare Sect. 4.5)

4.3 The effect of reduced contagiousness of asymptomatic carriers
As we saw in Fig. 3, in a situation where reported symptomatic cases are quarantined,
down-scaling the contagiousness of asymptomatic carriers reduces R significantly. Fig-
ure 11 shows the outcomes when DCT is then applied.

In the case where ηas = 0.1 and all symptomatic carriers are reported when symptoms
start, the simulations generate no outbreaks (fewer than 400 people become infected in



Pollmann et al. EPJ Data Science           (2021) 10:37 Page 19 of 53

Figure 12 The effect of incubation time (IT) and tracing order (TO) for different tracing delays. IT = 7 refers to
the curve with mean incubation period of 7 days, and IT = 4 to the one with mean incubation period of
3.6 days. The yellow point shows results for the alternate transmission probability curve (IC) as shown in Tab. 1
(grey values). Predictions from the “age-of-infection” (AOI) model, where only infected contacts are traced, are
shown as the dark green line for parameters IT = 7, TO = 1 - the result shown is not exact (see Suppl.
Materials). This is for papp = 0.75, ηDCT = 1, and α · fm = 0.6

total). When 75% of symptomatic cases are reported, Re has large fluctuations between
simulation runs, and outcomes are very sensitive to the fraction of symptomatic cases.

4.4 The effect of timing, delays, and second order tracing
Figure 12 shows the outcomes as a function of tracing delay, that is the time in days be-
tween when an index case is identified and when his or her contacts are traced and quar-
antined. Outcomes are again grouped by whether or not uninfected contacts are identified
by tracing. Results are also shown for both 1st order tracing and 2nd order tracing and for
the two incubation time curves (the default one with mean incubation time (IT) of 7 days
and the alternative one with the shorter IT = 4 days). The yellow marker uses the default
incubation time curve with the alternate transmission probability curve (IC) where there
is less pre-symptomatic transmission. In addition to the simulation results, the calculated
Re from the age-of-infection model is shown for the settings with the default incubation
time and transmission probability curves, and first order tracing. Approximations had to
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be made in the calculation, hence the absolute value is not expected to match the simula-
tion results perfectly.

Results are shown for an app coverage of 75%. Some of the dynamics are quite sensitive
to the app coverage (see supplemental materials), and at 75% trends are clearer than at
60% app coverage.

The difference between first and second order tracing is small in all three outcomes (this
changes in some situations for higher app coverages). For the default incubation time curve
with mean of 7 days, tracing delays of up to 6 days have only a small effect, increasing the
number of people exposed after 1 year from approximately 72% to 82%. When the mean
incubation time is only 4 days, Re is more sensitive to tracing delays, with a 7 day delay
increasing the number of people exposed from approximately 60% to 81%. The infection
probability curve with less pre-symptomatic transmission probability improves the out-
comes only very slightly, though the effect becomes bigger with larger tracing delay.

Second order tracing can find the infector and through him or her, the ‘siblings’ of the
index case. The chance that the infection took place within �Ttrace is higher with a longer
�Ttrace. However even for �Ttrace = 14 days, the outcomes are not significantly different.
The look-back time must be balanced against the number of healthy people quarantined.
People typically become index cases before they have recovered, and thus would have had
a chance to infect others in the approximately 7 days prior. Looking back longer than that
means one has a bigger chance of finding the infector, but it also means tracing many
uninfected contacts.

When considering the realistic case where uninfected contacts are traced, second order
tracing with a 7 day look-back time sends about 1.3 times as many people into quarantine
on average over 1 year as first order tracing.

4.5 Outbreak probability
The results discussed so far consider situations where an outbreak is ongoing and inter-
ventions are started at some point into the outbreak. But not all simulation runs result in
an outbreak. The stochastic nature of the outbreak means that there are large statistical
variations at the beginning of the chain. For example, if patient zero happens to not infect
anyone, no outbreak happens.

The chance for an outbreak to occur increases with R. The more people a case typically
infects, the less likely it is that cases at the beginning of the infection chain do not infect
anyone. Therefore, keeping interventions in place even in populations without an ongoing
outbreak can be useful to decrease the probability that an outbreak will occur when a case
is introduced into the population, for example through travel.

Figure 13 shows the outbreak probability as a function of the reproductive number when
an infected person enters a fully susceptible population.

4.6 Sensitivity of results to the social contact structure
The results presented so far assumed a homogeneous population of size 1 × 105 and a
distribution of the number of contacts with infection potential per day from Eq. (3). We
also ran some sets of parameters for different population sizes and for different contact
structures. The results are shown in Fig. 14.

The introduction of a social graph introduces non-linear effects that change Re on
timescales much longer than what is captured by our standard analysis. In some cases,
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Figure 13 The probability for an outbreak to start as a function of the reproductive number at the time when
patient 0 enters a fully susceptible population. An outbreak here is defined as more than 50 people becoming
infected. The error bars shown are statistical

this means that fewer people are exposed after one year, even though Re is higher (see
Fig. 21 in Appendix A.8).

5 Discussion
Contact tracing relies on index cases from which to trace. When there is a large fraction of
mildly symptomatic and asymptomatic carriers who never go to the doctor or get tested,
many carriers do not become index cases, so DCT does not have a large impact. Out-
comes improve strongly the higher the fraction of reported symptomatic carriers. This is
partially because DCT is more efficient, and partially because R is additionally reduced
just from quarantining the index cases. Therefore it is crucial that every person with even
the mildest symptoms has easy access to a COVID-19-test.

The extend to which pre- and asymptomatic carriers drive the outbreak depends on their
contagiousness. If for some reason they are less contagious than symptomatic carriers,
missing them as index cases does not worsen outcomes much. In the case where ηas is 0.1,
as proposed for example in [4], quarantining of index cases, without CT, reduces R from
R0 = 3 to Re < 1 even when just 40% of cases are symptomatic.

Randomly testing a fraction of the population regularly to find unreported carriers helps
to make up for the large fraction of asymptomatic carriers. We find that a very large frac-
tion of the population must be tested daily to significantly improve outcomes. For our
default parameters, even when testing 20% of the population daily, at least 90% of the
population would have to use the DCTS for Re to become smaller than one. Since typi-
cal PCR test capacities are much lower than these numbers, POC tests are likely the only
realistic option for mass testing.

Reducing the contact rate (social distancing) by as little as 20% is as effective as testing
20% of the population every day while requiring fewer people to be quarantined.

Tracing delays of a few days do not significantly worsen the outcomes. Two studies, Fer-
retti et al. [4] and [5], indicate that a DCTS could control a SARS-CoV-2 outbreak (that
is achieve Re < 1) because it allows for contact tracing without delays. We find that the
asymptomatic infectiousness scaling of ηas = 0.1 used by [4] is the main driver of their Re
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Figure 14 The sensitivity of the outcomes to the size and the structure of the simulated population is shown.
The three population structures (described in Sect. 2.1) correspond to the homogeneous population with a
gamma distribution (Eq. (3)) describing the number of contacts per day, a homogeneous distribution using
the power law (Eq. (4)) for the number of contact per day, and the social graph population. Settings are R0 = 3,
α · fm = 0.6, ηDCT = 1, trace uninfected = true. For the 10,000 people population, outcomes have large
statistical fluctuations and error bars show the error on the mean. For the other points, the error bars are
smaller than the marker size

and given these starting conditions, DCT only has to lower R by a small amount to achieve
outbreak control and is therefore then effective. Kretzschmar et al. [5] are more careful
about the reduction in R achievable with DCT, but do confirm the improved outcomes
with short tracing delays. However, [5] use a very short latency period. With the longer me-
dian latency periods consistent with recent large-scale studies, this effect is small. There-
fore, the advantage of a DCT in the case of COVID-19 lies mostly in the possibility to
scale tracing to a large number of cases without needing a large increase in the number of
manual contact tracers.

Most models consider that contacts that were actually infected are traced with some
probability. In reality, it is impossible to tell immediately whether or not a traced contact
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has been infected. Even if a test performed immediately on tracing is negative, it could
just mean that the person is still in the latent period. Therefore, all traced contacts should
be quarantined and tested multiple times. In principle, one could devise other schemes,
such as testing each traced person every morning (e.g. with a POC tests that can be done
at home and gives results within minutes) for a few days without requiring quarantine
unless the test comes up positive. Right now, such frequent testing is not realistic in most
countries.

