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Abstract
We introduce a qualitative, shape-based, timescale-independent time-domain
transform used to extract local dynamics from sociotechnical time series—termed
the Discrete Shocklet Transform (DST)—and an associated similarity search routine,
the Shocklet Transform And Ranking (STAR) algorithm, that indicates time windows
during which panels of time series display qualitatively-similar anomalous behavior.
After distinguishing our algorithms from other methods used in anomaly detection
and time series similarity search, such as the matrix profile, seasonal-hybrid ESD, and
discrete wavelet transform-based procedures, we demonstrate the DST’s ability to
identify mechanism-driven dynamics at a wide range of timescales and its relative
insensitivity to functional parameterization. As an application, we analyze a
sociotechnical data source (usage frequencies for a subset of words on Twitter) and
highlight our algorithms’ utility by using them to extract both a typology of
mechanistic local dynamics and a data-driven narrative of socially-important events
as perceived by English-language Twitter.

Keywords: Nonparametric statistics; Sociotechnical time series; Time-domain
filtering; Social media

0 Introduction
The tasks of peak detection, similarity search, and anomaly detection in time series is of-
ten accomplished using the discrete wavelet transform (DWT) [1] or matrix-based meth-
ods [2, 3]. For example, wavelet-based methods have been used for outlier detection in
financial time series [4], similarity search and compression of various correlated time se-
ries [5], signal detection in meteorological data [6], and homogeneity of variance testing in
time series with long memory [7]. Wavelet transforms have far superior localization in the
time domain than do pure frequency-space methods such as the short-time Fourier trans-
form [8]. Similarly, the chirplet transform is used in the analysis of phenomena displaying
periodicity-in-perspective (linearly- or quadratically-varying frequency), such as images
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Figure 1 The discrete shocklet transform is
generated through cross-correlation of pieces of
shocks. this figure displays effects of the action of
group elements ri ∈ R4 on a base “shock-like”
kernelK. The kernelK captures the dynamics of a
constant lower level of intensity before an abrupt
increase to a relatively high intensity which decays
over a duration ofW/2 units of time. By applying
elements of R4, we can effect a time reversal (r1) and
abrupt cessation of intensity followed by asymptotic
convergence to the prior level of intensity (r2), as
well as the combination of these effects (r3 = r1 · r2)

Figure 2 Shock dynamics. This figure provides a schematic for the construction of more complicated shock
dynamics from a simple initial shape (K(S) ). By acting on a kernel with elements ri of the reflection group R4
and function concatenation, we create shock-like dynamics, as exemplified by the symmetric shocklet kernel
K(C) =K(S) ⊕ [r1 ·K(S)] in this figure. In Sect. 2.3 we illuminate a typology of shock dynamics derived from
combinations of these basic shapes

and radar signals [9–12]. Thus, when analyzing time series that are partially composed of
exogenous shocks and endogenous shock-like local dynamics, we should use a small sam-
ple of such a function—a “shock”, examples of which are depicted in Fig. 1, and functions
generated by concatenation of these building blocks, such as that shown in Fig. 2.

In this work, we introduce the Discrete Shocklet Transform (DST), generated by cross-
correlation functions of a shocklet. As an immediate example (and before any definitions
or technical discussion), we contrast the DWT with the DST of a sociotechnical time
series—popularity of the word “trump” on the social media website Twitter—in Fig. 3,
which is a visual display of what we claim is the DST’s suitability for detection of local
mechanism-driven dynamics in time series.

We will show that the DST can be used to extract shock and shock-like dynamics of
particular interest from time series through construction of an indicator function that
compresses time-scale-dependent information into a single spatial dimension using prior
information on timescale and parameter importance. Using this indicator, we are able to
highlight windows in which underlying mechanistic dynamics are hypothesized to con-
tribute a stronger component of the signal than purely stochastic dynamics, and demon-
strate an algorithm—the Shocklet Transform and Ranking (STAR) algorithm—by which
we are able to automate post facto detection of endogenous, mechanism-driven dynamics.
As a complement to techniques of changepoint analysis, methods by which one can detect
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Figure 3 A comparison between the standard discrete wavelet transform (DWT) and our discrete shocklet
transform (DST) of a sociotechnical time series. Panel (B) displays the daily time series of the rank rt of the
word “trump” on Twitter. As a comparison with the DST, we computed the DWT of rt using the Ricker wavelet
and display it in panel (A). Panel (C) shows the DST of the time series using a symmetric power shock,
K(S)(τ |W ,θ ) ∼ rect(τ )τ θ , with exponent θ = 3. We chose to compare the DST with the DWT because the
DWT is similar in mathematical construction (see Appendix 1 for a more extensive discussion of this assertion),
but differs in the choice of convolution kernel (a wavelet, in the case of the DWT, and a piece of a shock, in the
case of the DST) and the method by which the transform accounts for signal at multiple timescales

changes in the level of time series [13, 14], the DST and STAR algorithm detect changes
in the underlying mechanistic local dynamics of the time series. Finally, we demonstrate a
potential usage of the shocklet transform by applying it to the LabMT Twitter dataset [15]
to extract word usage time-series matching the qualitative form of a shock-like kernel at
multiple timescales.

1 Data and theory
1.1 Data
Twitter is a popular micro-blogging service that allows users to share thoughts and news
with a global community via short messages (up to 140 or, from around November 2017
on, 280 characters, in length). We purchased access to Twitter’s “decahose” streaming API
and used it to collect a random 10% sample of all public tweets authored between Septem-
ber 9, 2008 and April 4, 2018 [16]. We then parsed these tweets to count appearances of
words included in the LabMT dataset, a set of roughly 10,000 of the most commonly used
words in English [15]. The dataset has been used to construct nonparametric sentiment
analysis models [17] and forecast mental illness [18] among other applications [19–21].
From these counts, we analyze the time series of word popularity as measured by rank of
word usage: on day t, the most-used word is assigned rank 1, the second-most assigned
rank 2, and so on to create time series of word rank rt for each word.
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1.2 Theory
1.2.1 Algorithmic details: description of the method
There are multiple fundamentally-deterministic mechanistic models for local dynamics of
sociotechnical time series. Nonstationary local dynamics are generally well-described by
exponential, bi-exponential, or power-law decay functions; mechanistic models thus usu-
ally generate one of these few functional forms. For example, Wu and Huberman described
a stretched-exponential model for collective human attention [22], and Candia et al. de-
rived a biexponential function for collective human memory on longer timescales [23].
Crane and Sornette assembled a Hawkes process for video views that produces power-law
behavior by using power-law excitement kernels [24], and Lorenz-Spreen et al. demon-
strated a speeding-up dynamic in collective social attention mechanisms [25], while De
Domenico and Altmann put forward a stochastic model incorporating social heterogene-
ity and influence [26], and Ierly and Kostinsky introduced a rank-based, signal-extraction
method with applications to meteorology data [27]. In Sect. 1.2.2 we conduct a literature
review, contrasting our methods with existing anomaly detection and similarity search
time series data mining algorithms and demonstrating that the DST and associated STAR
algorithm differ substantially from these existing algorithms. We have open-sourced im-
plementations of the DST and STAR algorithm; code for these implementations is avail-
able at a publicly-accessible repository.a

We do not assume any specific model in our work. Instead, by default we define a kernel
K(·) as one of a few basic functional forms: exponential growth,

K(S)(τ |W , θ ) ∼ rect(τ – τ0)eθ (τ–τ0); (1)

monomial growth,

K(S)(τ |W , θ ) ∼ rect(τ – τ0)τ θ ; (2)

power-law decay,

K(S)(τ |W , θ ) ∼ rect(τ – τ0)|τ – τ0 + ε|–θ , (3)

or sudden level change (corresponding with a changepoint detection problem),

K(Sp)(τ |W , θ ) ∼ rect(τ – τ0)
[
Θ(τ ) – Θ(–τ )

]
, (4)

where Θ(·) is the Heaviside step function. The function rect is the rectangular function
(rect(x) = 1 for 0 < x < W /2 and rect(x) = 0 otherwise), while in the case of the power-
law kernel we add a constant ε to ensure nonsingularity. The parameter W controls the
support of K(·)(τ |W , θ ); the kernel is identically zero outside of the interval [τ – W /2, τ +
W /2]. We define the window parameter W as follows: moving from a window size of W
to a window size of W + �W is equivalent to upsampling the kernel signal by the factor
W + �W , applying an ideal lowpass filter, and downsampling by the factor W . In other
words, if the kernel function K(·) is defined for each of W linearly spaced points between
–N/2 and N/2, moving to a window size of W to W + �W is equivalent to computing
K(·) for each of W + �W linearly-spaced points between –N/2 and N/2. This holds the
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dynamic range of the kernel constant while accounting for the dynamics described by the
kernel at all timescales of interest. We enforce the condition that

∑∞
t=–∞ K(·)(t|W , θ ) = 0

for any window size W .
It is decidedly not our intent to delve into the question of how and why deterministic

underlying dynamics in sociotechnical systems arise. However, we will provide a brief jus-
tification for the functional forms of the kernels presented in the last paragraph as scaling
solutions to a variety of parsimonious models of local deterministic dynamics:

• If the time series x(t) exhibits exponential growth with a state-dependent growth
damper D(x), the dynamics can be described by

dx(t)
dt

=
λ

D(x(t))
x(t), x(0) = x0. (5)

If D(x) = x1/n, the solution to this IVP scales as x(t) ∼ tn, which is the functional form
given in Eq. (2). When D(x) ∝ 1 (i.e., there is no damper on growth) then the solution
is an exponential function, the functional form of Eq. (1).

