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Abstract
Data visualizations are a valuable tool used during both statistical analysis and the
interpretation of results as they graphically reveal useful information about the
structure, properties and relationships between variables, which may otherwise be
concealed in tabulated data. In disciplines like medicine and the social sciences,
where collected data include sensitive information about study participants, the
sharing and publication of individual-level records is controlled by data protection
laws and ethico-legal norms. Thus, as data visualizations – such as graphs and plots –
may be linked to other released information and used to identify study participants
and their personal attributes, their creation is often prohibited by the terms of data
use. These restrictions are enforced to reduce the risk of breaching data subject
confidentiality, however they limit analysts from displaying useful descriptive plots for
their research features and findings.
Here we propose the use of anonymization techniques to generate

privacy-preserving visualizations that retain the statistical properties of the underlying
data while still adhering to strict data disclosure rules. We demonstrate the use of
(i) the well-known k-anonymization process which preserves privacy by reducing the
granularity of the data using suppression and generalization, (ii) a novel deterministic
approach that replaces individual-level observations with the centroids of each k
nearest neighbours, and (iii) a probabilistic procedure that perturbs individual
attributes with the addition of random stochastic noise. We apply the proposed
methods to generate privacy-preserving data visualizations for exploratory data
analysis and inferential regression plot diagnostics, and we discuss their strengths and
limitations.

Keywords: Sensitive data; Data visualizations; Disclosure control; Privacy protection;
Anonymization

1 Introduction
Formal statistical techniques based on quantitative inferences are crucial and centrally
involved in every data-driven program of scientific research. However, data analysis with-
out the generation of informative data visualizations often does not help the analysts and
readers, especially those without strong statistical backgrounds, to understand complex
research questions, nuanced relationships between variables and statistical outputs. Data
visualizations are therefore valuable tools that can be used during exploratory and in-
ferential analysis, the subsequent derivation and interpretation of conclusions, and the
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publication of the results and findings [1–3]. Informative graphs along with conventional
statistical analysis give meaning to the otherwise meaningless numbers in datasets, by
detecting the statistical properties and attributes of the data, displaying associations and
their magnitudes between different variables and visually inferring study-level statistical
hypotheses.

The importance of graphical representations when exploring an underlying dataset is
illustrated by the fact that different datasets can feature identical summary statistics (e.g.
mean, standard deviation, Pearson’s correlation, etc.) but the spatial distribution of the
data displayed in a real coordinate space (e.g. in a 2-dimensional scatter plot) might vary
substantially [4]. This means that the underlying structure of the data remains hidden, if
informative graphs are not created at the analysis stage. In addition, plots can enhance
the clarity of data presentation and can help readers to understand the research findings
and to derive clear and correct conclusions. In particular, there is strong evidence that the
human brain processes visualized data more quickly and more efficiently than other data
representations [5, 6].

The power of displaying underlying patterns and relationships using data visualizations
provides an important contribution to science in general [7]. However, in disciplines like
medicine and social sciences, where collected data include sensitive information about
the data subjects (e.g. study participants, patients in a hospital, cohort members, etc.), this
advantage is constrained by the privacy-related restrictions. Sensitive information is pro-
tected by data protection laws – like the EU General Data Protection Regulation (GDPR)
[8] – and ethico-legal norms – such as the Common Law duty of Confidentiality in the
UK – which control how Personal Data are shared, accessed, processed and published.
These protections should also be applied, therefore, to graphical representations of data,
as published plots, without any processing, can provide as much information as publish-
ing the raw data. Even when the graphs visualize data from rich datasets, containing large
volumes of data items on many data subjects, and even if the data are pre-processed to be
pseudonymized, some individuals might still be identifiable due to unique combinations
of their attributes in the dataset. For this reason, under GDPR legislation, pseudonymized
data are still considered identifiable Personal Data [9]. This can be particularly problem-
atic, as standard graphical tools do not consider privacy risk and therefore most commonly
generated plots may result in the breach of study participants’ sensitive information.