We find that including the effect that quarantining of uninfected contacts has on the
outbreak dynamics can lead to significantly different, typically more positive, outcomes
compared to models where this effect is ignored. The improvement in outcomes is due
to the large number of people quarantined even though they are healthy. Our simulations
probably underestimate this number, because we use contact rates for the types of contacts
that have a high chance of transmitting a respiratory virus. A DCT system will typically
pick up many persons who were in spacial proximity to the index case, but not in a man-
ner that was likely to transmit the virus, so the number of contacts traced per index case
could be bigger in reality. For any serious large-scale use of a DCT system during an ongo-
ing epidemic, dealing with these uninfected contacts in quarantine is going to be a major
challenge, especially as the compliance of the population with quarantining procedures
may decrease once someone has been traced and quarantined multiple times.

The statistical nature of virus transmission and contact rates leads to large variations in
outbreak dynamics at the start of the outbreak. Sometimes, an infectious person entering
a susceptible population does not start an outbreak. This becomes less likely the higher R
is. This also means that under identical conditions, one population could have hundreds
of cases within a week of the arrival of patient 0, while in another population the case
number does not start rising for several weeks, just by luck.

Beside control of the outbreak, that is achieving Re below 1, an important outcome is
how many people will have been exposed by the time a vaccine might be available. Due
to the heavy social and economical burden imposed by virus control, some countries are
aiming at Re around 1, rather than total control. Our simulations assume that the same
interventions are applied throughout the epidemic, so the outcomes over 1 year are guide-
lines rather than realistic predictions for any real country. They do give a qualitative idea
of what achieving a given Re means in terms of the number of people exposed (and with
that, the number of fatalities).

For reasons of computing power, most simulations were run for a homogeneous popula-
tion. In reality, society is organized into social units. Introducing such social units into the
simulation means that an infectious person tends to meet the same people every day, ex-
posing them again and again. This leads to slight changes in outcome, while the qualitative
results remain the same.

5.1 Limitations
We assumed that all people, once they have recovered from the infection, are immune to
a secondary infection. Whether and for how long a recovered person is immune remains
to be answered. Studies show that neutralizing antibodies are produced during infection
and to a higher degree in symptomatic carriers, but decline significantly 2–3 months after
recovery [61, 62]. The minimal antibody titer to confer protection is, however, still un-
clear. Furthermore, memory T cells to SARS-CoV-2 have been found in patients including
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asymptomatic and mildly symptomatic ones, which likely contribute to protective immu-
nity as well [63].

In our models, everyone adheres to quarantine protocols. That is, every time someone
is alerted by the DCT system to having been in proximity of a contagious individual, this
person must follow the quarantining and testing procedure. This is crucial to suppress
pre- and asymptomatic transmission, but may be difficult to achieve in reality. We also
assume that the fraction of symptomatic individuals who see a doctor/get tested do so the
day they become symptomatic.

The transmission probability in our models changes with the time since infection, but
not between individuals. Current research, however, suggests that COVID-19 is over-
dispersed, meaning some individuals spread the virus to many others, in so-called “su-
perspreading events”, while most do not transmit the virus at all or only to very few people
[64]. Part of this over-dispersion is due to the random nature of the contact number—
some people just meet more others, and is therefore included in our models (see Sect. 2.2
and Fig. 2).

We assume that no manual tracing is performed at all. Typically, the types of close con-
tact persons to whom spreading the disease is most likely, that is friends and family, can be
manually traced without much effort, hence the fraction of infected contacts traced could
be larger in reality.

6 Summary
Many countries enforced a policy of ‘shelter–in–place’ and/or extreme social distancing,
effectively putting most of the population into quarantine. This significantly slowed down
the infection rate [65, 66], but came with large economical and social costs to society.
World-wide, a lot of effort has been put into the development of CT systems, in the hope
that large-scale CT could replace other public health measures at much smaller cost to
society.

We modelled the effect of instantaneous DCT in combination with a testing and quaran-
tining protocol, as well as random testing and social distancing, on an ongoing COVID-19
epidemic. Results were validated by running the scenarios with two independently de-
veloped individual-based models, which were further cross-checked by two types of de-
terministic models. We modelled many different parameter values for the still not well-
known properties of SARS-CoV-2, COVID-19 and for the interventions, leading to well
over 10,000 simulated scenarios. The goal was to find the regions in this parameter space
where CT without additional interventions could lower the effective reproductive number
enough to halt exponential growth.

Wherever modelling approximations had to be made, we chose defaults that lead to bet-
ter outcomes, hence these results are likely on the optimistic side. Our results are stable
under different simulated social structures and epidemiological parameters, with signifi-
cantly different outcomes seen only when varying the fraction of asymptomatic individuals
or down-scaling the contagiousness of pre- and asymptomatic cases.

We find that for large regions of the parameter space, including the currently most likely
parameter values, an outbreak of COVID-19 cannot be fully controlled by DCT even if a
large fraction of the population uses the system. Furthermore, if interventions are started
once an outbreak is already ongoing, DCT causes a large fraction of the healthy population
to be traced and quarantined.



Pollmann et al. EPJ Data Science           (2021) 10:37 Page 25 of 53

Table 2 List of abbreviations

Symbol Description

COVID-19 Coronavirus disease 2019
SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2
DCT Digital Contact Tracing
DCTS Digital Contact Tracing Service

R0 Basic reproduction number without interventions
Re Effective reproduction number
τ Time since infection
Tlat Latency period
TInc Incubation period
Tcon Contagious period
nc Number of contacts per day
βi Infection rate per day
α Fraction symptomatic cases
fm Fraction of symptomatic cases that see a doctor
ηDCT Fraction of successful traces between users of the DCT
pm Fraction of medical tests with true positive result
papp Fraction of the population that uses the DCTS
Tdelay Delay time for tracing contacts of an index case
fRT Fraction of the population randomly tested per day
fSD Social distancing factor
T2 Doubling time
λ Exponential growth parameter
S Susceptible compartment
E Exposed compartment
I Infected compartment
R Removed compartment

DCT can be combined with other measures, such as face-mouth coverings, social dis-
tancing, and/or random testing, to achieve outbreak control.

The availability of fast testing, and coordination of test results with the DCT system, are
crucial to allow symptomatic cases to become index cases for tracing, and to release traced
healthy contacts from quarantine. Since SARS-CoV-2 symptoms are unspecific, everyone
with even a slight cough of fever must be able to get a test (a) quickly, because the infection
probability peaks just before symptom onset and then falls quickly and people who are not
sure they are infected likely will not effectively quarantine themselves, and (b) easily, so
that a large fraction of symptomatic cases do seek out testing. The gains of a DCT system
in outbreak control quickly vanish if many symptomatic cases do not seek out testing, or
if positively tested individuals do not become index cases.

Appendix
A.1 The ODE model
The compartment model is based on the SEIR-type model from Reference [58] and is
extended to visualize infectious individuals for their whole infectious period Tcon even
though they might be quarantined or hospitalized (see Fig. 15). To do so, we introduce the
convalescing compartment ‘C’ in between the infectious I and recovered R status.

I denotes infectious individuals, who are able to infect susceptible individuals S for the
mean infectious period T . In contrast, C are convalescing individuals that cannot infect
further as they are either isolated or the probability to infect others is very small (because
they no longer have enough viral load). A similar second infectious state has been imple-
mented by Ref. [31] to describe individuals that still test positive even though they are
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Figure 15 Structure of the compartmental model. The model is based on a SEIR-type model from Ref. [58]
and is extended with a convalescing (C) compartment. A person in the convalescing compartment is
technically still infectious, but the chance to infect further is drastically reduced, as this person is either isolated
or the viral load is too low. The sum of the specific infectious periods is given by Tcon . Untraced compartments
are indicated in gray and traced compartments in blue. See Table 3 for the definitions of the variables

no longer contagious. After the residual infectious period Tcon – T , C enter the recovered
status R. In Fig. 18, the infectious population is defined as the sum of all I and C subgroups.

The model differentiates between untraced and traced individuals. Contact tracing is
triggered by reported infectious individuals that appear with a fraction α of the untraced
individuals. The model incorporates forward contact tracing, e.g. one traces the contacts
that have been infected by the reported index case and predicts the probability pe that the
traced contact is still in the exposed compartment when traced. This prediction relies on
exponential probability distributions for the latent and infectious period. We assume that
traced contacts that are still in the exposed phase Ee

t are immediately isolated and can no
longer infect others. In contrast, contacts that are traced during their infectious period Ii

t

could have already infected other people. The corresponding mean infectious time Tt of
Ii

t is calculated within the model and depends on the latent and the infectious period of
the reported infectious individuals. Traced infectious contacts Ii

t can also trigger contact
tracing and the probability that the traced contact of Ii

t is still in the exposed phase is given
by pi

e that depends then on Tt . Table 3 summarizes the parameters and definitions of the
compartmental model. For a detailed description and the proof of the computation of pe,
pi

e, and Tt , we refer the reader to Reference [58].
In order to compute the doubling time T2 and the basic reproduction number Re, we fo-

cus on the initial infection-free state, in which the entire population is given by S0 [58, 67].
At this stage, the system of differential equations can be linearised, and the aforemen-
tioned parameters can be extracted from the Jacobian of the system J . In particular, the
doubling time is computed as ln(2)/λ, where λ is the largest eigenvalue of J , known as
the exponential-growth parameter. The basic reproduction number is obtained using the
next-generation analysis, in which the Jacobian is split into two matrices: F , containing the
terms relative to the generation of new infections, and V containing the transfer from one
infectious compartment to another. The basic reproduction number Re is then obtained
as the spectral radius of the matrix FV –1.