• If instead the underlying dynamics correspond to exponential decay with a time- and
state-dependent half-life T , we can model the dynamics by the system

dx(t)
dt

= –
x(t)
T (t)

, x(0) = x0, (6)

dT (t)
dt

= f
(
T (t), x(t)

)
, T (0) = T0. (7)

If f is particularly simple and given by f (T , x) = c with c > 0, then the solution to
Eq. (6) scales as x(t) ∼ t–1/c, the functional form of Eq. (3). The limit c → 0+ is singular
and results in dynamics of exponential decay, given by reversing time in Eq. (1) (about
which we expound later in this section).

• As another example, the dynamics could be essentially static except when a latent
variable ϕ changes state or moves past a threshold of some sort:

dx(t)
dt

= δ
(
ϕ(t) – ϕ∗), x(0) = x0, (8)

dϕ(t)
dt

= g
(
ϕ(t), x(t)

)
, ϕ(0) = ϕ0. (9)

In this case the dynamics are given by a step function from x0 to x0 + 1 the first time
ϕ(t) changes position relative to ϕ∗, and so on; these are the dynamics we present in
Eq. (4).

This list is obviously not exhaustive and we do not intend it to be so.
We can use kernel functions K(·) as basic building blocks of richer local mechanistic

dynamics through function concatenation and the operation of the two-dimensional re-
flection group R4. Elements of this group correspond to r0 = id, r1 = reflection across the
vertical axis (time reversal), r2 = negation (e.g., from an increase in usage frequency to a
decrease in usage frequency), and r3 = r1 · r2 = r2 · r1. We can also model new dynamics
by concatenating kernels, i.e., “glueing” kernels back-to-back. For example, we can gener-
ate “cusplets” with both anticipatory and relaxation dynamics by concatenating a shocklet
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Figure 4 Effects of the reflection group R4 on the shocklet transform. The top four panels display the results
of the shocklet transform of a random walk xt = xt–1 + zt with zt ∼ N (0, 1), displayed in the bottom panel,
using the kernels rj ·K(S) , where rj ∈ R4

K(S) with a time-reversed copy of itself:

K(C)(τ |W , θ ) ∼K(S)(τ |W , θ ) ⊕ [
r1 ·K(S)(τ |W , θ )

]
. (10)

We display an example of this concatenation operation in Fig. 2. For much of the remainder
of the work, we conduct analysis using this symmetric kernel.

The discrete shocklet transform (DST) of the time series x(t) is defined by

CK(S) (t, W |θ ) =
∞∑

τ=–∞
x(τ + t)K(S)(τ |W , θ ), (11)

which is the cross-correlation of the sequence and the kernel. This defines a T ×NW matrix
containing an entry for each point in time t and window width W considered.

To convey a visual sense of what the DST looks like when using a shock-like, asymmetric
kernel, we compute the DST of a random walk xt – xt–1 = zt (we define zt ∼N (0, 1)) using
a kernel function K(S)(τ |W , θ ) ∼ rect(τ )τ θ with θ = 3 and display the resulting matrix for
window sizes W ∈ [10, 250] in Fig. 4.
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Figure 5 Intricate dynamics of sociotechnical time series. Panels (A) and (D) show the time series of the ranks
down from top of the word “bling” on Twitter. Until mid-summer 2015, the time series presents as random
fluctuation about a steady, relatively-constant level. However, the series then displays a large fluctuation,
increases rapidly, and then decays slowly after a sharp peak. The underlying mechanism for these dynamics
was the release of a popular song titled “Hotline Bling”. To demonstrate the qualitative difference of the “bling”
time series from draws from a null random walk model, the details of which are given in Appendix 1. Panels
(A), (B), and (C) show the discrete shocklet transform of the original series for “bling” and the random walks∑

t′≤t �rσi t , showing the responsiveness of the DST to nonstationary local dynamics and its insensitivity to
dynamic range. Panels (D), (E), and (F), on the other hand, display the discrete wavelet transform of the
original series and of the random walks, demonstrating the DWT’s comparatively less-sensitive nature to local
shock-like dynamics

The effects of time reversal by action of r1 are visible when comparing the first and third
panels with the second and fourth panels, and the result of negating the kernel by acting on
it with r2 is apparent in the negation of the matrix values when comparing the first and sec-
ond panels and with the third and fourth. For this figure, we used a random walk as an ex-
ample time series here as there is, by definition, no underlying generative mechanism caus-
ing any shock-like dynamics; these dynamics appear only as a result of integrated noise.
We are equally likely to see large upward-pointing shocks as large downward-pointing
shocks because of this, which allows us to see the activation of both upward-pointing and
downward-pointing kernel functions.

As a comparison with this null example, we computed the DST of a sociotechnical time
series, the rank of the word “bling” among the LabMT words on Twitter, and two draws
from a null random walk model, and displayed the results in Fig. 5. Here, we calculated
the DST using the symmetric kernel given in Eq. (10). (For more statistical details of the
null model, see Appendix 1.) We also computed the DWT of each of these time series and
display the resulting wavelet transform matrices next to the shocklet transform matrices
in Fig. 5. Direct comparison of the sociotechnical time series (rt) with the draws from the
null models reveals rt ’s moderate autocovariance as well as the large, shock-like fluctuation
that occurs in late July of 2015. (This underlying driver of this fluctuation was the release of
a popular song entitled “Hotline Bling” on July 31st, 2015.) In comparison, the draws from
the null model have a covariance with much more prominent time scaling and do not
exhibit dramatic shock-like fluctuations as does rt . Comparing the DWT of these time
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series with the respective DST provides more evidence that the DST exhibits superior
space-time localization of shock-like dynamics than does the DWT.

To aggregate deterministic behavior across all timescales of interest, we define the shock
indicator function as the function

CK(S) (t|θ ) =
∑

W

CK(S) (t, W |θ )p(W |θ ), (12)

for all windows W considered. The function p(W |θ ) is a probability mass function that
encodes prior beliefs about the importance of particular values of W . For example, if we
are interested primarily in time series that display shock- or shock-like behavior that usu-
ally lasts for approximately one month, we might specify p(W |θ ) to be sharply peaked
about W = 28 days. Throughout this work we take an agnostic view on all possible win-
dow widths and so set p(W |θ ) ∝ 1, reducing our analysis to a strictly maximum-likelihood
based approach. Summing over all values of the shocklet parameter θ defines the shock
indicator function,

CK(S) (t) =
∑

θ

CK(S) (t|θ )p(θ ) (13)

=
∑

θ ,W

CK(S) (t, W |θ )p(W |θ )p(θ ). (14)

In analogy with p(Wθ ), the function p(θ ) is a probability density function describing our
prior beliefs about the importance of various values of θ . As we will show later in this
section, and graphically in Fig. 6, the shock indicator function is relatively insensitive to
choices of θ possessing a nearly-identical �1 norm for wide ranges of θ and different func-
tional forms of K(S).

After calculation, we normalize CK(S) (t) so that it again integrates to zero and has
maxt CK(S) (t) – mint CK(S) (t) = 2. The shock indicator function is used to find windows in
which the time series displays anomalous shock- or shock-like behavior. These windows
are defined as

{
t ∈ [0, T] : intervals where CK(S) (t) ≥ s

}
, (15)

where the parameter s > 0 sets the sensitivity of the detection.
The DST is relatively insensitive to quantitative changes to its functional parameteriza-

tion; it is a qualitative tool to highlight time periods of unusual events in a time series. In
other words, it does not detect statistical anomalies but rather time periods during which
the time series appears to take on certain qualitative characteristics without being too
sensitive to a particular functional form. We analyzed two example sociotechnical time
series—the rank of the word “bling” on Twitter (for reasons we will discuss presently)—
and the price time series of Bitcoin (symbol BTC) [28], the most actively-used cryptocur-
rency [29], and of one null model, a pure random walk. For each time series, we computed
the shock indicator function using two kernels, each of which had a different functional
form (one kernel given by the function of Eq. (10) and one of the identical form but con-
structed by setting K(S)(τ |W , θ ) to the function given in Eq. (1)), and evaluating each ker-
nel over a wide range of its parameter θ . We also vary the maximum window size from
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Figure 6 Parameters Sweep. The shock indicator function is relatively insensitive to functional formsK(·) and
values of the kernel’s parameter vector θ so long as the kernel functions are qualitatively similar (e.g., for
cusp-like dynamics—as considered in this figure and in Eq. (10)—K(C) displaying increasing rates of increase
followed by decreasing rates of decrease). Here we have computed the shock indicator function CK(S) (τ |θ )
(Eq. (12)) for three different time series: two sociotechnical and one null example. From left to right, the top
row of figures displays the rank usage time series of the word “bling” on Twitter, the price of the
cryptocurrency Bitcoin, and a simple Gaussian random walk. Below each time series we display parameter
sweeps over combinations of (θ ,Wmax) for two kernel functions: one kernel given by the function of Eq. (10)
and another of the identical form but constructed by settingK(S)(τ |W ,θ ) to the function given in Eq. (1). The
�1 norms of the shock indicator function are nearly invariant across the values of the parameters θ for which
we evaluated the kernels. However, the shock indicator function does display dependence on the maximum
window sizeWmax, with largeWmax associated with larger �1 norm. This is because a larger window size
allows the DST to detect shock-like behavior over longer periods of time