Potentially-disclosive visualizations may be described as graphical methods allowing
sensitive information to be inferred or deduced, either directly or by combining multi-
ple representations. This may in some circumstances risk disclosure of identity, particu-
larly based on outlying observations. Once identity is disclosed, there is inevitably a risk
that new information, not in the public domain, may be inferred about that individual. In
addition, there is a risk of deductive attacks on the privacy of other people included in a
dataset, if an attacker progressively excludes identified individuals. A characteristic exam-
ple of a potentially-disclosive visualization is the conventional scatter plot, which directly
exposes the exact values of two attributes for every individual in a dataset. When one of
the two variables in a scatter plot is a direct identifier (e.g. an ID indicator, the exact date
of birth, etc.) there is direct disclosure of the second variable for each individual. When
both of the variables are not direct identifiers, an individual may still be identified (with
his/her two attributes being disclosed) especially for outlying and unique observations.
For graphs where data are aggregated in bins (e.g. histograms) or grids (e.g. heat maps)
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Table 1 Exemplar sensitive data

Name Age Glucose Diabetes

Alice Smith 25 237 Yes
Bob Taylor 34 186 Yes
Frank Jones 33 165 Yes
Ivy Smith 42 80 No
Jim Davies 12 190 Yes
. . . . . . . . . . . .

the identification of individuals is harder, based on the level of aggregation. However, it is
often unavoidable for outlying observations and in the absence of disclosure controls. On
the other hand, the use of an increased level of aggregation can be a drawback, as there is a
great chance to lose important information (e.g. the distribution displayed in a histogram
with wide bins, might considerably differ from the actual distribution of the variable).

To give an example, let us assume that we have a database of medical records from a
specific hospital, like the example shown in Table 1. The dataset includes the full name of
each patient (direct identifier), the age of each person in years (potentially direct identifier
especially for unique values), their blood glucose level (non-identifier, sensitive informa-
tion), and a binary indicator where ‘Yes’ or ‘No’ denotes whether a person has diabetes or
not (non-identifier, sensitive information). If we generate a scatter plot between age and
glucose level, and if we know that Alice is a patient in the hospital and her age is 25, then
we can directly disclose her blood glucose level, which is sensitive personal information
and also an indicator for diabetes. If the hospital intends to directly release a statistical
report on the age distribution of diabetic patients in the database, representing that in a
histogram, then private information of individuals may be also leaked. For example, if we
know that Alice is the only person aged between 20 and 30 years in the hospital, and if
the bins of the histogram represent single years of age or even if they represent 10-year
intervals with breaks at each decade, then we can confirm that Alice has diabetes.

Despite these disclosure risks, it is clear that with appropriate statistical disclosure con-
trols [10] it may be possible to generate privacy-protected graphical outputs. Privacy-
preserving visualizations can therefore be defined as graphs that control the risk of dis-
closure by applying permutations to the real data points. Of course, there are cases where
an attacker might have enough external information to identify other information from
“processed” graphs, however the realistic objective of privacy-preserving techniques may
be viewed as making such disclosure attempts not reasonable likely, and easier to detect
via contemporaneous or post hoc data processing. The risk of disclosure based on graphi-
cal outputs of sensitive data is often mitigated by restrictions placed in the data use terms
and conditions. For example, many Data Safe Haven and Trusted Research Environments
[11, 12] specify that no research outcomes, including plots, are allowed to be published, or
sometimes even created, without risk evaluation and human checking of disclosure risks in
that output. But, this is a time consuming and error-prone process which has a substantive
potential to miss things. So there is a resource issue (cost to research), a time issue (delays
for the researcher) and a risk/reputation issue (failure to detect disclosive content which
then brings the data science into disrepute and threatens the on-going availability of data).
On the other hand, the creation of privacy-preserving graphics (and other statistical out-
puts) might ideally be managed at the analysis stage, thus circumventing the concern that
a block any earlier in data-processing runs the risk of degrading the quality of the data,
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whilst at any later stage, runs the risk of requiring a repetition of the analysis with stricter
disclosure controls (thus creating time delays).

The consideration and control of disclosure risk is best approached through risk based
assessments. Once risk is identified, then tools and techniques are needed to mitigate
these. In this paper, we demonstrate how statistical techniques of data anonymization
can be used for the development of privacy-preserving visualizations. Here we use the
following techniques:

(i) k-anonymization: uses a combination of suppression and generalization of
individual attributes until each row in a given dataset becomes identical to at least
k – 1 other rows [13]. Suppression is achieved when certain values of attributes with
high risk of identification (usually unique extreme values or outliers) are replaced by
arbitrary symbols, or missing value indicators, or are deleted completely from the
dataset. Under generalization, individual values are replaced with broader
categories (e.g. a vector indicating the continuous age in years can be replaced by a
vector of wider age groups).

(ii) deterministic anonymization: for each individual attribute we generate a cluster
with its k – 1 nearest by distance neighbours and then replace its value by the
average (geocentroid) of the attributes in the cluster. This method differs from
micro-aggregation [14], as one distinct cluster is formed for each single data record.

