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Abstract
We are interested in the widespread problem of clustering documents and finding
topics in large collections of written documents in the presence of metadata and
hyperlinks. To tackle the challenge of accounting for these different types of datasets,
we propose a novel framework based on Multilayer Networks and Stochastic Block
Models. The main innovation of our approach over other techniques is that it applies
the same non-parametric probabilistic framework to the different sources of datasets
simultaneously. The key difference to other multilayer complex networks is the strong
unbalance between the layers, with the average degree of different node types
scaling differently with system size. We show that the latter observation is due to
generic properties of text, such as Heaps’ law, and strongly affects the inference of
communities. We present and discuss the performance of our method in different
datasets (hundreds of Wikipedia documents, thousands of scientific papers, and
thousands of E-mails) showing that taking into account multiple types of information
provides a more nuanced view on topic- and document-clusters and increases the
ability to predict missing links.

Keywords: Stochastic block models; Multilayer networks; Natural language
processing; Complex systems; Data science

1 Introduction
A widespread problem in modern Data Science is how to combine multiple data types such
as images, text, and numbers in a meaningful framework [1–5]. The traditional approach
to tackle this challenge is to construct machine learning pipelines in which each data type
is treated separately—sequentially or in parallel—and the partial results are combined at
the end of the procedure [6, 7]. There are two problems with such a procedure. First, it
leads to the development of ad-hoc solutions that are highly contingent on the dataset in
question [8, 9]. Second, each model is trained independently from one another, meaning
that the relationships between the different types of data are not taken into account [10,
11]. These problems show the need of developing a unified statistical framework applied
simultaneously to the different types of data [12].

In this paper, we investigate the problem of clustering and finding topics in collections
of written documents for which additional information is available as metadata and as hy-
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Figure 1 Different views on the relationship between written documents. Lower layer: a bipartite
multi-graph of documents (circles) and word types (triangles), links correspond to word tokens. Middle layer:
directed graph of documents (e.g., hyperlinks in Wikipedia or citations in Scientific Papers). Upper layer:
a bipartite graph of documents and tags (squares), used to classify the documents

perlinks between documents. We obtain a unified statistical framework to this problem by
mapping it to the problem of inferring groups in multilayer networks. The key design for
the unified framework proposed here is inspired by the connections [3, 13–15] between
the problems of identifying (i) topics in a collection of written documents (i.e. topic mod-
eling) [16] and (ii) communities in complex networks (i.e. community detection) [17]. In
particular, Ref. [15] shows that both problems can be tackled using Stochastic Block Mod-
els (SBM) [3, 12, 18–22] and that SBMs, previously applied to find communities in complex
networks, outperform and overcome many of the difficulties of the most popular unsuper-
vised methods to infer structures from large collections of texts (topic modelling methods
such as the Latent Dirichlet Allocation [23] and its generalizations). However, these ap-
proaches have been applied only to the textual part of collections of documents, ignoring
additional information available about them. For instance, in datasets of scientific publica-
tions, one would consider only the text of the articles but not the citation network (used in
traditional community detection methods [17]) or other metadata (such as the journal or
bibliographical classification) [24, 25]. We propose here an extension of Ref. [15] and show
how the diversity of information typically available about documents can be incorporated
in the same framework by using multilayer SBMs [3, 10, 11]. As illustrated in Fig. 1, in ad-
dition to the bipartite Document-Word layer discussed in Ref. [15], here we incorporate
a Hyperlink layer connecting the different written documents and a Metadata-Document
layer that incorporates tags and other metadata. The key difference to other multilayer net-
works [4], as explored in Sect. 2 below, is that statistical laws [26] governing the frequency
of words on documents leave fingerprints on the density of the different network layers.
Our investigations in different datasets, reported in Sect. 3 for collection of Wikipedia
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articles and in the Supplementary Information for three other datasets, reveal that the
proposed multilayer approach leads to improved results when compared to both the topic
modelling approach of [15] and the usual community detection of (hyperlink) networks.
Our approach leads to a more nuanced view on the communities of documents, generates
a list of topics associated to the communities, and improves the link-prediction capabili-
ties when compared to the hyperlink network alone [27]. The details on our methods can
be found in the appendices, Supplementary Information, and in the repository [28].