We derive the mean latent and infectious periods Tlat, Tr , and Tu using the probability
functions described in Sect. 2 to 5.0 d, 1.4 d, and 2.5 d, respectively. Further, the total
infectious period Tcon is assumed to be 10.4 d.
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Table 3 Parameters and Definitions of the compartmental model

Parameter Definition

S(t) number of susceptible individuals
E(t) number of untraced exposing individuals
Eet (t) number of exposed individuals that will be traced during exposed phase
Eit(t) number of exposed individuals that will be traced during infectious phase
Iu(t) number of unreported infectious individuals
Ir (t) number of reported infectious individuals
Iit(t) number of infectious individuals that will be traced during infectious phase
Cu(t) number of unreported convalescing individuals
Cr (t) number of isolated convalescing reported individuals
Cet (t) number of isolated convalescing individuals that were traced during exposed phase
Cit(t) number of isolated convalescing individuals that were traced during infectious phase
R(t) number of recovered and immune individuals. Note that individuals in R could also be

dead.
N(t) = N constant sum of all individuals
βi transmission rate
α reporting fraction of all individuals. Note that we do not distinguish between

asymptomatic and symptomatic cases.
Tlat latency period
Tcon total infectious period
Tu infectious period of unreported individuals
Tr infectious period until reporting
Tt infectious period of traced individuals Iit . 1/Tt = 1/T̄ + 1/T̂t with

T̂t = 1
Tr

∫ Tr
0 [Tr + δ – (

∫ Tr+δ
r

x exp (–(x–r)/Tlat )∫ Tr–r+δ
0 exp (–s/Tlat )ds

dx)]dr and T̄ = αTr + (1 – α)Tu [58].

pt tracing probability. Note that we do not distinguish between papp and ηDCT
pe probability that individual is traced during exposed phase. Probability depends on Tlat ,

Tr , δ: pe =
Tlat

Tlat+Tr
e–δ/Tlat [58]

pie probability that individual who got infected by Iit is traced during exposed phase.

Probability depends on Tlat , Tt , δ: pie =
Tlat

Tlat+Tt
e–δ/Tlat [58]

δ time between reporting of index case and tracing of contact

The model is given by the following set of ordinary differential equations (ODEs):

d
dt

S = –βi
S
N

Iu – βi
S
N

Ir – βi
S
N

Ii
t , (11)

d
dt

E = βi
S
N

Iu + (1 – pt)βi
S
N

Ir + (1 – pt)βi
S
N

Ii
t –

1
Tlat

E, (12)

d
dt

Ee
t = ptpeβi

S
N

Ir + ptpi
eβi

S
N

Ii
t –

1
Tlat

Ee
t , (13)

d
dt

Ei
t = pt(1 – pe)βi

S
N

Ir + pt
(
1 – pi

e
)
βi

S
N

Ii
t –

1
Tlat

Ei
t , (14)

d
dt

Iu =
1 – α

Tlat
E –

1
Tu

Iu, (15)

d
dt

Ir =
α

Tlat
E –

1
Tr

Ir , (16)

d
dt

Ii
t =

1
Tlat

Ei
t –

1
Tt

Ii
t , (17)

d
dt

Cu =
1

Tu
Iu –

1
Tcon – Tu

Cu, (18)

d
dt

Cr =
1

Tr
Ir –

1
Tcon – Tr

Cr , (19)
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d
dt

Ce
t =

1
Tlat

Ee
t –

1
Tcon

Ce
t , (20)

d
dt

Ci
t =

1
Tt

Ii
t –

1
Tcon – Tt

Ci
t , (21)

d
dt

R =
1

Tcon – Tu
Cu +

1
Tcon – Tr

Cr +
1

Tcon
Ce

t +
1

Tcon – Tt
Ci

t . (22)

A.2 The age since infection model
We propose here a simple deterministic model for contact tracing, where the class of in-
fecetees is structured by age since infection.

Let S(t) denote the density of susceptibles at time t, I(t, a) the density of infectees at
time t with age of infection a, and R(t) the removed individuals at time t (recovered, quar-
antined, dead—in any case, not infectious any more). Note that the infected individuals
may not be infectious while they are in the latent period—exposed and infectious are dis-
tinguished based on the age of infection. The total number of infectees at time t is given
by I(t) =

∫ ∞
0 I(t, a) da. N(t) = S(t) +

∫ ∞
0 I(t, a) da + R(t) denotes the total population size.

Since we do not consider population dynamics (i.e. the population size does not change),
N(t) = N is a constant.

We first describe the model without contact tracing and discuss how to incorporate con-
tact tracing afterwards. Infected individuals with age of infection a have infectivity β(a)
and recover spontaneously without diagnosis at rate μ(a); alternatively, an infected person
develops symptoms and gets diagnosed at rate σ (a). In that case, he/she is quarantined im-
mediately and will not infect others anymore. We chose standard incidence, s.t. the model
equations become

d
dt

S(t) = –S(t)
∫ ∞

0
β(a)I(t, a) da/N , (23)

(∂t + ∂a)I(t, a) = –
(
μ(a) + σ (a)

)
I(t, a), (24)

d
dt

R(t) =
∫ ∞

0

(
μ(a) + σ (a)

)
I(t, a) da. (25)

In order to prepare for the effect of contact tracing, we slightly rewrite the model equa-
tions. We note that

κ(a) = e–
∫ a

0 μ(τ )+σ (τ ) dτ

is the probability to be in the class I at time of infection a. Below, we will modify κ(a). For
now, we note that

removal rate =
(
μ(a) + σ (a)

)
= –

d
da

ln
(
κ(a)

)
(which is also called the hazard rate). Therewith, our model becomes

(∂t + ∂a)I(t, a) =
(

d
da

ln
(
κ(a)

))
I(t, a), (26)

d
dt

R(t) =
∫ ∞

0
–
(

d
da

ln
(
κ(a)

))
I(t, a) da. (27)
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In order to compute the effect of contact tracing, we only need to adapt κ(a) accordingly.
The overall model structure is not touched. The analysis of the probability to be infectious
at age of infection a as given below is mathematically precise for the onset of the epidemic.

A.3 Contact tracing
We now slightly switch the perspective, and consider single individuals. Much of the fol-
lowing was published in [57]; we summarize these considerations for the convenience of
the reader. Below, we investigate a forest: An infected individual infects other individuals,
in that, we get a random tree with a directed node from infector to infectee. Individuals
who recover leave this tree, that is, we are left with a forest.

Contact tracing acts on this forest. At rate σ (a) an individual is (directly) detected/
diagnosed and forms an index case. All neighbouring individuals (within the forest of in-
fectees) have probability p to be detected by contact tracing. Either we stop here (one
step tracing) or the individuals detected by CT recursively form new index cases (recur-
sive tracing). This process modifies κ(a): contact tracing increases the probability to be
removed at age of infection a.

In order to understand κ(a), we consider two simplified scenarios first: (a) we assume
that we can only trace contacts from infectee to infector (backward tracing), and (b) we
assume that we can only trace contact from infector to infectee (forward tracing). Then,
we combine both approaches to understand the full tracing we aim at.

Backward tracing

Proposition 7.1 The probability to be infectious for an individual at age of infection a for
recursive contact tracing follows the following system of integro-differential equations,

d
da

κ–(a) = –κ–(a)
(

μ(a) + σ (a) (28)

+ ηDCT

∫ a

0
β(c)κ–(a – c)

(
–κ–′(a – c)
κ–(a – c)

– μ(a – c)
)

dc
)

with κ–(0) = 1.

Proof Clearly, without contact tracing, we have κ–′(a) = –(μ(a) + σ (a))κ–(a). If backward
tracing is active, we add an additional component to the removal rate that is caused by a
tracing event triggered by an infectee. As only infectees cause tracing (tracing events are
only triggered by “children”), the probability to be infectious at a given age of infection a
is the same for infector and infectee. Hence the recovery rate of an infectee can be written
as the hazard rate

–κ–∗ ′(b)
κ–∗ (b)

.

This hazard rate includes the rate of direct observation (that triggers a backward tracing
event), the rate at which the infectee is discovered by recursive tracing (which triggers a
tracing event), and by spontaneous removal (which does not trigger a tracing event). Since
spontaneous removal does not lead to contact tracing, we subtract this rate and find the
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rate at which direct diagnosis or detection by contact tracing happens,

–κ–∗ ′(b)
κ–∗ (b)

– μ(b).