(iii) probabilistic anonymization: perturbs the individual values of a variable with the
addition of random stochastic noise of variance equal to a proportion of the actual
dispersion of the underlying variable [15].

This paper is structured as follows: In the ‘Methods’ section we describe the three
anonymization techniques used in generating privacy-preserving graphs (Sects. 2.1–2.3).
In the ‘Data’ section, we present the simulated data used for the graphical illustrations
of this study. In the ‘Results’ section we first demonstrate the privacy-preserving graph-
ical displays for exploratory data analysis (Sect. 4.1) and for regression plot diagnostics
(Sect. 4.2), and we then present the performance of the used techniques with variation of
their parameters (Sects. 4.3–4.5) and on different sample sizes (Sect. 4.6). Finally, in the
‘Discussion’ section we discuss the findings of our study and illustrate the strengths and
limitations of the methods used.

2 Methods
2.1 k-anonymization
The k-anonymization method is a commonly used data protection technique [13, 16, 17].
It converts a set of individual-level data into a k-anonymous form, which means that the
combined information for each individual in a given dataset cannot be distinguished from
the combined information of at least k –1 other individuals in the same dataset. To achieve
k-anonymous data, the individual attributes are suppressed or generalized, until each row
in the dataset becomes identical with at least k – 1 other rows. Using suppression, certain
values of attributes with high risk of identification (usually unique indicators, extreme
values or outliers) are deleted or replaced by meaningless symbols. Using generalization,
granular values of attributes are replaced with broader categories or intervals. However,
it is difficult, if not impossible, to select an optimal method/protocol that produces k-
anonymous data [18, 19]. For each data setting, the preliminary data processors must
therefore determine how many times to apply suppression and/or generalization and in
which combination, in order to achieve the value of k-anonymity required.
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Suppression is also used to protect sensitive information in tabular summary statistics.
A characteristic example is the application of suppression of cells in contingency tables,
where counts of categorical variables or quantitative measures of continuous variables
(e.g. the mean) are tabulated across a number of factors. Known as the small cell counts
suppression rule, the method specifies a threshold indicating the minimum non-zero value
of units allowed in any of the cells in the contingency table, and if any cell has less counts
than this threshold, its value is removed from the table [20]. If only one cell requires cell
suppression, then at least one other complementary cell must be suppressed, in order to
avoid calculation of the suppressed values from the marginal totals [21]. In special situa-
tions null cells (cells with zero counts), or 100% cells (cells where all contributors within
a category have a particular characteristic) are considered sensitive and must also be pro-
tected from identification risks.

Generalization can be applied both to quantitative variables (e.g. combining continu-
ous ages given in years into broader categories of age-groups) and for qualitative variables
(e.g. combining locations given as street names into names for wider areas). One disclo-
sure limitation method that can be used to generalize individual-level attributes is micro-
aggregation [14]. Micro-aggregated data are obtained when individual values of variables
are clustered in groups of size of at least k and each individual value is replaced by the aver-
age value over each group. The groups are determined by criteria of maximal similarity –
such as the proximity of the data values.

Here, we use both components of k-anonymization – suppression and generalization –
to generate privacy-preserving visualizations of data aggregated in bins or cells. Such plots
include the histogram which is a discretized representation of the probability distribution
of a numerical variable, and the heat map which displays the density distribution of two
variables tabulated in grids. The protection of sensitive information in these outputs, is
achieved through suppression of cells, grids or bins with k or less counts, or generalization
of the variables into broader intervals. For the suppression rule we use the threshold value
of k = 3 as a baseline value and we vary this parameter in Sect. 4.3 to explore its effect on
the data visualizations. We note here, that the k-anonymization method cannot be applied
to plots of ungrouped data (e.g. scatter plots), however we micro-aggregate the data and
apply the method to demonstrate its poor performance on such plots.