2 Multiple data sources as multilayer networks
In this section we introduce the general methodology of our paper: we introduce the types
of data we are interested in (Sect. 2.1), we show how they can be represented as a multilayer
network and discuss the properties of these networks (Sect. 2.2), and we describe how they
can be modelled using Stochastic Block Models (Sect. 2.3).

2.1 Setting: multiple data sources
We consider a collection of d = 1, . . . , D documents and we are interested in clustering and
finding underlying similarities between them using combinations of the following infor-
mation:

Text (T): Each document contains kd word tokens from a vocabulary of V word
types (M =

∑
d kd is the total number of word tokens).

Hyperlinks (H): Documents are linked to each other by building a (directed) graph or
network.

Metadata (M): Documents are classified by tags or other metadata.
These characteristics are typical for textual data and networks. Here we explore three

types of such datasets, summarized in Table 1. The main dataset we use to illustrate our
results was extracted from the English Wikipedia, where the documents are articles (in
scientific categories), the text is the content of the articles, hyperlinks are links between
articles contained in the text, and metadata are tags introduced by users to classify the
articles (categories). In our main example, we selected hundreds of articles in one of three
scientific categories of Wikipedia (see Appendix 1 for details). Our main findings are con-
firmed in a second Wikipedia dataset (obtained choosing different scientific categories), in
a citation dataset (documents are scientific papers, hyperlinks are citations, the text is ex-
tracted from the title and abstract, and metadata are scientific categories), and in an E-mail
dataset (documents are all E-mails from the same user, hyperlinks correspond to E-mails
sent between users, and the text is the content of the E-mails). These results and further
details of the data are presented in the Supplementary Information 1 (see Additional file
1-Sect. 1).

2.2 Data as networks
The data described above can be represented as multilayer networks. The Hyperlink layer
is the most obvious one, where documents are nodes and the hyperlinks are directed
edges. The Metadata layer is built by a bipartite network consisting of metadata tags and
documents as nodes, whereby undirected edges correspond to documents containing a
given metadata-tag. Finally, the Text layer is obtained by restricting the text analysis to
the level of word frequencies (bag-of-words) and then considering the bipartite network
of word (types) and documents, where the edges correspond to word tokens (i.e., the count
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Table 1 Summary of the datasets used in this paper

Wikipedia Dataset
in Manuscript

Wikipedia Dataset in SI E-mail Dataset in SI Citation dataset in SI

Nodes:
Documents 120 316 4894 2542
Word Types 11,545 16,344 66,088 7677
Metadata Tags Physics, Maths,

Biology
Statistics, Maths, Electrical
Engineering

0 52 Categories

Edges:
Hyperlinks 309 1530 18,005 4590
Word Tokens 155,093 321,147 761,179 116,889
Tag Labels 120 316 0 2542

Figure 2 Scaling of average degree for each class of node reveals sparse and dense layers. Scaling of the
average degree 〈kX 〉 with the number of documents nD depends on the node types X . The average degree
was computed over all nodes of the same type (see legend, where H,T,M indicates the layer) in a sample of nD
documents from dataset. The symbols (error bars) are the average (standard deviation) over multiple random
samples of documents. The prediction for the degree of word types using Eq. (1) is also plotted for reference

of how often a word type appears in a document). While word-nodes and metadata tags
appear only in the text and the metadata layer, all layers have document nodes in common.
The novelty of our multilayer approach, in comparison to other approaches using multi-
layer networks, is the inclusion of the text layer. The importance of using a bipartite multi-
graph layer [22] to represent the text, instead of alternative “word networks” [14, 29, 30],
is that it contains the complete information of word occurrence in documents and allows
for a formal connection to topic-modelling methods [15, 20].

We now investigate the properties of the multilayer network described above, based on
known results in networks and textual data. The most striking feature of this network is
that the size of the different layers varies dramatically and scales differently with system
size. A first indication of this lack of balance is seen by looking at the number of edges
shown in Table 1: the number of edges in the text layer (i.e. word tokens) is substantially
larger than the number of nodes or edges in all of the other layers. Such an imbalance is
expected in all datasets in which the same type of data as outlined in Sect. 2.1 is present.
To see this, we investigate in Fig. 2 how the average degree 〈kX〉 (number of edges/ total
number of nodes) of the different node types X scale with the number of documents nD

(which plays the role of system size). For the document nodes in the Hyperlink layer and
the Text layer we see a constant average degree, typical of sparse networks. The Metadata
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layer yields a trivial scaling linear with nD as in dense networks because each document
has one edge to a metadata node. More interestingly, the average degree of the word type
nodes in the Text layer, 〈kV 〉, shows a growth that scales as

〈kV 〉 ∼ nγ

D, (1)

with 0 < γ < 1. This is between the usual limits expected for sparse (γ = 0) and dense
(γ = 1) networks.