W = 100 to W = 1000 to explore the sensitivity of the shock indicator function to this pa-
rameter. We display the results of this comparative analysis in Fig. 6. For each time series,
we plot the �1 norm of the shock indicator function for each (θ , W ) combination. We find
that, as stated earlier in this section, the shock indicator function is relatively insensitive
to both functional parameterization and value of the parameter θ ; for any fixed W , the �1

norm of the shock indicator function barely changed regardless of the value of θ or choice
of K(·). However, the maximum window size does have a notable effect on the magnitude
of the shock indicator function; higher values of W are associated with larger magnitudes.
This is a reasonable finding, since higher maximum W means that the DST is able to cap-
ture shock-like behavior that occurs over longer timespans and hence may have values of
higher magnitude over longer periods than for comparatively lower maximum W .

That the shock indicator function is a relative quantity is both beneficial and problem-
atic. The utility of this feature is that the dynamic behavior of time series derived from
systems of widely-varying time and length scales can be directly compared; while the rank
of a word on Twitter and—for example—the volume of trades in an equity security are
entirely different phenomena measured in different units, their shock indicator functions
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are unitless and share similar properties. On the other hand, the Shock Indicator Function
carries with it no notion of dynamic range. Two time series xt and yt could have identi-
cal shock indicator functions but have spans differing by many orders of magnitude, i.e.,
diam xt ≡ maxt xt – mint xt 
 diam yt . (In other words, the diameter of a time series in in-
terval I is just the dynamic range of the time series over that interval.) We can directly
compare time series inclusive of their dynamic range by computing a weighted version
of the shock indicator function, CK(t)�x(t), which we term the weighted shock indicator
function (WSIF). A simple choice of weight is

�x(t) = diam
t∈[tb ,te]

xt , (16)

where tb and te are the beginning and end times of a particular window. We use this defi-
nition for the remainder of our paper, but one could easily imagine using other weighting
functions, e.g., maximum percent change (perhaps applicable for time series hypothesized
to increment geometrically instead of arithmetically).

These final weighted shock indicator functions are the ultimate output of the shocklet
transform and ranking (STAR) algorithm; the weighting corresponds to the actual mag-
nitude of the dynamics and constitutes the “ranking” portion of the algorithm, while the
weighting will only be substantially larger than zero if there existed intervals of time during
which the time series exhibited shock-like behavior as indicated in Eq. (15). We present a
conceptual, bird’s-eye view of the STAR algorithm (of which the DST is a core component)
in Fig. 7. Though this diagram is lacking in technical detail, we have included it in an effort
to provide a bird’s-eye view of the entire STAR algorithm and to help orient the reader on
the conceptual process underpinning the algorithm.

1.2.2 Algorithmic details: comparison with existing methods
On a coarse scale, there are five nonexclusive categories of time series data mining tasks
[30]: similarity search (also termed indexing), clustering, classification, summarization,
and anomaly detection. The STAR algorithm is a qualitative, shape-based, timescale-
independent, similarity search algorithm. As we have shown in the previous section, the
discrete shocklet transform (a core part of the overarching STAR algorithm) is qualitative,
meaning that it does not depend too strongly on values of functional parameters or even
the functions used in the cross-correlation operation themselves, as long as the functions
share the same qualitative dynamics (e.g., increasing rates of increase followed by decreas-
ing rates of decrease for cusp-like dynamics); hence, it is primarily shape-based rather than
relying on the quantitative definition of a particular functional form. STAR is timescale-
independent as it is able to detect shock-like dynamics over a wide range of timescales
limited only by the maximum window size for which it is computed. Finally, we believe
that it is best to categorize STAR as a similarity search algorithm as this seems to be the
best-fitting label for STAR that is given in the five categories listed at the beginning of this
section; STAR is designed for searching within sociotechnical time series for dynamics
that are similar to the shock kernel in some way, albeit similar in a qualitative sense and
over any arbitrary timescale, not functionally similar in numerical value and characteristic
timescale. However, it could also be considered a type of qualitative, shape-based anomaly
detection algorithm because we are searching for behavior that is, in some sense, anoma-
lous compared to a usual baseline behavior of many time series (though see discussion
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Figure 7 STAR. The Shocklet Transform And Ranking (STAR) algorithm combines the discrete shocklet
transform (DST) with a series of transformations that yield intermediate results, such as the cusp indicator
function (panel (C) in the figure) and windows during which each univariate time series displays shock-like
behavior (panel (D) in the figure). Each of these intermediate results is useful in its own right, as we show in
Sect. 2. We display the final output of the STAR algorithm, a univariate indicator that condenses information
about which of the time series exhibits the strongest shock-like behavior at each point in time

at the beginning of the anomaly detection subsection near the end of this section: STAR
is an algorithm that can detect defined anomalous behavior, not an algorithm to detect
arbitrary statistical anomalies).

As such, we are unaware of any existing algorithm that satisfies these four criteria and
believe that STAR represents an entirely new class of algorithms for sociotechnical time
series analysis. Nonetheless, we now provide a detailed comparison of the DST with other
algorithms that solve related problems, and in Sect. 2.1 provide an in-depth quantitative
comparison with another nonparametric algorithm (Twitter’s anomaly detection algo-
rithm) that one could attempt to use to extract shock-like dynamics from sociotechnical
time series.

Similarity search—here the objective is to find time series that minimize some similarity
criterion between candidate time series and a given reference time series. Algorithms to
solve this problem include nearest-neighbor methods (e.g., k-nearest neighbors [31] or a
locality-sensitive hashing-based method [32, 33]), the discrete Fourier and wavelet trans-
forms [5, 34–36]; and bit-, string-, and matrix-based representations [30, 37–39]. With
suitable modification, these algorithms can also be used to solve time series clustering
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problems. Generic dimensionality-reduction techniques, such as singular value decom-
position/principal components analysis [40–42], can also be used for similarity search by
searching through a dataset of lower dimension. Each of these classes of algorithms differs
substantially in scope from the discrete shocklet transform. Chief among the differences
is the focus on the entire time series. While the discrete shocklet transform implicitly
searches the time series for similarity with the kernel function at all (user-defined) relevant
timescales and returns qualitatively-matching behavior at the corresponding timescale,
most of the algorithms considered above do no such thing; the user must break the time
series into sliding windows of length τ and execute the algorithm on each sliding window;
if the user desires timescale-independence, they must then vary τ over a desired range.
An exception to this statement is Mueen’s subsequence similarity search algorithm (MSS)
[43], which computes sliding dot products (cross-correlations) between a long time se-
ries of length T and a shorter kernel of length M before defining a Euclidean distance
objective for the similarity search task. When this sliding dot product is computed using
the fast Fourier transform, the computational complexity of this task is O(T log T). This
computational step is also at the core of the discrete shocklet transform, but is performed
for multiple kernel function arrays (more precisely, for the kernel function resampled at
multiple user-defined timescales). Unlike the discrete shocklet transform, MSS does not
subsequently compute an indicator function and does not have the self-normalizing prop-
erty, while the matrix profile algorithm [39] computes an indicator function of sorts (their
“matrix profile”) but is not timescale-independent and is quantitative in nature; it does not
search for a qualitative shape match as does the discrete shocklet transform. We are un-
aware of a similarity-search algorithm aside from STAR that is both qualitative in nature
and timescale-independent.