2.2 Deterministic anonymization
Deterministic anonymization is a novel method, being proposed here, that provides a quite
different approach to generating privacy-preserving visualizations. Our proposal is based
on the use of the k-Nearest Neighbours, a commonly used algorithm in machine learning
and data mining applications [22, 23]. Based on this, the deterministic anonymization of an
underlying dataset can be achieved through the following procedure: we first standardize
each continuous variable using z-score transformations such that each variable is central-
ized to zero mean and scaled to unit variance. With z-score transformations, the mean of
a given variable is subtracted from each individual value and each difference is divided by
the variable’s standard deviation. We then find the k – 1 nearest neighbours of each in-
dividual data point; the distance between data points being determined by the Euclidean
distance metric. Alternatively, the Mahalanobis distance metric [24] can be used without a
requirement for initial standardization. This is because the Mahalanobis distance accounts
for the scale and the variance of each variable and all pairwise bivariate covariances. In a
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two-dimensional space, the Mahalanobis distance, �, between two vectors x and y is given
mathematically by � =

√
(x – y)T�–1(x – y), where � is the variance-covariance matrix of

x and y. The variance-covariance matrix for uncorrelated variables (i.e. with zero covari-
ances) is diagonal, and the Mahalanobis distance reduces to the normalized Euclidean dis-
tance. For uncorrelated variables with unit variances, the covariance matrix is the identity
matrix and the Mahalanobis distance reduces to the ordinal Euclidean distance. There-
fore, the Mahalanobis distance is equivalent to the Euclidean distance when the variables
are standardized to Gaussian distributions with zero means and unit variances, through
z-score transformations.

The k – 1 nearest neighbours of every data point are first identified, thus defining n clus-
ters of size k, where n is the length of each variable to be plotted. Working through each
cluster one at a time, the algorithm then computes the coordinates of the centroid of its
k associated data points. The coordinates of each centroid are estimated as the average
of the coordinates of the k data points (i.e. the original data point and its k – 1 nearest
neighbours) in each dimension separately. For example in a 2-dimensional space, the x-
coordinate of the centroid is the mean of the x-coordinates of the k data points and the
y-coordinate of the centroid is the mean of the corresponding y-coordinates. The values
of each of the original n data points are then replaced by the coordinates of their corre-
sponding centroids. Finally, as the centroids tend to shrink towards the centre of mass of
the data, we apply scaling to stretch them back to the observed variance of the original
data, and re-centralize them back to the original mean (using the inverse of the z-score
transformations). The scaling is performed by multiplying the centroids with a scaling
factor, that is equal to the ratio between the standard deviation of the raw variable and the
standard deviation of the calculated centroids.

Here, we use this procedure to produce the centroids which are considered as the
anonymized values of the actual data and we display those centroids in different graphs.
We use the value of k = 3 in the algorithm of the k-nearest neighbours as a baseline value,
but we vary this parameter in Sect. 4.4 to explore its effect on the data visualizations.

2.3 Probabilistic anonymization
Probabilistic anonymization methods perturb data by the addition or multiplication of
random stochastic noise [15, 25, 26]. A sufficient level of noise is selected to minimize the
risk of re-identification of the original values from the perturbed data. However, an exces-
sively high level of noise can so perturb the structure of the raw data that it can obscure
important statistical properties [15]. In addition, because of the law of large numbers, the
recurrent use of a probabilistic anonymization technique on a given dataset can reveal in-
ference of the true records if the numeric seed that underpins the pseudo-random number
generator that creates the embedded noise is different each time it is run. Therefore, to
block potential inferential disclosure from a malicious attacker, the data custodian must
fix the random number generator and must specify the level of noise in relation to their
particular data situation. The seed for random number generation needs to be kept secret.

Here, we use the addition of random stochastic noise as a probabilistic way to gener-
ate disclosure protected data points to be used in graphical visualizations. Random noise
is added to each variable separately before the generation of a specific graph. The noise
added to a given variable follows a normal distribution with zero mean and standard de-
viation equal to a percentage q of the observed standard deviation of the variable. As a
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baseline level of noise we use the value of q = 0.25, but we vary this parameter in Sect. 4.5
to explore its effect on the data visualizations. The value q = 0.25 means that the standard
deviation of the added noise is equal to 25% of the observed standard deviation of the
original variable or equivalently its variance equals 6.25% of the original variance.