We now explain the observation in Eq. (1) in terms of properties of text in general. More
specifically, the type-token relationship in texts follows Heaps’ law [26, 31, 32], which
states that the number of word types V scales with the word tokens M as

V ∼ Mβ , (2)

whereby 0 < β < 1 is the parameter of interest. The average degree is obtained as 〈kV 〉 =
M/V and nD ∝ M (where the proportionality constant is the average size of Wikipedia
articles, in word tokens). Combining this with Eqs. (1) and (2) we obtain that γ = 1 – β .
From the data used here, we estimate a Heaps’ exponent β = 0.56, that leads to a prediction
of γ = 0.44. This prediction is shown as a dashed line in Fig. 2 and is in good agreement
(for large nD) with the average degree of word nodes.

2.3 Stochastic block models
To achieve our goal of clustering documents and identifying topics considering multiple
type of datasets simultaneously, we need to explore statistical patterns in the connectivity
of the multilayer networks discussed above. This can be obtained using Stochastic Block
Models (SBMs). The choice of SBMs is based on the existence of a successful computa-
tional and theoretical framework, reviewed in Ref. [12], that can be applied to networks
with the characteristics needed in our problem: different types of networks (directed, bi-
partite, and multi edges), multilayer networks [11], and accounting for key ingredients
to detect communities (e.g., degree correction and a nested/hierarchical generalizations
[33]). Our previous analysis of bipartite word-document networks using this framework
has outperformed traditional topic modelling approaches [15].

SBMs are a family of random-graph models that generate networks with adjacency ma-
trix Aij with probability P(A|b), where the vector b with entries bi ∈ {1, . . . , B}, specifies the
membership of nodes i = 1, . . . , D into one of B possible groups. For our multilayer network
design—developed for the three types of data (H,T,M) as discussed in Sect. 2.2—we fit the
SBM framework to each layer combining them by constraining document groups to be
the same across all layers, i.e. with a joint probability

P(AH, AT, AM|b) = P(AH|b)P(AT|b)P(AM|b), (3)

where AH, AT and AM are the adjacency matrices of each respective layer. In each indi-
vidual layer, edges between nodes i and j are sampled from a Poisson distribution with
average [20]

θiθjωbi ,bj , (4)
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whereby ωrs is the expected number of edges between group r and s, bi is the group mem-
bership of node i, and θi is overall propensity with which a node is selected within its
own group. Non-informative priors are used for the parameters θ and ω and the marginal
likelihood of the SBM is computed as [34]

P(A|b) =
∫

P(A|ω, θ , b)P(ω, θ |b) dθ dω, (5)

Based on this, we consider the overall posterior distribution for a single partition condi-
tioned the edges on all layers [35]

P(b|AH, AT, AM) =
P(AH|b)P(AT|b)P(AM|b)P(b)

P(AH, AT, AM)
. (6)

With this approach, not only the words but also the documents are now clustered into
categories. We implement the inference using the package graph-tool [28, 36–38] (see
Additional file 1-Sect. 2 for details and Ref. [28] for our codes).

3 Application to Wikipedia data
In this section we apply the methodology and ideas discussed above to the Wikipedia
dataset which contains articles classified by users in the categories Mathematics, Physics,
and Biology. We are interested in comparing the outcomes and performance of the models
discussed above applied to the different types of information in the data. We fit multiple
variants of the multilayer SBM, whereby we choose different layers to be included in the
model.

3.1 Description length
The performance of each model can be measured by the extent to which a model succeeds
in describing (compressing) the data. This can be quantified computing its description
length (DL) [39, 40]

DL = – log P(AH, AT, AM, b), (7)

which describes the information necessary to describe both the data and the model pa-
rameters. From Eq. (6), we see that minimizing the description length is equivalent to
maximizing the posterior probability P(b|AH, AT, AM).