Clustering—given a set of time series, the objective is to group them into groups, or
clusters, that are more homogeneous within each cluster than between clusters. View-
ing a collection of N time series of length T as a set of vectors in R

T , any clustering
method that can be effectively used on high-dimensional data has potential applicability
to clustering time series. Some of these general clustering methods include k-means and
k-medians algorithms [44–46], hierarchical methods [47–49], and density-based meth-
ods [47, 50–52]. There are also methods designed for clustering time series data specifi-
cally, such as error-in-measurement models [53], hidden Markov models [54], simulated
annealing-based methods [55], and methods designed for time series that are well-fit by
particular classes of parametric models [56–59]. Although the discrete shocklet transform
component of the STAR algorithm could be coerced into performing a clustering task by
using different kernel functions and elements of the reflection group, clustering is not the
intended purpose of the discrete shocklet transform or STAR more generally. In addition,
none of the clustering methods mentioned replicate the results of the STAR algorithm.
These clustering methods uncover groups of time series that exhibit similar behavior over
their entire domain; application of clustering methods to time series subsequences carries
leads to meaningless results [60]. Clustering algorithms are also shape-independent in
the sense that they cluster data into groups that share similar features, but do not search
for specific known features or shapes in the data. In contrast with this, when using the
STAR algorithm we already have specified a specific shape—for example, the shock shape
demonstrated above—and are searching the data across timescales for occurrences of that
shape. The STAR algorithm also does not require multiple time series in order to function
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effectively, differing from any clustering algorithm in this respect; a clustering algorithm
applied to N = 1 data points trivially returns a single cluster containing the single data
point. The STAR algorithm operates identically on one or many time series as it treats
each time series independently.

Classification—classification is the canonical supervised statistical learning problem in
which data xi is observed along with a discrete label yi that is taken to be a function of
the data, yi = f (xi) + ε; the goal is to recover an approximation to f that precisely and ac-
curately reproduces the labels for new data [61]. This is the category of time series data
mining algorithms that least corresponds with the STAR algorithm. The STAR algorithm
is unsupervised—it does not require training examples (“correct labels”) in order to find
subsequences that qualitatively match the desired shape. As above, the STAR algorithm
also does not require multiple time series to function well, while (non-Bayesian) classifi-
cation algorithms rely on multiple data points in order to learn an approximation to f .b

Summarization—since time series can be arbitrarily large and composed of many
intricately-related features, it may be desirable to have a summary of their behavior that
encompasses the time series’s “most interesting” features. These summaries can be nu-
merical, graphical, or linguistic in nature. Underlying methodologies for time series sum-
mary tasks include wavelet-based approaches [62, 63], genetic algorithms [64, 65], fuzzy
logic and systems [66–68], and statistical methods [69]. Though intermediate steps of the
STAR algorithm can certainly be seen as a time series summarization mechanism (for ex-
ample, the matrix computed by the DShT or the weighted shock indicator functions used
in determinning rank relevance of individual time series at different points in time), the
STAR algorithm was not designed for time series summarization and should not be used
for this task as it will be outperformed by essentially any other algorithm that was actually
designed for summarization. Any “summary” derived from the STAR algorithm will have
utility only in summarizing segments of the time series the behavior of which match the
kernel shape, or in distinguishing segments of the time series that do have a similar shape
as the kernel from ones that do not.

Anomaly detection—if a “usual” model can be defined for the system under study, an
anomaly detection algorithm is a method that finds deviations from this usual behavior.
Before we briefly review time series anomaly detection algorithms and compare them with
the STAR algorithm, we distinguish between two subtly different concepts: this data min-
ing notion of anomaly detection, and the physical or social scientific notion of anomalous
behavior. In the first sense, any deviation from the “ordinary” model is termed an anomaly
and marked as such. The ordinary model may not be a parametric model to which the
data is compared; for example, it may be implicitly defined as the behavior that the data
exhibits most of the time [70]. In physical and social sciences, on the other hand, it may
be observed that, given a particular set of laboratory or observational conditions, a ma-
terial, state vector, or collection of agents exhibits phenomena that is anomalous when
compared to a specific reference situation, even if this behavior is “ordinary” for the con-
ditions under which the phenomena is observed. Examples of such anomalous behavior
in physics and economics include: spectral behavior of polychromatic waves that is very
unusual compared to the spectrum of monochromatic waves (even though it is typical
for polychromatic waves near points where the wave’s phase is singular) [71]; the entire
concept of anomalous diffusion, in which diffusive processes with mean square displace-
ment (autocovariance functions) scaling as 〈r(t)〉 ∼ tα are said to diffuse anomalously if
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α �≈ 1 (since α = 1 is the scaling of the Wiener process’s autocovariance function) [72, 73],
even though anomalous diffusion is the rule rather than the exception in intra-cellular and
climate dynamics, as well as financial market fluctuations; and behavior that deviates sub-
stantially from the “rational expectations” of non-cooperative game theory, even though
such deviations are regularly observed among human game players [74, 75]. This distinc-
tion between algorithms designed for the task of anomaly detection and algorithms or
statistical procedures that test for the existence of anomalous behavior, as defined here, is
thus seen to be a subtle but significant difference. The DST and STAR algorithm fall into
the latter category: the purpose for which we designed the STAR algorithm is to extract
windows of anomalous behavior as defined by comparison with a particular null qualita-
tive time series model (absence of clear shock-like behavior), not to perform the task of
anomaly detection writ large by indicating the presence of arbitrary samples or dynamics
in a time series that does not in some way comport with the statistics of the entire time
series.

With these caveats stated, it is not the case that there is no overlap between anomaly
detection algorithms and algorithms that search for some physically-defined anomalous
behavior in time series; in fact, as we show in Sect. 2.1, there is some significant con-
vergence between windows of shock-like behavior indicated by STAR and windows of
anomalous behavior indicated by Twitter’s anomaly detection algorithm when the under-
lying time series exhibits relatively low variance. Statistical anomaly detection algorithms
typically propose a semi-parametric model or nonparametric test and confront data with
the model or test; if certain datapoints are very unlikely under the model or exceed certain
theoretical boundaries derived in constructing the test, then these datapoints are said to
be anomalous. Examples of algorithms that operate in this way include: Twitter’s anomaly
detection algorithm (ADV), which relies on generalized seasonal ESD test [76, 77]; the
EGADS algorithm, which relies on explicit time series models and outlier tests [78]; time-
series model and graph methodologies [79, 80]; and probabilistic methods [81, 82]. Each
of these methods is strictly focused on solving the first problem that we outlined at the be-
ginning of this subsection: that of finding points in one or more time series during which
it exhibits behavior that deviates substantially from the “usual” or assumed behavior for
time series of a certain class. As we outlined, this goal differs substantially from the one
for which we designed STAR: searching for segments of time series (that may vary widely
in length) during which the time series exhibits behavior that is qualitatively similar to un-
derlying deterministic dynamics (shock-like behavior) that we believe is anomalous when
compared to non-sociotechnical time series.

2 Empirical results
2.1 Comparison with Twitter’s anomaly detection algorithm
Through the literature review in Sect. 1.2 we have demonstrated that, to our knowledge,
there exists no algorithm that solves the same problem for which STAR was designed—to
provide a qualitative, shape-based, timescale-independent measure of similarity between
multivariate time series and a hypothesized shape generated by mechanistic dynamics.
However, there are existing algorithms designed for nonparametric anomaly detection
that could be used to alert to the presence of shock-like behavior in sociotechnical time
series, which is the application for which we originally designed STAR. One leading exam-
ple of such an algorithm is Twitter’s Anomaly Detection Vector (ADV) algorithm.c This
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algorithm uses an underlying statistical test, seasonal-hybrid ESD, to test for the presence
of outliers in periodic and nonstationary time series [76, 77]. We perform a quantitative
and qualitative comparison between the STAR and ADV to compare their effectiveness at
the task for which we designed STAR—determining qualitative similarity between shock-
like shapes over a wide range of timescales—and to contrast the signals picked up by each
algorithm, which, as we show, differ substantially. Before presenting results of this analysis,
we note that this comparison is not entirely fair; though ADV is a state-of-the-art anomaly
detection algorithm, it was not designed for the task for which we designed STAR, and so
it is not exactly reasonable to assume that ADV would perform as well as STAR on this
task. In an attempt to ameliorate this problem, we have chosen a quantitative benchmark
for which our a priori beliefs did not favor the efficacy of either algorithm.

As both STAR and ADV are unsupervised algorithms, we compare their quantitative
performance by assessing their utility in generating features for use in a supervised learn-
ing problem. Since the macro-economy is a canonical example of a sociotechnical system,
we consider the problem of predicting the probability of a U.S. economic recession us-
ing only a minimal set of indicators from financial market data. Models for predicting
economic recessions variously use only real economic indicators [83–85], only financial
market indicators [86, 87], or a combination of real and financial economic indicators
[88, 89]. We take an approach that is both simple and relatively granular, focusing on the
ability of statistics of individual equity securities to jointly model U.S. economic recession
probability. For each of the equities that was in the Dow Jones Industrial Average between
1999-07-01 to 2017-12-31 (a total of K = 32 securities), we computed both the DST (out-
putting the shock indicator function), STAR algorithm (outputting windows of shock-like
behavior), and the ADV routine on that equity’s volume traded time series (number of
shares transacted), which we sampled at a daily resolution for a total of T = 6759 observa-
tions for each security. We then fit linear models of the form

E
[

log
p

1 – p

]
= Xβ , (17)

where pt is the recession probability on day t as given by the U.S. Federal Reserve (hence
p is the length-T vector of recession probabilities).d When we the model represented by
Eq. (17) using ADV or STAR as the algorithms generating features, the design matrix X is
a binary matrix of shape T × (K + 1) with entry Xtk equal to one if the algorithm indicated
an anomaly or shock-like behavior respectively in security k at time t and equal to zero if it
did not (the +1 in the dimensionality of the matrix corresponds to the prepended column
of ones that is necessary to fit an intercept in the regression). When we fit the model using
the shock indicator function generated by the DST, the matrix X is instead given by the
matrix with column k equal to the shock indicator function of security k.