3 Data
To illustrate the applicability of the three different approaches to anonymization in gener-
ating privacy-preserving graphs, we simulate three sets of two continuous variables each.
We assume that each dataset represents 500 hypothetical individuals but we also anal-
yse the performance of the techniques in smaller sample sizes (see Sect. 4.6). For the first
dataset, D1, we simulate a normally distributed variable X, with mean equal to 10 and
standard deviation equal to 0.5, (X ∼ N(10, 0.52)), and a variable Y , which depends on X
linearly with a relationship given by the formula Y = X + ε1. The error term ε1 follows
the standard normal distribution ε1 ∼ N(0, 1). For the second dataset, D2, we simulate a
variable X which follows a log-normal distribution with mean equal to 0 and standard de-
viation equal to 0.5, (X ∼ Lognormal(0, 0.52)), and a variable Y , associated with X by the
non-linear relationship Y = log(X) + ε2. In this case, we assume that the error term follows
a uniform distribution, ε2 ∼ U(0, 1). For the third dataset, D3, we simulate a variable X
which follows a beta distribution with shape parameters α = 5 and β = 2, (X ∼ Beta(5, 2)),
and an independent variable Y , which also follows a beta distribution with shape param-
eters α = β = 0.5, (Y ∼ Beta(0.5, 0.5)). The choice of those particular distributions and re-
lationships is for demonstrating the performance of the techniques in their application to
data exhibiting a wide range of statistical properties for the generated variables. The spec-
trum of statistical properties adopted for this article includes symmetric and skewed dis-
tributions, unimodal and bimodal distributions, unbounded, semi-bounded and bounded
distributions, none, linear and non-linear relationships between pairs of variables, and
relationships that invoke, or do not invoke assumptions of Gaussian errors and/or ho-
moscedasticity. Nevertheless, we acknowledge that the performance of our methods could
vary in other data settings we have not considered. For reproducibility purposes, we use
R software (version 4.0.0) and we fix the seed of the pseudo-random number generator
to the arbitrary value of 1234 (but ensure that it is set only once, at the top of a script).
We consider the simulated variables to be the ‘real data’, we then generate the ‘anonymous
data’ using the methods described above to produce graphical illustrations of the statis-
tical and relational properties of both the real and anonymous data, in order to evaluate
and compare the proposed techniques.

In this article we focus solely on the visualization of continuous data. Firstly, this is be-
cause continuous data are highly identifiable, as each individual has a unique numeric
value for each attribute which is usually distinguishable from the values of the other in-
dividuals in a dataset. For categorical variables this is not the case, as the same value for
more than one individual can belong to the same category. Secondly, because by defini-
tion categorical data are grouped into categories, there is often no requirement for an ac-
tive procedure for disclosure protection: the only action required is to mitigate the risk of
disclosure associated with categories with counts below an acceptable threshold. Thirdly,
two of the anonymization techniques that we present here (deterministic and probabilistic
anonymization), disturb the values of a given variable without consideration of underlying
context. This can result in meaningless anonymized values when either method is applied
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to categorical data. For example, if we have a binary variable representing gender – let us
assume that 0 denotes males and 1 denotes females – then either the deterministic or the
probabilistic anonymization can replace values from any of the two categories to a nu-
meric value within (or outside) the range of 0-1, which is meaningless when denoting the
gender of an individual.

4 Results
4.1 Graphical displays for exploratory data analysis
Exploratory data analysis is used to summarize the basic features of the underlying data
in a study. Graphical displays of exploratory statistics can describe univariate character-
istics, such as the marginal distribution of a single variable, indicating its mean, skewness
and kurtosis, or the dispersion of the variable indicating its range, quantiles, or central
tendency (e.g. mean and median). The most common plots of univariate statistics are his-
tograms and box plots. For bivariate (or multivariate) analysis, exploratory statistics are
used to summarize the relationships between different variables which, can be displayed
graphically in scatter plots, heat maps and contour plots. Here, we demonstrate how we
can use the proposed anonymization methods to produce common graphical outputs use-
ful in exploratory statistical analysis.

The first example is the graphical representation of the distribution of a variable in a
histogram. To construct a histogram, the range of a variable is divided into a number of –
typically – equal-sized intervals that define the widths of the histogram’s bins, and the
frequency of the values falling in each of these intervals defines the height/area of the
bin. If the range of a variable is divided into relatively small intervals, or if the variable
includes some extreme outlier values, then a single or a small number of counts might
fall into certain intervals. The histogram bars with low counts of observations are poten-
tially disclosive, as one might be able to infer the small range within a certain individual-
level record lies and, with potentially low uncertainty, to estimate its exact value. To ame-
liorate the risk of disclosure, the stated anonymization techniques are used to generate
privacy-preserving histograms. Firstly, we apply the low counts suppression rule. Using
this method, any histogram bar that includes less counts than an agreed threshold is sup-
pressed from the plot. In panels (ii) of Fig. 1, we show the histograms of variables X and
Y after suppressing any bars with less than three counts. Secondly, we apply generaliza-
tion by increasing the width of the intervals that divide up the range of a variable, and
redistributing the variable’s values into those new bins (see panels (iii) in Fig. 1). By in-
creasing the width of the intervals, the number of the bins decreases, but also the prob-
ability of having bins with low counts of observations decreases. Any bins that still have
sub-threshold counts will still be subject to the suppression rule. Thirdly, we apply deter-
ministic anonymization, with the value of k = 3 set for the number of nearest neighbours,
and produce the histograms of the estimated scaled centroids (see panels (iv) in Fig. 1).
Finally, we apply the probabilistic anonymization method by adding to each variable a
normally distributed error with standard deviation equal to 0.25σ (where σ is the stan-
dard deviation of the original real variable) and generating histograms of the noisy data
(see panels (v) in Fig. 1).