In Table 2 we summarise the DL obtained for each model in our dataset. It is quite clear
that the DL of the models containing the Text layer are much larger than those containing
only the Hyperlink and Metadata layers. This is a direct consequence of the large number
of word types in the data, when compared to documents or hyperlinks, the lack of bal-
ance between the layers mentioned in Sect. 2.2. This lack of balance between layers thus
has important consequences for the inference of partitions and our ability to compare the
different models. For instance, the effectiveness of the multilayer approach could be eval-
uated by comparing the DL of the multilayer model (e.g., DL of model H + T ) to the sum of
the DL of the single-layer models (e.g., DL of model H + DL of model T ). In our case this
comparison is not very informative because the DL of the combined model is dominated
by the largest layer and the DL of the small layer often lies within the fluctuations ob-
tained from multiple MCMC runs (see Additional file 1-Sect. 2). This reasoning suggests
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Table 2 Description length for each combination of layers in the multilayer stochastic block model.
We compute the average description length (DL), Eq. (7), for each model class alongside the standard
deviation over multiple MCMC runs. We also retrieved the minimum DL (MDL) over all the runs. The
DL of the Text layer exceeds the Hyperlink and Metadata layer by several orders of magnitude, thus
contributing the most to the Hyperlink + Text model

Model Layers DL MDL

H Hyperlink 1135 (0) 1135
T Text 257,775 (471) 256,973
M Metadata 76 (0) 76
H + M Hyperlink + Metadata 1295 (18) 1281
H + T Hyperlink + Text 270,230 (2228) 267,102
H + T + M Hyperlink + Text + Metadata 282,560 (624) 281,133

that the clustering of nodes would be dominated by the Text layer or, if the Text layer is
excluded, by the Hyperlink layer which will dominate over the Metadata layer.1 However,
we will see below that there are still significant and meaningful differences in the cluster-
ing of nodes obtained using different combinations of layers. This happens because the
inference problem remains non-trivial because the DL landscape contains many distinct
states with similar values in the DL so that even small effects due to the H and M layers
can affect the outcome.

3.2 Qualitative comparison of groups of documents
Community detection methods aim to find the partition of the nodes that best captures
the structure in the network in a meaningful way whilst being robust to noise [12, 21]. We
thus evaluate the different models by comparing the resulting partitioning of documents
[35]. Specifically, we fit the Hyperlink, Text, and Hyperlink + Text model and obtain a best
partition from combining multiple samples from the posterior P(b|A) for each model to
construct a point estimate, which utilises the different parts of the posterior distribution.
We then project the group membership onto the Hyperlink layer (which only contains
document-nodes) and retrieve the consensus partition alongside the uncertainty of the
partition [41] (see Appendix 2 for details).

Our results are shown in Fig. 3 and reveal that our model is successful in retrieving dif-
ferent meaningful groupings of the articles depending on the available data (i.e. layers in-
cluded in the model). We first notice that the classification of articles made by users—panel
(a), Wikipedia label—group articles in Mathematics and Biology that are strongly linked
with each other (through hyperlinks), whereas Physics articles appear intertwined in be-
tween them. When we infer the partition of nodes based only on the hyperlink network—
panel (b), Hyperlink model—we obtain that our model obtains 2 groups and it is quite con-
fident about it (uncertainty is zero, σ = 0.). This partition resembles the partition based
on Wikipedia labels. When the documents are partitioned based on their text—panel (c),
Text Model-, a richer picture emerges. There is a large community that resembles closely
the documents classified as Biology and one of the communities obtained using the hy-
perlinks layer. However, the remaining documents (most of the Mathematics and Physics
articles) are now grouped in 4 categories (i.e., 5 communities in total) which are still linked

1In the Metadata layer, we found that the metadata tags will form a trivial single group as there is insufficient evidence for
the model to construct more than one group. Therefore, we constrained metadata tags to be in separate groups to ensure
that they provide additional information to the models being fitted.
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Figure 3 Different models lead to different partitions of Wikipedia articles into communities. The network
corresponds to Wikipedia articles (nodes) and hyperlinks (edges). The colour of the nodes corresponds to
groups of document nodes: (a) from the Wikipedia labels (with annotations Mathematics, Physics, and
Biology); (b)–(d) communities found from our model using different datasets (layers) and the consensus
partition (see App. 2), where σ—defined in Eq. (15)—quantifies the uncertainty of the reported communities
(0≤ σ ≤ 1)

to each other but more loosely than before (even though Fig. 3 shows the Hyperlink net-
work, the Hyperlinks were not used to group documents in panels a) and c)). Finally, when
hyperlinks and text are used simultaneously—panel (d)—4 communities are found, which
resemble the previous ones but that also show important distinctions. This demonstrates
that even if the Text layer dominates the description length, there are noticeable differ-
ences in the inferred partitions when using the hyperlinks in addition to text for clustering
documents.