We evaluate the goodness of fit of these linear models using the proportion of variance
explained (R2) statistic; these results are summarized graphically in Fig. 8. The linear using
ADV-indicated anomalies as features had R2

ADV = 0.341, while the model using the shock
indicator function as columns of the design matrix had R2

DST = 0.455 and the model us-
ing STAR-indicated shocks as features had R2

STAR = 0.496. This relative ranking of feature
importance remained constant when we used model log-likelihood � as the performance
metric instead of R2, with ADV, DST, and STAR respectively exhibiting �ADV = –16,278,
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Figure 8 Analytical comparison of U.S. economic
recession. We modeled the log odds ratio of a U.S.
economic recession using three ordinary least
squares regression models. Each model used one of
the ADV method’s anomaly indicator, the shock
indicator function resulting from the discrete
shocklet transform, and the windows of shock-like
behavior output by the STAR algorithm as elements
of the design matrix. The models that used features
constructed by the DST or STAR outperformed the
model that used features constructed by ADV as
measured by both R2 (displayed in the top panel)
and model log-likelihood. The black curve in the top
panel displays the null distribution of R2 under the
assumption that no regressor (column of the design
matrix) actually belongs to the true linear model of
the data [91, 92]. The lower panel displays the
empirical probability distributions of the model
residuals εi

�DST = –15,633, and �STAR = –15,372. Each linear model exhibited a distribution of residu-
als εt that did not drastically violate the zero-mean and distributional-shape assumptions
of least-squares regression; a maximum likelihood fit of a normal probability density to the
empirical error probability distribution p(εt) gave mean and variance as μ = 0 to within
numerical precision and σ 2 ≈ 6.248, while a maximum likelihood fit of a skew-normal
probability density [90] to the empirical error probability distribution gave mean, vari-
ance, and skew as μ ≈ 0.043, σ 2 ≈ 6.025, and a ≈ 2.307. Taken in the aggregate, these
results constitute evidence to suggest that features generated by the DST and STAR algo-
rithms are superior in the task of classifying time periods as belonging to recessions or
not than are features derived from the ADV method.

As a further comparison of the STAR algorithm and ADV, we generated anomaly win-
dows (in the case of ADV) and windows of shock-like behavior (in the case of STAR) for
the usage rank time series of each of the 10,222 words in the LabMT dataset. We computed
the Jaccard similarity index for each word w (also known as the intersection over union)
between the set of STAR windows {ISTAR

i (w)}i and the set of ADV windows {IADV
i (w)}i,

Jw(STAR, ADV) =
(
⋃

i ISTAR
i (w)) ∩ (

⋃
i IADV

i (w))
⋃

j∈{STAR,ADV}
⋃

i Ij
i(w)

. (18)

We display the word time series and ADV and STAR windows for a selection of words
pertaining to the 2016 U.S. presidential election in Fig. 9. (These words display shock-like
behavior in a time interval surrounding the election, as we demonstrate in the next section,
hence our selection of them as examples here.)

We display the distribution of all Jaccard similarity coefficients in Fig. 10. Most words
have relatively little overlap between anomaly windows returned by ADV and windows of
shock-like dynamics returned by STAR, but there are notable exceptions. In particular, a
review of the figures contained in the online index suggests that ADV’s and STAR’s win-
dows overlap most when the shock-like dynamics are particularly strong and surrounded
by a time series with relatively low variance; they agree the most when hypothesized un-
derlying deterministic mechanics are strongest and the effects of noise are lowest. The
pronounced spikes in the words “crooked” and “stein” in Fig. 9 are an example of this
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Figure 9 Comparison of STAR and Twitter’s Anomaly Detection Vector (ADV) algorithm used for detecting
phenomena in Twitter 1gram time series. The Jaccard similarity coefficient is presented for each 1-gram and
the region where events on detected are shaded for the respective algorithm. Blue-shaded windows
correspond with STAR windows of shock-like behavior, while red-shaded windows correspond with ADV
windows of anomalous behavior (and hence purple windows correspond to overlap between the two). In
general, ADV is most effective at detecting brief spikes or strong shock-like signals, whereas STAR is more
sensitive to longer-term shocks and shocks that occur in the presence of surrounding noisy or nonstationary
dynamic. ADV does not treat strong periodic fluctuations as anomalous by design; though this may or may
not be a desirable feature of a similarity search or anomaly detection algorithm, it is certainly not a flaw in
ADV but simply another differentiator between ADV and STAR

phenomenon. However, when the time series has high variance or exhibits strong non-
stationarity, ADV often does not indicate that there are windows of anomalous behavior
while STAR does indicate the presence of shock-like dynamics; the panels of the words
“trump”, “jill”, and “hillary” in Fig. 9 demonstrate these behaviors.

Taken in the aggregate, these results suggest that a state-of-the-art anomaly detection
algorithm, such as Twitter’s ADV, and a qualitative, shape-based, timescale-independent
similarity search algorithm, such as STAR, do have some overlapping properties but are
largely mutually-complementary approaches to identifying and analyzing the behavior of
sociotechnical time series. While ADV and STAR both identify strongly shock-like dy-
namics that occur when the surrounding time series has relatively low variance, their be-
havior diverges when the time series is strongly nonstationary or has high variance. In
this case, ADV is an excellent tool for indicating the presence of strong outliers in the
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Figure 10 Jaccard similarity coefficients.
Complimentary cumulative distribution function
(CCDF) of Jaccard similarity coefficients for regions that
Twitter’s ADV and our STAR algorithm detect patterns
or anomalies (see Fig. 9). Window sizes are varied to
includeWs ∈ {0, 3, 5, 7} (i.e. detections within ti ±Ws are
as part of the intersection). Time series with Jwordi = 0
are omitted from the CCDF. The inset histogram shows
the distribution of Jaccard similarity coefficients for
Ws = 0 (i.e. exact matches), J = 0 time series are
included

Figure 11 Shock leaderboard. Time series of the ranked and weighted shock indicator function. At each time
step t, the weighted spike indicator functions (WSIF) are sorted so that the word with the highest WSIF
corresponds to the top time series, the words with the second-highest WSIF corresponds to the second time
series, and so on. Vertical ticks along the bottommark fluctuations in the word occupying ranks 1 and 2 of
WSIF values. Top panels present the ranks of WSIF values for words in the top 5 WSIF values in a given time
step for the sub-sampled period of 60 days. An interactive version of this graphic is available at the authors’
webpage: http://compstorylab.org/shocklets/ranked_shock_weighted_interactive.html

data, while STAR continues to indicate the presence of shock-like dynamics in a manner
that is less sensitive to the time series’s stationarity or variance.

2.2 Social narrative extraction
We seek both an understanding of the intertemporal semantic meaning imparted by win-
dows of shock-like behavior indicated by the STAR algorithm and a characterization of the
dynamics of the shocks themselves. We first compute the shock indicator and weighted
shock indicator functions (WSIFs) for each of the 10,222 labMT words filtered from the
gardenhose dataset, described in Sect. 1.1, using a power kernel with θ = 3. At each point
in time, words are sorted by the value of their WSIF. The jth highest valued WSIF at each
temporal slice, when concatenated across time, defines a new time series. We perform
this computation for the top ranked k = 20 words for the entire time under study. We also
perform this process using the “spike” kernel of Eq. (4) and display each resulting time se-
ries in Fig. 11 (shock kernel) and Fig. 12 (spike kernel). (We term the spike kernel as such
because we have dK(Sp)(τ )

dτ
= δ(τ ) on the domain [–W /2, W /2], the Dirac delta function; its

http://compstorylab.org/shocklets/ranked_shock_weighted_interactive.html
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Figure 12 Spike leaderboard. Time series of the ranked and weighted spike indicator function. At each time
step t, the weighted spike indicator functions (WSpIF) are sorted so that the word with the highest WSpIF
corresponds to the top time series, the words with the second-highest WSpIF corresponds to the second time
series, and so on. Vertical ticks along the bottommark fluctuations in the word occupying ranks 1 and 2 of
WSpIF values. Top panels present the ranks of WSpIF values for words in the top 5 WSpIF values in a given
time step for the sub-sampled period of 60 days. The top left panel, demonstrates the competition for social
attention between geopolitical concerns—street protests in Egypt—and popular artists and popular culture
influence—Rebecca Black and Demi Lovato. The top right panel displays the language surrounding the 2016
U.S. presidential election immediately after Donald Trump announced his candidacy. An interactive version of
this graphic is available at the authors’ webpage:
http://compstorylab.org/shocklets/ranked_spike_weighted_interactive.html

underlying mechanistic dynamics are completely static except for one point in time during
which the system is driven by an ideal impulse function.)