The focal individual (for which we compute κ–(a)) produces during his/her infectious pe-
riod (so far) [0, a] infectees. When he/she had age c ∈ [0, a], his/her infection rate was β(c).
The probability that the infectee is still infectious when the age of the focal individual/the
infector is a is κ(a – c). The rate of direct or indirect observation of the infectee with age
of infection a – c is –κ–∗ ′(a–c)

κ–∗ (a–c) – μ(a – c). A detected individual triggers a successful trac-
ing event with probability ηDCT. Hence, the contribution to the removal rate of our focal
individual due to tracing is given by

ηDCT

∫ a

0
β(c)κ–(a – c)

(
–κ–′(a – c)
κ–(a – c)

– μ(a – c)
)

dc. �

Proposition 7.2 The probability that a case is infectious at age of infection a for one-step
contact tracing follows the following system of integro-differential equations,

d
da

κ–(a) = –κ–(a)
(

μ(a) + σ (a) (29)

+ ηDCT

∫ a

0
β(c)

{
κ–(a – c)σ (a – c)

}
dc

)

with κ–(0) = 1.

Proof The proof parallels that of Proposition 7.1; we only need to know that individuals
have the rate of direct detection σ (a – c); this rate replaces the expression (detection rate
for recursive tracing) –κ–∗ ′(a–c)

κ–∗ (a–c) – μ(a – c). �

Forward tracing. In contrast to backward tracing, in forward tracing the position of a
focal individual in the tree/forest of infectees matter. If I’m the primary infected person
(generation 0), I have no infector (inside of the population). I cannot be traced by forward
tracing. The first generation (infectee of generation 0) can only be traced via the primary
infected person. The second generation can be traced by the zeroth and first generation,
and so on.

That is, for forward tracing, the “generation” of an individual does influence the proba-
bility to be infectious at age of infection a. “Generation” refers to generation of infection;
the primary case has generation 0, those infected by the primary case have generation 1
etc. We denote by κ+

i (a) the probability to be infectious at age of infection a for an indi-
vidual of generation i ∈N0 under forward tracing.

Furthermore, we introduce the probability to be infectious at age of infection a in case
that we do not have contact tracing (p = 0) for symptomatic/asymptomatic infectees,

κ̂(a) = e–
∫ a

0 μ(s)+σ (s) ds. (30)

In order to determine κ+
i (a), we first introduce and investigate

κ+
i (a|b),
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which is the probability that an individual in generation i is infectious at age of infection a,
if we condition on the fact that the infector has age of infection a + b (s.t. the infector—at
the time of the corresponding infectious contact—has age of infection b).

Proposition 7.3 In case of recursive tracing we have for i > 0

κ+(a|b) = κ̂(a)
{

1 – ηDCT

∫ a

0

(
–(κ+

i–1(b + c))′

κ+
i–1(b + c)

– μ(b + c)
)

κ+
i–1(b + c)
κ+

i–1(b)
dc

}
. (31)

Proof Our focal individual is infectious if he/she did not recover already without being
traced, times the probability that no tracing event removed the individual from the class
of infectees,

κ+
i (a|b) = κ̂(a){1 – a successful tracing event did happen}.

In order to obtain the probability for a successful tracing event, we first note that we know
that the infector has been infectious at (his/her) age of infection b, s.t. the probability for
him/her to be infectious at age of infection b + c reads

κ+
i–1(b + c)
κ+

i–1(b)
.

As before, for recursive tracing, the detection rate is the hazard rate minus the rate to
recover spontaneously/unobserved,

–κ+
∗2,i–1(b + c)′

κ+
∗2,i–1(b + c)

– μ(b + c).

Hence, the desired probability reads

ηDCT

∫ a

0

(
–κ+

i–1(b + c)′

κ+
i–1(b + c)

– μ(b + c)
)

κ+
i–1(b + c)
κ+

i–1(b)
dc. �

Proposition 7.4 In case of one-step-tracing we have

κ+
i (a|b) = κ̂(a)

{
1 – ηDCT

∫ a

0
σ (b + c)

κ+
i–1(b + c)
κ+

i–1(b)
dc

}
. (32)

Proof The argument parallels that of Proposition 7.3. We only need to take into account
that in one-step tracing the infectee has to be detected directly, which happens at rate σ (·).
This rate replaces the hazard rate minus the spontaneous recovery rate. �

In order to determine the desired probability κ+
i (a) we remove the condition in κ+

i (a|b).
Thereto we determine the probability density for an infector to have age of infection b.
The net infection rate is βi(b)κi–1(b). Therefore, the distribution of the age of the infector
at the time of infection is given by

ϕi–1(b) =
βi(b)κi–1(b)∫ ∞

0 βi(c)κi–1(c) dc
.



Pollmann et al. EPJ Data Science           (2021) 10:37 Page 32 of 53

Corollary 7.5 In one-step tracing as well as in recursive tracing, we have for i > 0

κ+
i (a) =

∫ ∞

0
κ+

i (a|b)ϕi–1(b) db, (33)

where we have to use for κ+
i (a|b) the solution for one-step or recursive tracing, depending on

the scenario chosen.

We find an iterative formula. Analysis for p small as well as numerical analysis (for gen-
eral ηDCT ∈ [0, 1]) shows that the convergence is rather fast: after 3–5 generations, the
κ+

i (a) have largely converged.
Full tracing. Full tracing is just a combination of forward- and backward tracing. Let κi(a)

denote the “survival probability” for a target individual of generation i under full tracing.
In order to find κ0(a), we only need to understand that the primary infected individual

can only be traced by downstream infectees, that is, is only exposed to backward tracing.
Also the next generations have—without forward tracing—just the “survival” probabil-
ity κ–(a). We need to multiply this probability with the probability not to be target of a
forward tracing event in order to obtain κi(a).

That is, we use the argument for forward tracing, where we replace κ̂(a) (survival proba-
bility without tracing) by κ–(a) (survival probability under backward tracing only), and get
immediately the following result (notation is an obvious extension of the notation above).

Proposition 7.6 In case of recursive tracing we have for i > 0

κ(a|b) = κ–(a)
{

1 – ηDCT

∫ a

0

(
–(κi–1(b + c))′

κi–1(b + c)
– μ(b + c)

)
(34)

× κi–1(b + c)
κi–1(b)

dc
}

.

Proposition 7.7 In case of one-step-tracing we have

κi(a|b) = κ–(a)
{

1 – ηDCT

∫ a

0
σ (b + c)

κi–1(b + c)
κi–1(b)

dc
}

. (35)

With

ϕi–1(b) =
βi(b)κi–1(b)∫ ∞

0 βi(c)κi–1(c) dc

and for recursive contact tracing (one-step: parallel formula)

∫ ∞

0
κi(a|b)ϕi–1(b) db

=
∫ ∞

0 κi(a|b)βi(b)κi–1(b) db∫ ∞
0 βi(c)κi–1(c) dc

=

∫ ∞
0 [κ–(a){1 – ηDCT

∫ a
0 ( –(κi–1(b+c))′

κi–1(b+c) – μ(b + c)) κi–1(b+c)
κi–1(b) dc}]βi(b)κi–1(b) db∫ ∞

0 βi(c)κi–1(c) dc
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= κ–(a)

∫ ∞
0 {1 – ηDCT

∫ a
0 ( –(κi–1(b+c))′

κi–1(b+c) – μ(b + c)) κi–1(b+c)
κi–1(b) dc}βi(b)κi–1(b) db∫ ∞

0 βi(c)κi–1(c) dc

we finally get the result for full tracing (we summarize all necessary equations):

Theorem 7.8 (Recursive tracing) Let

d
da

κ–(a) = –κ–(a)
(

μ(a) + σ (a) (36)

+ ηDCT

∫ a

0
βi(c)κ–(a – c)

(
–κ–′(a – c)
κ–(a – c)

– μ(a – c)
)

dc
)

with κ–(0) = 1. Then,

∫ ∞

0
βi(c)κi–1(c) dcκi(a) = κ–(a)

∫ ∞

0

{
1 – ηDCT

∫ a

0

(
–(κi–1(b + c))′

κi–1(b + c)
– μ(b + c)

)

× κi–1(b + c)
κi–1(b)

dc
}
βi(b)κi–1(b) db. (37)

Theorem 7.9 (One-step tracing) Let

d
da

κ–(a) = –κ–(a)
(

μ(a) + σ (a)

+ ηDCT

∫ a

0
βi(c)κ–(a – c)σ (a – c) dc

)
(38)

with κ–(0) = 1. Then,

κi(a) = κ–(a)

∫ ∞
0 {1 – ηDCT

∫ a
0 σ (b + c) κi–1(b+c)

κi–1(b) dc}βi(b)κi–1(b) db∫ ∞
0 βi(c)κi–1(c) dc

.