We now argue that the more nuanced classification of documents obtained with the Text
and Hyperlink + Text models are qualitatively meaningful. For example, we can see a clus-
ter of 5 (Physics) nodes in the bottom left of the Hyperlink model that was not identified
as a separate group, but it is now picked up in the Text and Hyperlink + Text model. This
cluster of nodes include Wikipedia articles on the Josephson effect, macroscopic quantum
phenomena, magnetic flux quantum, macroscopic quantum self trapping, and quantum
tunnelling. Even more strikingly, in the bottom of the network there is a lone (Physics)
green node surrounded by (Biology) red nodes which corresponds to the Wikipedia article
on isotopic labelling (a technique in the intersection of Physics and Biology). In traditional
community detection methods, which use link information as an indicator of groups, such
a node would be in the community of its surrounding neighbours. However, in the Hyper-
link + Text model, we are able to detect the uniqueness of such a node.

3.3 Quantitative comparison between different models
In the example discussed above it was clear that the different models yielded different yet
related partitions of Wikipedia articles. In order to quantify the similarity of the results
of the different models, we performed a systematic comparison of the partitions gener-
ated by multiple runs of each model and computed their similarities using the maximum
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Figure 4 Maximum partition overlap of the consensus partitions between the model classes. The average
and standard deviations of the maximum partition overlap between and within different models

overlap partition (Fig. 4, see Appendix 2 for details). The results show that the partitions
generated by the Hyperlink + Text model is most similar to the Text model. Similar re-
sults are obtained in our alternative datasets—see Additional file 1-Sect. 1—and using the
normalised mutual information (NMI) as an alternative dissimilarity measure—see Addi-
tional file 1-Sect. 3.

We also compare the Hyperlink and Hyperlink + Text model in terms of their ability to
predict missing edges [27, 42] (see Appendix 3 for details on our method). We found that
the Hyperlink + Text model has an Area-Under-Curve (AUC) score of 0.63 ± 0.06 (aver-
age ± standard deviation) and the Hyperlink model has 0.54 ± 0.02, with the difference
being statistically significant (p = 0.0013, using a 2-sample t-test). This confirms that the
multilayer approach proposed here is successful in retrieving existing relationships that
are missed in the network-only approach.

3.4 Lack of balance in the hyperlink-text model
The results of the previous sections are strongly influenced by the lack of balance in Hy-
perlink + Text model, as discussed in Sect. 2. To further illustrate this point, here we arti-
ficially reduce the unbalance of the multilayer network by sampling a fraction μ of word
tokens before fitting a Hyperlink + Text model. We expect that, as we increase the frac-
tion of words μ, the Text layer will increasingly dominate the inference. This expectation is
confirmed in Fig. 5, which shows that for μ ≥ 0.6, the partition overlap of the μ-hyperlink-
text model is statistically indistinguishable from the partition overlap obtained using the
Text-only model. That is, we see that the Text layer dominates the inference in the μ-
Hyperlink + Text for μ ≥ 0.6. However, as discussed above, the effect of the hyperlink
layer can lead to different consensus partition.

3.5 Topic modelling: groups of words
Since our approach provides a clustering of all nodes, we not only group documents but
also words. The groups of word (types) can be interpreted as the topics of the documents
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Figure 5 Text layer determines the partitions obtained in the multilayer model (Hyperlink + Text). Similarity
(overlap of consensus partition) between Hyperlink partition and μ-Hyperlink-Text partition as a function of
the subsampling parameter μ where μ = 0 (μ = 1) corresponds to the case with all (none) of the word
tokens removed in the Hyperlink-Text model. For a given value of μ, a random fraction 1 –μ of the words
were removed and the Hyperlink + Text model was then fitted for multiple iterations. The consensus partition
was then computed for the Hyperlink + Text model and its partition overlap with Hyperlink model. A higher
sub-sampling of text (i.e. smaller values of μ) results in the consensus partition between the Hyperlink + Text
and Hyperlink model having a high degree of overlap

linked to them, showing that our framework simultaneously solves the traditional problem
of topic modeling [14, 23]. Below we show the topics obtained in our Wikipedia dataset,
as an example of our generic topic-modelling methodology.