The j = 1 word time series is annotated with the corresponding word at relative maxima
of order 40. (A relative maximum xs of order k in a time series is a point that satisfies xs > xt

for all t such that |t –s| ≤ k.) This annotation reveals a dynamic social narrative concerning
popular events, social movements, and geopolitical fluctuation over the past near-decade.
Interactive versions of these visualizations are available on the authors’ website.e To fur-
ther illuminate the often-turbulent dynamics of the top j ranked weighted shock indicator
functions, we focus on two particular 60-day windows of interest, denoted by shading in
the main panels of Figs. 11 and 12. In Fig. 11, we outline a period in late 2011 during which
multiple events competed for collective attention:

• the 2012 U.S. presidential election (the word “herman”, referring to Herman Cain, a
presidential election contender);

• Occupy Wall Street protests (“occupy” and “protestors”);
• and the U.S. holiday of Thanksgiving (“thanksgiving”)

Each of these competing narratives is reflected in the top-left inset. In the top right in-
set, we focus on a time period during which the most distinct anomalous dynamics cor-
responded to the 2014 Gaza conflict with Israel (“gaza”, “israeli”, “palestinian”, “palestini-
ans”, “gathered”). In Fig. 12, we also outline two periods of time: one, in the top left panel,
demonstrates the competition for social attention between geopolitical concerns:

• street protests in Egypt (“protests”, “protesters”, “egypt”, “response”);
• and popular artists and popular culture (“rebecca”, referring to Rebecca Black, a

musician, and “@ddlovato”, referring to another musician, Demi Lovato).

http://compstorylab.org/shocklets/ranked_spike_weighted_interactive.html
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In the top right panel we demonstrate that the most prominent dynamics during late 2015
are those of the language surrounding the 2016 U.S. presidential election immediately after
Donald Trump announced his candidacy (“trump”, “sanders”, “donald”, “hillary”, “clinton”,
“maine”).

We note that these social narratives uncovered by the STAR algorithm might not
emerge if we used a different algorithm in an attempt to extract shock-like dynam-
ics in sociotechnical time series. We have already shown (in the previous section)
that at least one state-of-the-art anomaly detection algorithm is unlikely to detect
abrupt, shock-like dynamics that occur in time series that are nonstationary or have
high variance. We display side-by-side comparisons of the indicator windows gener-
ated by each algorithm for every word in the LabMT dataset in the online appendix
(http://compstorylab.org/shocklets/all_word_plots/). A review of figures in the online ap-
pendix corresponding with words annotated in Figs. 11 and 12 provides evidence that an
anomaly detection algorithm, such as ADV, may not necessarily capture the sane dynamics
as does STAR. We include selected panels of these figures in Appendix 3, displaying words
corresponding with some peaks of the weighted shock and spike indicator functions. (We
hasten to note that this of course does not preclude the possibility that anomaly detection
algorithms might indicate dynamics that are not captured by STAR.)

2.3 Typology of local mechanistic dynamics
To further understand divergent dynamic behavior in word rank time series, we analyze
regions of these time series for which Eq. (15) is satisfied—that is, where the value of the
shock indicator function is greater than the sensitivity parameter. We focus on shock-
like dynamics since these dynamics qualitatively describe aggregate social focusing and
subsequent de-focusing of attention mediated by the algorithmic substrate of the Twitter
platform.

We extract shock segments from the time series of all words that made it into the top
j = 20 ranked shock indicator functions at least once. Since shocks exist on a wide vari-
ety of dynamic ranges and timescales, we normalize all extracted shock segments to lie
on the time range tshock ∈ [0, 1] and have (spatial) mean zero and variance unity. Shocks
have a focal point about their maxima by definition, but in the context of stochastic time
series (as considered here), the observed maximum of the time series may not be the
“true” maximum of the hypothesized underlying deterministic dynamics. Shock points—
hypothesized deterministic maxima—of the extracted shock segments were thus deter-
mined by two methods: The maxima of the within-window time series,

t∗
1 = arg max

tshock∈[0,1]
xtshock ; (19)

and the maxima of the time series’s shock indicator function,

t∗
2 = arg max

tshock∈[0,1]
CK(S) (tshock). (20)

We then computed empirical probability density functions of t∗
1 and t∗

2 across all words in
the LabMT dataset. While the empirical distribution of t∗

1 is uni-modal, the corresponding
empirical distribution of t∗

2 demonstrated clear bi-modality with peaks in the first and last
quartiles of normalized time. To better characterize these maximum a posteriori (MAP)

http://compstorylab.org/shocklets/all_word_plots/
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Figure 13 Social dynamics in cusp segments.
Extracted cusp Extracted shock segments show
diverse behavior corresponding to divergent social
dynamics. We extract “important” shock segments
(those that breach the top k = 20 ranked weighted
shock indicator at least once during the decade
under study) and normalize them as described in
Sect. 2. We then find the densities of shock points t∗1 ,
measured using the maxima of the within-window
time series, and alternatively measured using the
maxima of the (relative) shock indicator function. We
calculate relative maxima of these distributions and
spatially-average shock segments whose maxima
were closest to these relative maxima; we display
these mean shock segments along with sample
shock segments that are close to these mean shock
segments in norm. We introduce a classification
scheme for shock dynamics: Type I (panel (A))
dynamics are those that display slow buildup and
fast relaxation; Type II (panel (B)) dynamics,
conversely, display fast (shock-like) buildup and slow
relaxation; and Type III (panel (C)) dynamics are relatively symmetric. Overall, we find that Type III dynamics are
most common (40.9%) among words that breach the top k = 20 ranked weighted shock indicator function,
while Type II are second-most common (36.4%), followed by Type I (22.7%)

estimates, we sample those shock segments xt the maxima of which are temporally-close
to the MAPs and calculate spatial means of these samples,

〈xtshock〉n =
1

|M|
∑

n∈M
x(n)

tshock , (21)

where

.M =
{

n :
∣∣
∣ arg max
tshock∈[0,1]

x(n)
tshock – t∗

∣∣
∣ < ε

}
. (22)

The number ε is a small value which we set here to ε = 10/503.f We plot these curves
in Fig. 13. Shock segments that are close in spatial norm to the 〈xtshock〉n—that is, shock
segments xtshock that satisfy

∥∥xtshock – 〈xtshock〉n
∥∥

1 ≤ F←
‖xs–〈xtshock 〉n‖1 (0.01), (23)

where F←
Z (q) is the quantile function of the random variable Z—are plotted in thinner

curves. From this process, three distinct classes of shock segments emerge, corresponding
with the three relative maxima of the shock point distributions outlined above:

– Type I: exhibiting a slow buildup (anticipation) followed by a fast relaxation;
– Type II: with a correspondingly short buildup (shock) followed by a slow relaxation;
– Type III: exhibiting a relatively symmetric shape.
Words corresponding to these classes of shock segments differ in semantic context.

Type I dynamics are related to known and anticipated societal and political events and
subjects, such as:

• “hampshire” and “republican”, concerning U.S. presidential primaries and general
elections,

• “labor”, “labour”, and “conservatives”, likely concerning U.K. general elections,
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Table 1 Words for which at least one shock segment was close in norm to a spatial mean shock
segment as detailed in Sect. 2. We display the distributions of “shock points”—hypothesized
deterministic maxima of the noisy mechanistically-generated time series—in Fig. 13. Every word may
also have several “shock points” where each point could corresponds to a different shock dynamics
due to the way each word is used throughout its life span on the platform, hence a few of these
examples (e.g. rumble, anonymity, #nowplaying) appear in multiple categories

Classification Shock shape Words

Type I Slow buildup, fast relaxation rumble, veterans, dusty, labour, scattered, hampshire, #tinychat,
elected, ballot, selection, labor, entering, beam, phenomenon,
voters, mamma, anonymity, republican, #nowplaying, indictment,
wages, conservatives, pulse, knee, grammy, essays, #tcot,
kentucky, fml, netherlands, jingle, valid, whitman, syracuse, dems,
deposit, bail, tomb, walker, reader

Type II Fast buildup, slow relaxation xbox, chained, yale, bombing, holocaust, connecticut, #tinychat,
civilian, jill, turkish, tsunami, ferry, #letsbehonest, beam,
agreement, riley, ethics, phenomenon, harriet, privacy, israeli,
#nowplaying, gun, dub, pulse, killings, herman, enormous, fbi,
dmc, searched, norman, joan, affected, arthur, sandra, radiation,
army, walker, reader,

Type III Roughly symmetric rumble, memorial, sleigh, veterans, costumes, greeks, britney,
separated, father’s, shark, grammys, labor, costume, x-mas, bunny,
commonwealth, clause, olympics, olympic, daylight, cyber,
wrapping, rudolph, drowned, re-election

• “voter”, “elected”, and “ballot”, concerning voting in general, and
• “grammy”, the music awards show.