Note that it is straightforward (but tedious) to simplify these equations, s.t. they become
handy for the numerical analysis.

A.4 Reproduction number and exponential growth
A direct consequence of the dynamic, age-structured model is the possibility to determine
the reproduction number and the exponential growth rate right away from the survival
probability κ∞(a). The effective reproduction number is simply given by

Re =
∫ ∞

0
βi(a)κ∞(a) da. (39)

The exponent λ of the exponential growth in the onset S(t) ≈ S0 ≈ N can be determined
by the unique real root of the equation

1 =
∫ ∞

0
e–λaβi(a)κ∞(a) da. (40)

From here, we obtain T2 = ln(2)/λ.



Pollmann et al. EPJ Data Science           (2021) 10:37 Page 34 of 53

Figure 16 Influence of social distancing (reduction of the contact rate) and contact tracing on Re and T2.
(a) and (c): One-step tracing, (b) and (d) recursive tracing. (a) and (b) Re , (b) and (d) T2. Note that in (b) and (c),
there is a singularity for T2 at the line Re = 1, where T2 becomes infinite

A.5 Reproduction number in case of DCT
Recall that we consider a homogeneously mixing population, where a fraction papp of in-
dividuals have a DCT device. Only contacts between these individuals can be traced, with
probability ηDCT. Let Reff (p) denote the reproduction number of a homogeneous model,
where each contact is traced with probability p. Then, a straightforward generalization of
the considerations above yields that non-app-users have the reproduction number Reff (0),
while those with app have the reproduction number

Reff = Reff (ηDCTpapp).

Since we assume homogeneous mixing, we obtain the overall reproduction number as

Reff = pappReff (ηDCTpapp) + (1 – papp)Reff (0).

This formula is exact, but due to the nonlinearity in Reff (·) it cannot be simplified. However,
if papp,ηDCT � 1, we can linearize at papp = 0, and find

Reff ≈ pappReff (ηDCTpapp) + (1 – papp)R0

= papp
(
R0 + papppRct

eff
′(0)

)
+ (1 – papp)R0
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Figure 17 Influence of the assumed fraction of
asymptomatic and unreported cases on (a) Re and (b)
T2, where we also take ηDCT into account (only
recursive tracing considered)

Figure 18 The cumulative number of exposed people from the four models and for the settings from Tab. 4

= R0 – papp
2ηDCTRct

eff
′(0)) ≈ Reff

(
ηDCTpapp

2).

In lowest order, tracing within a subgroup of relative size papp and a tracing probability
ηDCT is equivalent with tracing the total population with a tracing probability papp

2ηDCT.
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Figure 19 Outbreak dynamics when someone with zero days latency period cannot infect others on the
same day he or she became infected

Figure 20 Outbreak dynamics when someone with zero days latency period can infect others on the day he
or she became infected

A.6 Results
We identify the parameters of the models as described below. Using numerical analysis,
it is possible to estimate the influence of control measures on the spread of the infection.
Particularly, we are interested in the effect of contact tracing and social distancing on the
effective reproduction number and the doubling time. Moreover, the sensitivity of the re-
sults on parameters for which there is little data is explored. Here, our focus is the fraction
of asymptomatic cases.

If we inspect Fig. 16, we find first of all that recursive tracing is more efficient than one-
step tracing (one must not confuse one-step tracing with level-1 tracing: here, we only
follow infectious contacts for one step). In practice, the tracing delay will lead to a situa-
tion between one-step tracing and recursive tracing: even if recursive tracing is the aim,
as we loose time in tracing each contacts, after a few steps persons might already be re-
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Figure 21 The number if infectious people each day for a social graph and a homogeneous population is
compared

Figure 22 Same as Fig. 6 changing the following parameters: papp = 0.6, α · fm = 0.6
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Figure 23 The effective reproductive number reached once interventions are turned on is shown for all
combinations of parameters in the default parameter scan (black font color in Tab. 1)

covered when traced. In any case, small tracing probabilities have only a minor impact. If
we increase the tracing probability to 0.7–0.8, we find that an eradication of the infection
is possible. On the other side, social distancing is most effective for small tracing prob-
abilities. The combination of contact tracing and social distancing is most likely best in
the middle range: a reduction of contacts by 30%, and a tracing probability around 0.6–0.7
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Figure 24 The fraction of the population quarantined on average over one year of the outbreak is shown for
all combinations of parameters in the default parameter scan (black font color in Tab. 1)

will be able to reduce the doubling time considerably, and even bring Re down to values
around 1.

The parameter values are not all precisely known. In particular, at the present time,
the fraction of undiagnosed cases is rather unclear. In the literature, there are numbers
between 1.2% and 95%. The parameter scan in Fig. 17 indicates that the results are rather
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Figure 25 The fraction of the population that is quarantined on the day when most people are quarantined
is shown for all combinations of parameters in the default parameter scan (black font color in Tab. 1)

stable for a wide range of α (from 10–50%). A major change can be observed above 70%.
This figure might imply that the results are rather stable against the parameter choice in α.

A.7 Choice of parameter functions
The medical investigations yield particularly data on:



Pollmann et al. EPJ Data Science           (2021) 10:37 Page 41 of 53

Figure 26 The total fraction of the population that has been exposed one year into the outbreak is shown for
all combinations of parameters in the default parameter scan (black font color in Tab. 1)

– Incubation period (time to the onset of symptoms/diagnosis)
– latent period (time until infectivity becomes positive) and viral load (a proxy for

infectivity)
– fraction of asymptomatic cases.
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Figure 27 The fraction of the population that is sick on the day when most people are sick is shown for all
combinations of parameters in the default parameter scan (black font color in Tab. 1)

Incubation period Time to symptoms: We use a � distribution, density

f (a) =
1

βi�(γI)

(
a
βi

)γI –1

e–a/βi (41)

with parameters βi = 2.44, γI = 3.06 days. Let σ̂ (a) be the conditioned detection rate: It is
only valid under the condition that an individual is indeed detected. That rate is just the
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Figure 28 The fraction of MC runs where the outbreak stopped (by chance) before the threshold number of
infected people to start interventions was reached

hazard rate of f (a),

σ̂ (a) =
f (a)

1 –
∫ a

0 f (a′) da′ .

We later need to compute the rate σ (a) for the model, where we take into account the
fraction of asymptomatic cases.
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Figure 29 The effective reproductive number reached once interventions are turned on is shown for all
combinations of parameters in the timing and delay parameter scan

Infectivity Given that the onset of symptoms of a person at age A0 (a Gamma-distributed
random variable, as described above), the infectious period starts A0 –�onset, where �onset

is a fixed time span (we choose �onset = 3 days). If a0 – � < 0, then the infectivity period
starts right away at the time of the infection. That is, max{A0 –�onset, 0} is the latent period.
We furthermore assume that the infectious period is a fixed (deterministic) time span Tcon.

This assumption about the latent period is an input for the age-dependent infection rate
as well as for the recovery rate.

(b.1) Recovery rate. If A0 ∼ Gamma(βi,μI) is a random variable that states the onset of
symptoms, we aim at the distribution of the recovery age Ar = max{A0 – �onset, 0} + Tcon.
Clearly, P(Ar < a) = 0 for a ≤ Tcon. A short computation yields for a > Tcon

P(Ar < a) = P(Ar < a|A0 < �onset)P(A0 < �onset)

+ P(Ar < a|A0 > �onset)P(A0 > �onset)

= P(A0 < �onset + a – Tcon).
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Figure 30 The fraction of the population quarantined on average over one year of the outbreak is shown for
all combinations of parameters in the timing and delay parameter scan

Hence, in total we have

P(Ar < a) =

⎧⎨
⎩0 if a < Tcon,

1 –
∫ �onset+a–Tcon

0 f (a′) da′ if a > Tcon.

As the cumulative distribution involves a jump, the hazard rate (recovery rate) incorpo-
rates a delta peak. However, for the practical implication, we replace the jump by a steep
linear increase during a small age interval. The corresponding hazard rate yields the re-
moval rate μ̂(a), conditioned on the fact that a person will not be diagnosed if they recover
spontaneously. The parameter Tcon is computed below.

(b.2) Infectivity. We again denote by A0 the random variable that states the onset of the
symptoms, A0 ∼ gamma(βi,γI).