In the consensus partition of the Hyperlink-Text network (see Fig. 3) we found 12 topics
(groups of word types). The most frequent words in each of these topics is shown in Ta-
ble 3. Qualitatively, we see that topics are often composed of semantically related words,
e.g. topics 1 and 3 contain a large number of key words associated to Biology whilst topics
5 and 10 contains a large number of jargon related to Physics.

We now discuss the topical composition of (groups of ) documents. Let T = BV be the
number of topics and BD be the number of document groups, then the mixture proportion
of topic t = 1, . . . , T in document group i = 1, . . . , BD is given by

f t
i =

nt
i

∑T
t′=1 nt′

i
, (8)

where nt
i is the number of word tokens in topic t that appeared in documents d in

document-group i. The results obtained for the four document groups are shown at the
bottom of Table 3. Interestingly, topic 4 cannot be identified with any specific group of
documents. This suggests that the words in this topic are similar to so-called stopwords, a
pre-defined set of common words considered uninformative which are typically removed
from the corpus before any model is to be fitted in order to improve the model [43]. This
is consistent with the finding of Ref. [15] that SBMs applied to word-document networks
were able to automatically filter stop words by grouping them into a “topic” that is well con-
nected to all documents. Our findings suggest that the same is true for multilayer models
and that our approach is robust against the presence of stopwords. In fact, this stopword
topic is responsible for a large fraction (40%) of the topic-proportion for all groups of
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Figure 6 Normalised contribution of topics to the group of documents. The normalized measure (10) was
computed for all 4 document groups and 12 word groups (topics). We set a threshold of τ t

i ≥ 0.2 (τ t
i ≤ –0.2)

to define if a topic is over- (under-) represented in a document group d

documents. The underlying reason for this is the higher frequency of these words, which
(due to Zipf ’s law) dominate the weights of the topic mixture models [44]. To overcome
this feature, and assess the over- or under-representation of topics more rigorously, we
account for the overall frequency of occurrence of words in topics t as

〈
f t〉 =

∑BD
i=1 nt

i
∑T

t=1
∑BD

j=1 nt
j
, (9)

and define the normalised value of the mixture proportion of topic t in document group i
as

τ t
i =

f t
i – 〈f t〉
〈f t〉 . (10)

This normalised measure has an intuitive interpretation: τ t
i > 0 (τ t

i < 0) implies that topic t
is over-represented (under-represented) in document group d. In Fig. 6, we show τ t

i for the
12 topics and the 4 document groups, providing a much clearer view on the connection
between topics and groups of documents. For example, we see that document group 2
(articles labelled as Physics) has a large over-representation of topic 10, which corresponds
to the Physics topic whilst being underrepresented in document group 2 (articles labelled
as Biology). Looking at the model’s newly proposed document group (group 4) we see that
it has an over-representation from topics 7 and 5 (and in a less extent from topics 2, 9, and
11), confirming its hybrid category.

4 Discussion and conclusions
In this paper, we introduced and explored a formal methodology that combines multiple
data types (e.g., text, metadata, links) to perform the common tasks of clustering and infer-
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ring latent relationships between documents in text analysis. The main theoretical advan-
tage of our methodology is that it incorporates all the different types of data into a single,
consistent, statistical model. Our approach is based on an extension of multilayer Stochas-
tic Block Models, that have been used previously to find communities in (sparse) complex
networks and that is used here to perform text analysis (see Refs. [3, 18] for alternative
uses of SBMs for topic modelling). On the one hand, our method extends community-
detection methods to the analysis of text in the presence of multiple data types, our main
finding being that: (i) universal statistical properties of texts lead to different link densities
at the different layers of the network; and (ii) that the word layer plays a dominant role in
the inference of partitions. On the other hand, our method can be viewed as a generalized
topic modelling method that incorporates meta-data and hyperlinks, labels the commu-
nities of documents by examining the proportion of topics, and builds on the previous
connections between SBMs and Latent Dirichlet Allocation [15, 20].