To contrast, Type II (shock-like) dynamics describe events that are partially- or entirely-
unexpected, often in the context of national or international crises, such as:

• “tsunami” and “radiation”, relating to theFukushima Daichii tsunami and nuclear
meltdown,

• “bombing”, “gun”, “pulse”, “killings”, and “connecticut”, concerning acts of violence and
mass shootings, in particular the Sandy Hook elementary school shooting in the
United States;

• “jill” (Jill Stein, a 2016 U.S. presidential election competitor), “ethics”, and “fbi”,
pertaining to surprising events surrounding the 2016 U.S. presidential election, and

• “turkish”, “army”, “israeli”, “civilian”, and “holocaust”, concerning international protests,
conflicts, and coups.

Type III dynamics are associated with anticipated events that typically re-occur and are
discussed substantially after their passing, such as

• “sleigh”, “x-mas”, “wrapping”, “rudolph”, “memorial”, “costumes”, “costume”, “veterans”,
and “bunny”, having to do with major holidays, and

• “olympic” and “olympics”, relating to the Olympic games.
We give a full list of words satisfying the criteria given in Eqs. (22) and (23) in Table 1.
We note that, though the above discussion defines and distinguishes three fundamental
signatures of word rank shock segments, these classes are only the MAP estimates of the
true distributions of shock segments, our empirical observations of which are displayed as
histograms in Fig. 13; there is an effective continuum of dynamics that is richer, but more
complicated, than our parsimonious description here.

3 Discussion
We have introduced a nonparametric pattern detection method, termed the discrete
shocklet transform (DST) for its particular application in extracting shock- and shock-like
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dynamics from noisy time series, and demonstrated its particular suitability for analysis
of sociotechnical data. Though extracted social dynamics display a continuum of behav-
iors, we have shown that maximizing a posteriori estimates of shock likelihood results in
three distinct classes of dynamics: anticipatory dynamics with long buildups and quick
relaxations, such as political contests (Type I); “surprising” events with fast (shock-like)
buildups and long relaxation times, examples of which are acts of violence, natural disas-
ters, and mass shootings (Type II); and quasi-symmetric dynamics, corresponding with
anticipated and talked-about events such as holidays and major sporting events (Type III).
We analyzed the most “important” shock-like dynamics—those words that were one of
the top-20 most significant at least once during the decade of study—and found that
Type III dynamics were the most common among these words (40.9%) followed by Type II
(36.4%) and Type I (22.7%). We then showcased the discrete shocklet transform’s effec-
tiveness in extracting coherent intertemporal narratives from word usage data on the
social microblog Twitter, developing a graphical methodology for examining meaningful
fluctuations in word—and hence topic—popularity. We used this methodology to create
document-free nonparametric topic models, represented by pruned networks based on
shock indicator similarity between two words and defining topics using the networks’
community structures. This construction, while retaining artifacts from its construction
using intrinsically-temporal data, presents topics possessing qualitatively sensible seman-
tic structure.

There are several areas in which future work could improve on and extend that pre-
sented here. Though we have shown that the discrete shocklet transform is a useful tool
in understanding non-stationary local behavior when applied to a variety of sociotechnical
time series, there is reason to suspect that one can generalize this method to essentially any
kind of noisy time series in which it can be hypothesized that mechanistic local dynam-
ics contribute a substantial component to the overall signal. In addition, the DST suffers
from noncausality, as do all convolution or frequency-space transforms. In order to com-
pute an accurate transformed signal at time t, information about time t +τ must be known
to avoid edge effects or spectral effects such as ringing. In practice this may not be an im-
pediment to the DST’s usage, since: empirically the transform still finds “important” local
dynamics, as shown in Fig. 11 near the very beginning (the words “occupy” and “slumdog”
are annotated) and the end (the words “stormy” and “cohen” are annotated) of time stud-
ied. Furthermore, when used with more frequently-sampled data the lag needed to avoid
edge effects may have decreasing length relative to the longer timescale over which users
interact with the data. However, to avoid the problem of edge effects entirely, it may be
possible to train a supervised learning algorithm to learn the output of the DST at time t
using only past (and possibly present) data. The DST could also serve as a useful counter-
part to phrase- and sentence-tracking algorithms such as MemeTracker [93, 94]. Instead
of applying the DST to time series of simple words, one could apply it to arbitrary n-grams
(including whole sentences) or sentence structure pattern matches to uncover frequency
of usage of verb tenses, passive/active voice construction, and other higher-order natu-
ral language constructs. Other work could apply the DST to more and different natural
language data sources or other sociotechnical time series, such as asset prices, economic
indicators, and election polls.



Dewhurst et al. EPJ Data Science             (2020) 9:3 Page 24 of 36

Figure 14 Intricate dynamics of sociotechnical time series. Sociotechnical time series can display intricate
dynamics and extended periods of anomalous behavior. The red curve shows the time series of the ranks
down from top of the word “bling” on Twitter. Until 2015/10/31, the time series presents as random
fluctuation about a steady trend that is nearly indistinguishable from zero. However, the series then displays a
large fluctuation, increases rapidly, and then decays slowly after a sharp peak. The underlying mechanism for
these dynamics was the release of a popular song titled “Hotline Bling” by a musician known as “Drake”.
Returns �rt = rt+1 – rt are calculated and their histogram is displayed in panel (C). To demonstrate the
qualitative difference of the “bling” time series from other time series with an identical returns distribution,
elements of the symmetric group σi ∈ ST are applied to the returns of the original series, �rt �→ �rσi t , and
the resultant noise is integrated and plotted as rσi t =

∑
t′≤t �rσi t . The bottom-left panel (C) displays

time-decoupled probability distributions of the returns of the plotted time series. The distributions of �ri and
σ�ri are identical, as they should be, but the integrated series have entirely different spectral behavior and
dynamic ranges. Panels (D)–(G) display the discrete shocklet transform of the original series and the random
walks

∑
t′≤t �rσi t , showing the responsiveness of the DST to nonstationary local dynamics and its insensitivity

to dynamic range. The right-most column of panels (H)–(K) displays the discrete wavelet transform of the
original series demonstrating its comparatively less-sensitive nature to local anomalous dynamics

Appendix 1: Statistical details
In this appendix we will outline some statistical details of the DST and STAR algorithm
that are not necessary for a qualitative understanding of them, but could be useful for more
in-depth understanding or efforts to generalize them.

We first give an illustrative example of how a sociotechnical time series can differ sub-
stantially from two null models of time series that have some similar statistical properties,
displayed in Fig. 14 (a more information-rich version of Fig. 5, displayed in the main body),
panels (A) and (B). In panel (A), we display an example sociotechnical time series in the
red curve, usage rank of the word “bling” within the LabMT subset of words on Twitter
(denoted by rt), and σ rt , a randomly shuffled version of this time series. We denote σ ∈ ST ,
the symmetric group on T elements, and draw σ from the uniform distribution over ST .
It is immediately apparent that the structure of rt and σ rt are radically different in auto-
correlation (both in levels and differences) and we do not investigate this admittedly-naïve
null model any further.
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We next consider a random walk null model constructed as follows: first differencing rt

to obtain �rt = rt – rt–1, we apply random elements σi ∈ ST and integrate, displaying the
resulting rσit =

∑
t′≤t σi�rt in panel (C) of Fig. 14. Visual inspection (i.e., the “eye test”) also

demonstrates that these time series do not replicate the behavior displayed by the original
rt ; they become negative, have a dynamic range that is almost an order of magnitude larger,
and are more highly autocorrelated. We contrast the results of the DST on rt and draws
from this random walk null model in panels (D)–(G) of Fig. 14. In panel (D) we display the
DST of rt , while in panels (E)–(G) we display the DST of three random σirt . The DSTs of
the draws from the random walk model are more irregular that the DST of rt , displaying
many time-domain fluctuations between large positive values and large negative values. In
contrast, the DST of rt is relatively constant except near August of 2015, where it exhibits
a large positive fluctuation across a wide range of W . The underlying dynamics for this
fluctuation were driven by the release of a popular song called “Hotline Bling” on July
31st, 2015.