The ingredient for the infectivity is an approximation of the viral load, given by a shifted
Gamma distribution,

βi(a|A0) =
1

βx�(γx)

(
(a – (μx + A0))+

βx

)γx–1

e–(a–(μx+A0))/βx
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Figure 31 The fraction of the population that is quarantined on the day when most people are quarantined
is shown for all combinations of parameters in the timing and delay parameter scan

with the understanding that this formula is only valid for A0 > –μx. Here, (x)+ = 0 for x < 0
and (x)+ = x if x > 0. The parameters are given by:

μx = –2.43 days , βx = 1.56, γx = 2.08 days .

If A0 + μx < 0, we assume that symptoms start right away. Hence,

βi(a|A0) =
1

βx�(γx)

(
(a – max{A0 + μx, 0})+

βx

)γx–1

e–(a–max{A0+μx ,0})/βx .

Then (as in our case μx < 0). βi is proportional to

βi(a) ∼
∫ ∞

0
βi(a|b)f (b) db =

∫ –μx

0
βi(a|b)f (b) db +

∫ ∞

–μx

βi(a|b)f (b) db

= P(A0 < –μx)βi(a|b = 0) +
∫ ∞

–μx

βi(a|b)f (b) db,

where f (b) is given in (41). The unknown proportionality constant models the number of
contacts per day. This constant is calibrated s.t. the basic reproduction number R0 is 2.5.
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Figure 32 The total fraction of the population that has been exposed one year into the outbreak is shown for
all combinations of parameters in the timing and delay parameter scan

We define Tcon by

∫ Tcon

0
βi(a|A0 = –μx) da = 0.99.

Asymptomatic cases We define the effective detection rate σ (a) and the effective removal
rate μ(a), based on the conditioned rates σ̂ (a) and μ̂(a), and the fraction of asymptomatic
cases α. The probability to be infectious is a convex combination of the probabilities to
be infectious for a symptomatic resp. asymptomatic individual (where we understand that
an “asymptomatic individual” is not only asymptomatic at a given time, but will remain
asymptomatic until recovery). That is,

κ(a) = αe–
∫ a

0 μ̂(τ ) dτ + (1 – α)e–
∫ a

0 σ̂ (τ ) dτ .

In order to find the effective rates, we compute the hazard rate of κ(a),

αμ(a)e–
∫ a

0 μ̂(τ ) dτ + (1 – α)σ (a)e–
∫ a

0 σ̂ (τ ) dτ

αe–
∫ a

0 μ̂(τ ) dτ + (1 – α)e–
∫ a

0 σ̂ (τ ) dτ
.
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Figure 33 The fraction of the population that is sick on the day when most people are sick is shown for all
combinations of parameter in the timing and delay parameter scan

From here, we immediately find the desired definitions for μ(a) and σ (a),

σ (a) =
(1 – α)σ̂ (a)e–

∫ a
0 σ̂ (τ ) dτ

αe–
∫ a

0 μ̂(τ ) dτ + (1 – α)e–
∫ b

0 σ̂ (τ ) dτ
,

μ(a) =
αμ̂(a)e–

∫ a
0 μ̂(τ ) dτ

αe–
∫ a

0 μ̂(τ ) dτ + (1 – α)e–
∫ b

0 σ̂ (τ ) dτ
.

A.8 Model benchmarking
Monte Carlo models rely on computer code, and therefore must be verified to work as
designed. We do this in two ways: (a) by comparing results to deterministic models, and
(b) by comparing the results from two implementations written independently by two
teams using two different programming languages and toolsets. One example for (a) is
shown in Fig. 18. The deterministic models cannot model all effects we consider, therefore
POC testing and social distancing was turned off in the Monte Carlo models, and other
parameters were chosen as summarized in Table 4. The parameters in the ODE model
do not have straight-forward correspondence to the parameters in the table, so they were
tuned such that the outcome matches the other models as well as possible.
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Figure 34 The fraction of MC runs where the outbreak stopped (by chance) before the threshold number of
infected people to start interventions was reached (timing and delay parameter scan)

The analytic models are, strictly speaking, not valid once a sizable fraction of the popu-
lation has been exposed, since they do not model non-linear effects such as two exposed
people meeting each other. Nevertheless we show the full outbreak curves here.

The ODE model matches quite well with the Python and C++ models, but it has the
advantage of having been tuned to achieve as good a match as possible. The age-structure
model has a time offset compared to the others, but the time when the outbreak takes off
in the IB models is very variable so such offsets are not relevant.

Even though both individual-based models implement the same disease parameters and
intervention protocols, there are a number of implementations details that are treated dif-
ferently and can lead to slightly different outcomes. Examples of this are whether nor not
people with a 0 days latency period can infect others on the same day they themselves be-
came infected, or whether we allow someone to still infect others on the day they become
symptomatic and are quarantined.

Figures 19 and 20 compare what happens for two implementations of a latency period of
zero days. In one implementation, it is possible for the carrier to infect others on the same
day he or she became exposed. In the other implementation, a carrier can infect others
only on days after he or she became exposed.
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Table 4 Table of settings used to benchmark the four models against each other

Parameter/Setting Benchmark value

Disease and population
Size of population 10k
Population structure uniform

Transmission probability (βi)

⎛
⎝0.0595

5.0
3.2

⎞
⎠

Contact rate
R0
Trans. prob. curve (μ,γ ,β) (–2.42, 2.08, 1.56)
Incubation time curve (μ,γ ,β) (0, 3.06, 2.44)
Fraction symptomatic (α) 0.5
Asymptomatic trans. scaling (ηas) 1.0

Interventions
Interventions start (fi) 0.00
Quarantine duration 14 days

Tracing
Reported from symptoms (fm) 1.0
Trace back (�Ttrace) 14 [days]
App coverage (papp) 1
Tracing efficiency (ηDCT) 0.7
Tracing order 1
Trace uninfected contacts False
Tracing delay (Tdelay) 0 [days]

One big difference between the IB models is that the Python model accounts for the
case where a contact is traced from an index case who did not infect the contact, but in
the time between when the contact took place and when the person was traced, the contact
was infected by someone else. In the C++ model, this special case is not considered. The
effect on the outcomes is small, especially when taking a look-back time of only 7 days as
done for most of the main scan.

Figure 21 shows how the population structure affects the course of the epidemic.
Social graph populations lead to long-term changes in the outbreak dynamic that are

not accurately captured by just the reproductive number reached after interventions.
Figure 22 is similar to Fig. 6 but for different parameters. In this scenario, the reproduc-

tive number changes both due to the interventions and naturally because a large enough
fraction of the population becomes exposed early on that non-linear effects are important.

A.9 Results from all scenarios
The results for the main parameter scan are shown in Figs. 23 through 28. Results for the
scan with different timing and delays are shown in Figs. 29 through 34.

Acknowledgements
We acknowledge the support by the DFG Cluster of Excellence “Origin and Structure of the Universe”. The simulations
were carried out on the computing facilities of the Computational Center for Particle and Astrophysics (C2PAP) and on
the Max Planck Institute for Physics computing cluster. This work was undertaken in the context of the ContacTUM
collaboration.

Funding
This work was undertaken pro-bono by the authors without any funding. Computing resources available to the authors
were used as listed in the acknowledgements section. Open Access funding enabled and organized by Projekt DEAL.

Availability of data and materials
The equations derived for the deterministic models are presented in detail in the supplementary materials. All data
generated or analysed during this study are included in this published article and its supplementary information files, and
can be re-generated using computer code made publicly available [59, 60].



Pollmann et al. EPJ Data Science           (2021) 10:37 Page 51 of 53

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
TRP and SS coordinated the four different models and the epidemiological inputs. JM coordinated the analytic models. JP
prepared the epidemiological input parameters and made sure all model assumptions were based on proper virological
inputs. ER proposed the questions to answer and coordinated with the digital contact tracing community. TRP and CW
wrote one of the MC simulations. CH, SMB, and AT wrote the other MC simulation. LS and AT ran the simulations and
prepared the graphical output. JM, UA, and AO developed the ‘age since infection’ model. BN, GZ, and MN developed the
ODE model. TRP, SS, ER, and JM interpreted the results. TRP, SS, JM, JP, and BN wrote the manuscript. All authors read and
approved the final manuscript.

Author details
1Physics Department, Technical University of Munich, 85748, Garching, Germany. 2Center for Mathematical Sciences,
Technical University of Munich, 85748, Garching, Germany. 3Institute for Computational Biology, Helmholtz Center
Munich, 85764, Neuherberg, Germany. 4Department of Medical Oncology, University Hospital Heidelberg, National
Center for Tumor Diseases (NCT) Heidelberg, 69120, Heidelberg, Germany. 5Max Planck Institute for Physics, Munich,
Germany. 6Department of Mathematics, Technical University of Munich, 85748, Garching, Germany.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 15 October 2020 Accepted: 22 June 2021

References
1. Rothe C, Schunk M, Sothmann P et al (2020) Transmission of 2019-NCOV infection from an asymptomatic contact in

Germany. N Engl J Med 382(10):970–971. https://doi.org/10.1056/NEJMc2001468
2. Lee VJ, Chiew CJ, Khong WX (2020) Interrupting transmission of COVID-19: lessons from containment efforts in

Singapore. J Travel Med 27(3). https://doi.org/10.1093/jtm/taaa039
3. Fraser C, Riley S, Anderson RM, Ferguson NM (2004) Factors that make an infectious disease outbreak controllable.