Our investigations on four different datasets show consistent results that reveal the po-
tential and limitations of our approach. Our most important finding is that our method-
ology succeeds in using the multiple data types (e.g., a text layer) leading to more nuanced
communities of documents and in increasing the ability to predict missing links. On the
practical side, the lack of balance between the different layers poses challenges on how
to evaluate the contributions of different layers because the description length obtained
in the inference process is dominated by the text layer and variations obtained within the
(Monte Carlo) inference process become larger than the contribution of alternative lay-
ers. This suggests further investigations on the role of unbalanced layers in multilayer
networks, and how to deal with them within the proposed framework, as important steps
to expand the success of complex-network methods to other classes of relevant datasets.

Appendix 1: Wikipedia data collection and preparation
We used a snapshot of the Wikipedia data retrieved on the 5th of June, 2020. The following
lists the data extraction and processing steps:

1. Data Retrieval: We retrieved the Wikipedia articles and their content (metadata, text,
link) through the MediaWiki API2 and parsing the Wikipedia dumps3.

2. Network Formulation: We constructed a network whereby each node represents a
Wikipedia article and each (directed) edge represents hyperlinks between the
Wikipedia articles. We removed any nodes with less than 2 outgoing links.

3. Retrieve Connected Component: For ease of analysis, we extracted the largest
connected component in the hyperlink network constructed.

4. Text Processing: We process the Wikipedia text data through both tokenization and
lemmatization using NLTK [45].

The resultant dataset is available in our repository [28].

2https://en.wikipedia.org/w/api.php
3https://dumps.wikimedia.org/

https://en.wikipedia.org/w/api.php
https://dumps.wikimedia.org/
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Appendix 2: Maximum overlap and consensus partition
The maximum overlap between partitions measures the similarities between sets of par-
titions. The maximum overlap between partitions x and y is given by

w(x, y) = arg maxμ

∑

i

δxi ,μ(yi), (11)

where μ is a bijective mapping between the group labels [41].
The normalized maximum overlap between partitions x and y is given by

w(x, y) =
∑

i δxi ,yi

N
, (12)

where N is the number of nodes and lies in the unit interval [0,1].
Given multiple partitions, we also wish to extract a consensus partition b̂ which has

the maximal sum of overlaps with all the partitions. Such a consensus partition can be
obtained through the double maximization of the set of equations:

b̂i = arg maxr

∑

m
δμm(bm

i ),r , (13)

μm = arg maxμ

∑

r
m(m)

r,μ(r), (14)

where μ is a bijective mapping between the group labels and m(m)
r,μ(r) is the contingency

table between b̂ and partition b(m). An iterative procedure is then carried out on the set of
equations until no further improvement is possible. The uncertainty σ of the consensus
partition obtained from Mp partitions is quantified as [28, 41]

σ = 1 –
1

NMp

∑

i

∑

m
δ
μm(bm

i ),b̂i
. (15)

Appendix 3: Supervised learning via link prediction
A supervised learning approach to select the best model can be done through the task
of link prediction [42, 46]. Let AO be the observed network and δA be missing or spuri-
ous edges. The desired posterior distribution of missing entries δA conditioned on the
observed network AO can be computed as

P
(
δA|AO)

=
∑

b P(AO ∪ δA|b)P(b|AO)
P(AO|b)

. (16)

However, as the normalization constant is difficult to obtain, the numerator of Eq. (16)
can be computed by sampling partitions from the posterior and then inserting or deleting
edges from the graph and computing the new likelihood. As a result, we therefore may
compute the relative probability between specific sets of alternative predictive hypotheses
{δAi} through the likelihood ratios ratio

λi =
P(δAi|AO)

∑
j P(δAj|AO)

. (17)
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We can compute the area under curve (AUC) of the receiver operating characteristic
curve to evaluate the SBM’s classification abilities. Furthermore, given two sets of AUCs
from two different models, we can compare the models’ performance by computing the
t-statistic for a null model with zero mean for the difference in AUC which is given by

t
AUC =
〈
AUC〉

σ
AUC/
√

n
, (18)

where 〈
AUC〉, σ
AUC, and n are the mean, standard deviation and size of the population.
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