As a couterpoint to the DST, we computed the discrete wavelet transform (DWT) of rt

and the same σirt . We computed the wavelet transform using the Ricker wavelet,

ψ(τ , W ) =
2√

3Wπ1/2

[
1 –

(
τ

W

)2]
e–τ2/(2W 2). (24)

We chose to compare the DST with the DWT because these transforms are very similar in
many respects: they both depend on two parameters (a location parameter τ and a scale
parameter W ); they both output a matrix of shape T × NW (NW rows, one for each value
W , and T columns, one for each value of τ ). There are some key difference between these
transforms, however. The “kernels” of the wavelet transform—the kernels—have unique
properties not shared by our shock-like kernels: wavelets ψ(t) are defined on all of R,
satisfy limt→±∞ ψ(t) = 0, and are orthonormal. Our shock-like kernels do not satisfy any
of these properties; they are defined on a finite interval [–W /2, W /2], do not vanish at the
endpoints of this interval, and are not orthogonal functions. Hence, differences in the DST
and DWT of a time series are due primarily to the choice of convolution function—shock-
like kernel in the case of the DST and wavelet in the case of the DWT. We display the DWT
of rt and the same σirt in panels (H)–(K) of Fig. 14. Comparing these transforms with the
DSTs displayed in panels (D)–(G), we see that the DST has increased time-localization
over the DWT in time intervals during which the time series exhibit shock-like dynamics.

As we note in Sect. 2.1 (there when comparing STAR to Twitter’s ADV anomaly detec-
tion algorithm), this observation should not be construed as equivalent to the statement
that the DST is in some way superior to the DWT or should supersede the DWT for
general time series processing tasks; rather, it is evidence that the DST is a superior trans-
form than the DWT for the purpose of finding shock-like dynamics in sociotechnical time
series—a task for which it was designed and the DWT was not.

We finally note an analytical property of the DST that, while likely not useful in practice,
is a fact that should be recorded and may be useful in constructing theoretical extensions
of the DST. The DST is defined in Eq. (11), which we record here for ease in reference:

CK(·) (t, W |θ ) =
∞∑

–∞
x(t + τ )K(·)(τ |W , θ ), (25)
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defined for each t. The function K(·) is the shock kernel that is non-zero on τ ∈ [–W /2 +
t, W /2 + t]. For t ∈ [–T , T], this can be rewritten equivalently as

CK(·) (W |θ ) = K(W |θ )x, (26)

where K(W |θ ) is a (2T + 1) × (2T + 1) W -diagonal matrix, CK(·) (W |θ ) is the W th row of
the cusplet transform matrix, and x is the entire time series x(t) considered as a vector
in R

2T+1. The matrix K(W |θ ) is just the convolution matrix corresponding to the cross-
correlation operation with K(·). If K(W |θ ) is invertible, then it is clear that

x = K(W |θ )–1CK(·) (W |θ ), (27)

for any 1 < W < T and hence also

x =
1

NW

∑

W

K(W |θ )–1CK(·) (W |θ ). (28)

This is an inversion formula similar to the inversion formulae of overcomplete transforms
such as the DWT and discrete chirplet transform.

When T → ∞ (that is, when the signal x(t) is turned on in the infinite past and continues
into the infinite future), this equation becomes the formal operator equation

CK(·) (t, W |θ ) = K(W |θ )
[
x(t)

]
, (29)

and hence (as long as the operator inverses are well-defined),

x(t) =
1

NW

∑

W

K(W |θ )–1[CK(·) (t, W |θ )
]
. (30)

These inversion formulae are, in our estimation, of relatively little utility in practical ap-
plication. Whereas inverting a wavelet transform is a common task—it may be desirable
to decompress an image that is initially compressed using the JPEG 2000 algorithm, which
uses the wavelet transform for compact representation of the image—we estimate the
probability of being presented with some arbitrary shocklet transform and needing to re-
cover the original signal from it to be quite low; the shocklet transform is designed to
amplify features of signals to which we already have access, not to recreate time-domain
signals from their representations in other domains.

Appendix 2: Document-free topic networks
An important application of the DST is the partial recovery of context- or document-
dependent information from aggregated time series data. In natural language processing,
many models of human language are statistical in nature and require original documents
from which to infer values of parameters and perform estimation [95, 96]. However, such
information can be both expensive to purchase and require a large amount of physical
storage space. For example, the tweet corpus from which the labMT rank dataset used
throughout this paper was originally derived is not inexpensive and requires approxi-
mately 55 TB of disk space for storage.g In contrast, the dataset used here is derived from
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Figure 15 Topic network inferred from weighted shock indicator functions. At each point in time, words are
ranked according to the value of their weighted shock indicator function and the top k words are taken and
linked pairwise for an upper bound of

(k
2

)
additional edges in the network; if the edge between words i and j

already exists, the weight of the edge is incremented. The edge weight increment at time t is given by

wij,t =
Ri,t+Rj,t

2 , the average of the weighted shock indicator for words i and j, with the total edge weight thus
given by wij =

∑
t wij,t . After initial construction, the backbone of the network is extracted using the method

of Serrano et al. [97]. The network is pruned further by retaining only those nodes i, j and edges eij for which
wij is above the pth percentile of all edge weights in the backboned network. The network displayed here is
constructed by setting k = 20 and p = 50, where size of the node indicates normalized page rank. Topics are
associated with distinct communities, found using the modularity algorithm of Clauset et al. [98]

the freely-available LabMT word set and is less than 400 MB in size. If topics of relatively
comparable quality can be extracted from this smaller and less expensive dataset, the po-
tential utility to the scientific community at large, could be high.

We demonstrate that a reasonable topic model for Twitter during the time period of
study can be inferred from the panel of rank time series alone. This is accomplished via a
multi-step meta-algorithm. First, the weighted Shock Indicator Function Ri is calculated
for each word i. At each point in time t, words are sorted by their respective shock indicator
functions. At time step t, the top k words are taken and linked pairwise for an upper bound
of

(k
2
)

additional edges in the network; if an edge already exists between word i and j, it
is incremented by the mean of the words’ respective weighted Shock Indicator Function
Ri+Rj

2 . Performing this process for all time periods results in a weighted network of related
words. The weights wij =

∑
t

Ri,t+Rj,t
2 are large when the value of a word’s weighted shock

indicator function is large or when a word is frequently in the top k, even if it is never near
the top. The resulting network can be large; to reduce its size, its backbone is extracted
using the method of Serrano et al. [97] and further pruned by retaining only those nodes
and edges for which the corresponding edge weights are at or above the pth percentile
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Figure 16 Topic network inferred from weighted spike indicator functions. At each point in time, words are
ranked according to the value of their weighted spike indicator function and the top k words are taken and
linked pairwise for an upper bound of

(k
2

)
additional edges in the network; if the edge between words i and j

already exists, the weight of the edge is incremented. The edge weight increment at time t is given by

wij,t =
Ri,t+Rj,t

2 , the average of the weighted spike indicator for words i and j, with the total edge weight thus
given by wij =

∑
t wij,t . After initial construction, the backbone of the network is extracted using the method

of Serrano et al. [97]. The network is pruned further by retaining only those nodes i, j and edges eij for which
wij is above the pth percentile of all edge weights in the backboned network. The network displayed here is
constructed by setting k = 20 and p = 50, where size of the node indicates normalized page rank. Topics are
associated with distinct communities, found using the modularity algorithm of Clauset et al. [98]

of all weights in the backboned network. Topics are associated with communities in the
resulting pruned networks, found using the modularity algorithm of Clauset et al. [98].

Figure 15 and Fig. 16 display the result of this procedure for k = 20 and p = 50. Unique
communities (topics) are indicated by node color. In the co-shock network (Fig. 15), topics
include, among others:

• Winter holidays and events (“valentines”, “superbowl”, “vday”, . . . );
• U.S. presidential elections (“republicans”, “barack”, “clinton”, “presidential”, . . . );
• Events surrounding the 2016 U.S. presidential election in particular (“clinton’s”,

“crooked”, “giuliani”, “jill”, “stein”, . . . );
while the co-shock network displays topics pertaining to:

• popular culture and music (“bieber”, “#nowplaying”, “@nickjonas”, “@justinbieber”);
• U.S. domestic politics (“clinton”, “hillary”, “trump”, “sanders”, “iran”, “sessions”, . . . );
• and conflict in the Middle East (“gaza”, “iraq”, “israeli”, “gathered”)

The predominance of U.S. politics at the exclusion of politics of other nations is likely
because the labMT dataset contains predominantly English words.
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Appendix 3: STAR and ADV comparison figures

Figure 17 Occupy Wall Street. Comparison of STAR and ADV indicator windows for some words surrounding
the “Occupy Wall Street” movement during 2010
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Figure 18 Heartbreaker. Comparison of STAR and ADV indicator windows for some words surrounding
popular events (the release of a song called “Heartbreaker” by Justin Bieber and “Roar” by Katy Perry) and
criminal justice-related events (the trial and acquittal of George Zimmerman)
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Figure 19 Gaza conflict. Comparison of STAR and ADV indicator windows for some words surrounding the
Gaza conflict of 2014
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Figure 20 Hurricanes. Comparison of STAR and ADV indicator windows for some words surrounding the
autumn of 2017, including Hurricane Harvey, Colin Kaepernick’s kneeling protests, John McCain, the electoral
campaign of Roy Moore in the U.S. state of Alabama, and pumpkins (a traditional gourd symbolic of autumn
in the U.S.)
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