Proc Natl Acad Sci 101(16):6146–6151. https://doi.org/10.1073/pnas.0307506101
4. Ferretti L, Wymant C, Kendall M et al (2020) Quantifying SARS-CoV-2 transmission suggests epidemic control with

digital contact tracing. Science. https://doi.org/10.1126/science.abb6936
5. Kretzschmar M, Rozhnova G, Bootsma M et al (2020) Time is of the essence: impact of delays on effectiveness of

contact tracing for COVID-19. medRxiv. https://doi.org/10.1101/2020.05.09.20096289
6. Australia. COVIDSafe app. https://github.com/AU-COVIDSafe. Accessed June 09, 2020
7. Austria. StoppCorona app. https://github.com/austrianredcross. Accessed: June 09, 2020
8. France. StopCovid app. https://gitlab.inria.fr/stopcovid19. Accessed: June 09, 2020
9. India. Aarogya Setu app. https://www.mygov.in/aarogya-setu-app. Accessed: June 09, 2020
10. Iceland. Rakning C19. https://github.com/aranja/rakning-c19-app. Accessed: June 09, 2020
11. Italy. Immuni App. https://github.com/immuni-app. Accessed: June 09, 2020
12. Norway. Smittestopp app. https://github.com/djkaty/no.simula.smittestopp. Accessed: June 09, 2020
13. UK. NHS Covid-19 app. https://github.com/nhsx/. Accessed: June 09, 2020
14. Singapore. TraceTogether. https://github.com/OpenTrace-community and https://bluetrace.io. Accessed: June 09,

2020
15. Switzerland. SwissCovid App. https://github.com/DP-3T/dp3t-app-android-ch. Accessed: 2020-06-09
16. Braithwaite I, Callender T, Bullock M, Aldridge RW (2020) Automated and partly automated contact tracing: a

systematic review to inform the control of COVID-19. Lancet Dig Health.
https://doi.org/10.1016/s2589-7500(20)30184-9

17. Hellewell J, Abbott S, Gimma A et al (2020) Feasibility of controlling COVID-19 outbreaks by isolation of cases and
contacts. Lancet Glob Health 8(4):488–496. https://doi.org/10.1016/S2214-109X(20)30074-7

18. Firth JA, Hellewell J et al (2020) Using a real-world network to model localized COVID-19 control strategies. Nat Med.
https://doi.org/10.1038/s41591-020-1036-8

19. Kiche J, Ngesa O, Orwa G (2019) On generalized gamma distribution and its application to survival data. Int J Stat
Prob 8:65. https://doi.org/10.5539/ijsp.v8n5p65

20. Mun J (2008) Models and 300 applications from the basel II accord to wall street and beyond. Wiley, New York. ISBN
978-0470179215

21. Mossong JL, Hens N, Jit M et al (2008) Social contacts and mixing patterns relevant to the spread of infectious
diseases. PLoS Med 5. https://doi.org/10.1371/journal.pmed.0050074

22. Lancichinetti A, Fortunato S, Radicchi F (2008) Benchmark graphs for testing community detection algorithms. Phys
Rev E 78:046110. https://doi.org/10.1103/PhysRevE.78.046110

23. Keziban Orman G, Labatut V, Cherifi H (2013) Towards realistic artificial benchmark for community detection
algorithms evaluation. Int J Web Based Commun 9. https://doi.org/10.1504/IJWBC.2013.054908

24. Réka A, Barabási A-L (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97.
https://doi.org/10.1103/RevModPhys.74.47

25. Ma S, Zhang J, Zeng M et al (2020) Epidemiological parameters of coronavirus disease 2019: a pooled analysis of
publicly reported individual data of 1155 cases from seven countries. medRxiv.
https://doi.org/10.1101/2020.03.21.20040329

26. He X, Lau EHY, Wu P et al (2020) Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med 26.
https://doi.org/10.1038/s41591-020-0869-5

https://doi.org/10.1056/NEJMc2001468
https://doi.org/10.1093/jtm/taaa039
https://doi.org/10.1073/pnas.0307506101
https://doi.org/10.1126/science.abb6936
https://doi.org/10.1101/2020.05.09.20096289
https://github.com/AU-COVIDSafe
https://github.com/austrianredcross
https://gitlab.inria.fr/stopcovid19
https://www.mygov.in/aarogya-setu-app
https://github.com/aranja/rakning-c19-app
https://github.com/immuni-app
https://github.com/djkaty/no.simula.smittestopp
https://github.com/nhsx/
https://github.com/OpenTrace-community
https://bluetrace.io
https://github.com/DP-3T/dp3t-app-android-ch
https://doi.org/10.1016/s2589-7500(20)30184-9
https://doi.org/10.1016/S2214-109X(20)30074-7
https://doi.org/10.1038/s41591-020-1036-8
https://doi.org/10.5539/ijsp.v8n5p65
https://doi.org/10.1371/journal.pmed.0050074
https://doi.org/10.1103/PhysRevE.78.046110
https://doi.org/10.1504/IJWBC.2013.054908
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1101/2020.03.21.20040329
https://doi.org/10.1038/s41591-020-0869-5


Pollmann et al. EPJ Data Science           (2021) 10:37 Page 52 of 53

27. Sanche S, Ting Lin Y, Xu C et al (2020) High Contagiousness and Rapid Spread of Severe Acute Respiratory Syndrome
Coronavirus 2. Emerg Infect Dis. https://doi.org/10.3201/eid2607.200282

28. Lauer SA, Grantz KH, Bi Q et al (2020) The incubation period of coronavirus disease 2019 (COVID-19) from publicly
reported confirmed cases: estimation and application. Ann Intern Med. https://doi.org/10.7326/M20-0504

29. Mizumoto K, Kagaya K, Zarebski A, Chowell G (2020) Estimating the Asymptomatic Proportion of 2019 Novel
Coronavirus onboard the Princess Cruises Ship, 2020. Euro Surveill: Eur Commun Dis Bull 25(10).
https://doi.org/10.1101/2020.02.20.20025866

30. Park SY, Kim Y-M, Yi S et al (2020) Coronavirus disease outbreak in call center, South Korea. Emerging infectious
diseases. https://doi.org/10.3201/eid2608.201274

31. Lavezzo E, Franchin E, Ciavarella C et al (2020) Suppression of COVID-19 outbreak in the municipality of Vo’, Italy.
medRxiv. https://doi.org/10.1101/2020.04.17.20053157

32. Corman VM, Rabenau HF, Adams O et al (2020) SARS-CoV-2 asymptomatic and symptomatic patients and risk for
transfusion transmission. medRxiv. https://doi.org/10.1101/2020.03.29.20039529

33. Nishiura H, Kobayashi T, Suzuki A et al (2020) Estimation of the asymptomatic ratio of novel coronavirus infections
(COVID-19). Int J Infect Dis. https://doi.org/10.1016/j.ijid.2020.03.020

34. Li R, Pei S, Chen B et al (2020) Substantial undocumented infection facilitates the rapid dissemination of novel
coronavirus (SARS-CoV2). Science 3221. https://doi.org/10.1126/science.abb3221

35. Zou L, Ruan F, Huang M et al (2020) SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl
J Med 382(12):1177–1179. https://doi.org/10.1056/NEJMc2001737

36. Kai-Wang To K, Tak-Yin Tsang O, Leung W-S et al Temporal profiles of viral load in posterior oropharyngeal saliva
samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect
Dis 3099(20). https://doi.org/10.1016/s1473-3099(20)30196-1

37. Furukawa NW, Brooks JT, Sobel J (2020) Evidence supporting transmission of severe acute respiratory syndrome
coronavirus 2 while presymptomatic or asymptomatic. Emerg Infect Dis 26. https://doi.org/10.3201/eid2607.201595

38. Wölfel R, Corman VM, Guggemos W et al (2020) Virological assessment of hospitalized patients with COVID-2019.
Nature. https://doi.org/10.1038/s41586-020-2196-x

39. Wei L, Su Y-Y, Zhi S-S et al (2020) Viral shedding dynamics in asymptomatic and mildly symptomatic patients infected
with SARS-CoV-2. Clinical microbiology and infection: the official publication of the European Society of Clinical
Microbiology and Infectious Diseases. https://doi.org/10.1016/j.cmi.2020.07.008

40. Lee S, Kim T, Lee E et al (2020) Clinical course and molecular viral shedding among asymptomatic and symptomatic
patients with SARS-CoV-2 infection in a community treatment center in the republic of Korea. JAMA internal
medicine. https://doi.org/10.1001/jamainternmed.2020.3862

41. Liu Y, Yan LM, Wan L et al (2020) Viral dynamics in mild and severe cases of COVID-19. Lancet Infect Dis
2019(20):2019–2020. https://doi.org/10.1016/S1473-3099(20)30232-2

42. Backer JA, Klinkenberg D, Wallinga J (2020) Incubation period of 2019 novel coronavirus (2019- ncov) infections
among travellers from Wuhan, China, 20 28 January 2020. Euro Surveill 25.
https://doi.org/10.2807/1560-7917.ES.2020.25.5.2000062

43. Streeck H, Schulte B, Kümmerer BM et al (2020) Infection fatality rate of SARS-CoV-2 infection in a German
community with a super-spreading event. medRxiv. https://doi.org/10.1101/2020.05.04.20090076

44. Byambasuren O, Cardona M, Bell KJL et al (2020) Estimating the extent of true asymptomatic covid-19 and its
potential for community transmission: systematic review and meta-analysis. medRxiv.
https://doi.org/10.1101/2020.05.10.20097543v2

45. Liu Y, Gayle AA, Wilder-Smith A, Rocklöv J (2020) The reproductive number of COVID-19 is higher compared to SARS
coronavirus. J Travel Med 27(2). https://doi.org/10.1093/jtm/taaa021

46. Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM (2005) Superspreading and the effect of individual variation on
disease emergence. Nature 438(7066):355–359. https://doi.org/10.1038/nature04153

47. Keeling MJ, Déirdre Hollingsworth T, Read JM (2020) The Efficacy of Contact Tracing for the Containment of the 2019
Novel Coronavirus (COVID-19). medRxiv. https://doi.org/10.1101/2020.02.14.20023036

48. Marc Schwob J, Miauton A, Petrovic D et al (2020) Antigen rapid tests, nasopharyngeal pcr and saliva pcr to detect
SARS-CoV-2: a prospective comparative clinical trial. medRxiv. https://doi.org/10.1101/2020.11.23.20237057

49. Merino-Amador P, Guinea J, Muñoz-Gallego I et al (2020) Multicenter evaluation of the panbio™ covid-19 rapid
antigen-detection test for the diagnosis of SARS-CoV-2 infection. medRxiv.
https://doi.org/10.1101/2020.11.18.20230375

50. Diekmann O, Heesterbeek JAP (2000) Mathematical epidemiology of infectious diseases: model building, analysis
and interpretation. Wiley, New York. ISBN 9780471492412

51. Brauer F (2008) Mathematical epidemiology: compartmental models in epidemiology. Lecture notes in mathematics.
Springer, Berlin. ISBN 978-3-540-78911-6

52. Diekmann O, Heesterbeek H, Britton T (2012) Mathematical tools for understanding infectious disease dynamics,
Princeton series in theoretical and computational biology. Princeton University Press, Princeton. ISBN 9781400845620

53. Müller J, Kuttler C (2015) Methods and models in mathematical biology deterministic and stochastic approaches.
Springer, Berlin. ISBN 978-3-642-27250-9

54. Hethcote HW, Yorke JA (1984) Gonorrhea transmission dynamics and control. Springer, Berlin. ISBN
978-3-662-07544-9

55. Kiss IZ, Green DM, Kao RR (2006) Infectious disease control using contact tracing in random and scale-free networks.
J R Soc Interface. https://doi.org/10.1098/rsif.2005.0079

56. Webb G, Browne C, Huo X et al (2015) A model of the 2014 ebola epidemic in West Africa with contact tracing. PLoS
Curr. https://doi.org/10.1371/currents.outbreaks.846b2a31ef37018b7d1126a9c8adf22a

57. Müller J, Kretzschmar M, Dietz K (2000) Contact tracing in stochastic and deterministic epidemic models. Math Biosci
164. https://doi.org/10.1016/S0025-5564(99)00061-9

58. Browne C, Gulbudak H, Webb G (2015) Modeling contact tracing in outbreaks with application to Ebola. J Theor Biol
384:33–49. https://doi.org/10.1016/j.jtbi.2015.08.004

59. Pollmann TR, Wiesinger C. COVID-MC. https://github.com/tinapollmann/CVMC

https://doi.org/10.3201/eid2607.200282
https://doi.org/10.7326/M20-0504
https://doi.org/10.1101/2020.02.20.20025866
https://doi.org/10.3201/eid2608.201274
https://doi.org/10.1101/2020.04.17.20053157
https://doi.org/10.1101/2020.03.29.20039529
https://doi.org/10.1016/j.ijid.2020.03.020
https://doi.org/10.1126/science.abb3221
https://doi.org/10.1056/NEJMc2001737
https://doi.org/10.1016/s1473-3099(20)30196-1
https://doi.org/10.3201/eid2607.201595
https://doi.org/10.1038/s41586-020-2196-x
https://doi.org/10.1016/j.cmi.2020.07.008
https://doi.org/10.1001/jamainternmed.2020.3862
https://doi.org/10.1016/S1473-3099(20)30232-2
https://doi.org/10.2807/1560-7917.ES.2020.25.5.2000062
https://doi.org/10.1101/2020.05.04.20090076
https://doi.org/10.1101/2020.05.10.20097543v2
https://doi.org/10.1093/jtm/taaa021
https://doi.org/10.1038/nature04153
https://doi.org/10.1101/2020.02.14.20023036
https://doi.org/10.1101/2020.11.23.20237057
https://doi.org/10.1101/2020.11.18.20230375
https://doi.org/10.1098/rsif.2005.0079
https://doi.org/10.1371/currents.outbreaks.846b2a31ef37018b7d1126a9c8adf22a
https://doi.org/10.1016/S0025-5564(99)00061-9
https://doi.org/10.1016/j.jtbi.2015.08.004
https://github.com/tinapollmann/CVMC


Pollmann et al. EPJ Data Science           (2021) 10:37 Page 53 of 53

60. Hack C, Meighen-Berger S, Turcati A. Contagion. https://github.com/chrhck/contagion
61. Seow J, Graham C, Merrick B et al (2020) Longitudinal evaluation and decline of antibody responses in SARS-CoV-2

infection. medRxiv. https://doi.org/10.1101/2020.07.09.20148429
62. Quan, Long X, Jun Tang X, Lin Shi Q et al Clinical and immunological assessment of asymptomatic SARS-CoV-2

infections. Nat Med 26. https://doi.org/10.1038/s41591-020-0965-6
63. Sekine T, Perez-Potti A, Rivera-Ballesteros O et al (2020) Robust T cell immunity in convalescent individuals with

asymptomatic or mild COVID-19. bioRxiv. https://doi.org/10.1101/2020.06.29.174888
64. Endo A, Abbott S, Kucharski AJ, Funk S (2020) Estimating the overdispersion in COVID-19 transmission using outbreak

sizes outside China. Wellcome Open Res 5:67. https://doi.org/10.12688/wellcomeopenres.15842.1
65. Kucharski AJ, Russell TW, Diamond C et al Early dynamics of transmission and control of COVID-19: a mathematical

modelling study. Lancet Infect Dis 20. https://doi.org/10.1016/S1473-3099(20)30144-4
66. Aylward BW, Liang WP (2020) Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). The

WHO-China Joint Mission on Coronavirus Disease 2019, 16–24
67. Harrison RL (2010) The construction of next-generation matrices for compartmental epidemic models. J R Soc

Interface 7:873–885. https://doi.org/10.1098/rsif.2009.0386

https://github.com/chrhck/contagion
https://doi.org/10.1101/2020.07.09.20148429
https://doi.org/10.1038/s41591-020-0965-6
https://doi.org/10.1101/2020.06.29.174888
https://doi.org/10.12688/wellcomeopenres.15842.1
https://doi.org/10.1016/S1473-3099(20)30144-4
https://doi.org/10.1098/rsif.2009.0386

	The impact of digital contact tracing on the SARS-CoV-2 pandemic-a comprehensive modelling study
	Abstract
	Keywords

	Introduction
	Model inputs
	Social contact structure
	Epidemiological parameters
	Intervention protocols

	Models
	Deterministic models
	Individual-based models

	Results
	The effect of instantaneous contact tracing on an ongoing epidemic
	Contact tracing in combination with random testing and social distancing
	The effect of reduced contagiousness of asymptomatic carriers
	The effect of timing, delays, and second order tracing
	Outbreak probability
	Sensitivity of results to the social contact structure

	Discussion
	Limitations

	Summary
	Appendix
	Incubation period
	Infectivity
	Asymptomatic cases

	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