When the parameters of the anonymization techniques are selected carefully to mit-
igate the disclosure risk while preserving the shape of the underlying distributions, the
generated histograms are both informative and secure. However, an unconsidered choice
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Figure 1 Privacy-preserving histograms. Figures (A), (B) and (C) show the histograms of X (top rows) and Y
(bottom rows) from datasets D1, D2 and D3 respectively. From left to right we demonstrate (i) the histograms
of the actual variables; (ii) the histograms of the variables after suppressing any bins with less than three
counts; (iii) the histograms of the variables after generalizing the variables into bins based on wider intervals
and suppressing any bins with less than three counts; (iv) the histograms of the scaled centroids of each
3-nearest neighbours; (v) the histograms of the variables with added noise of variance equal to 6.25% of the
true variance. Note that the vertical axis represents the frequency density which is the frequency of each bin
divided by its width

of the parameters can result in a distorted histogram. For example, let us assume that an
analyst decides to use suppression with a big value of k (i.e. much greater than 3) to gen-
erate a privacy-preserving histogram of a variable with a long-tailed skewed distribution
(like the log-normal distribution of variable X in Fig. 1(B)). Then, all the bins of the tail
having lower counts than the selected threshold of k will be suppressed, and the displayed
histogram will have a more symmetrical distribution obscuring the original asymmetrical
shape. The shape can also be distorted when generalization creates unusually wide bins.
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A note here is that the bins do not have to be all of the same width. Given how we define
our histograms, the area of the bar corresponds to the frequency, and therefore the widths
of different bins can be manipulated in a way that will preserve the overall shape of the dis-
tribution, while hiding unique and outlying observations. Note that in Fig. 1 we display the
density of each bin rather than the frequency, which is just the frequency divided by the
width of the bin.

The other two anonymization techniques, deterministic and probabilistic, seem gener-
ally to perform well in generating privacy-preserving histograms. However, avoidance of
selecting seriously inappropriate values for the control parameters in each specific data
setting is particularly important for the probabilistic method. For example, large values
can distort the apparent distribution. One example of such deformation, is the histogram
of variable Y in panel (v) of Fig. 1(C), which fails to preserve the original bimodal nature
of the variable (see histogram with red colour in panel (i) of Fig. 1(C)). In that example,
a lower level of noise (i.e. noise with smaller variability) might be able to retain both the
data utility and the individual privacy. Another disadvantage of these two methods is that
they can both, in principle, generate anonymized values that fall outside the original (or
theoretically defined) ranges characterising the underlying data. In most cases this is not a
great problem as such values are generally very few in number. Furthermore, for the deter-
ministic method it can only happen after final rescaling, when the underlying distribution
generates an unusually large rescaling factor. Nevertheless, the fact that this can, in theory,
occur should not be forgotten and it can potentially be problematic when the methods are
applied to bounded (e.g. beta) or semi-bounded (e.g. log-normal) distributions. In such
cases, some bins may be generated with values falling outside initial boundaries (see for
example the bins with values below zero and above one in panels (iv) and (v) of Fig. 1(C)).

The second example of displaying exploratory statistics in graphs, is the visualization of
data in scatter plots. A scatter plot is highly informative as it indicates the dependence (lin-
ear or non-linear relationship) between two variables and their correlation, if any. How-
ever, as a corollary, a scatter plot can also be potentially disclosive, as it provides a graphic
representation of the exact coordinates of two variables from a set of data. A scatter plot
can be rendered privacy-preserving, if the actual values of the two variables (particularly
in outliers) can be concealed, while it remains informative if the graphic generated by the
selected anonymization technique faithfully demonstrates the underlying statistical prop-
erties of the displayed variables. Figure 2 shows the privacy-preserving scatter plots of the
data from the three datasets, generated using the k-anonymization (panels (ii) and (iii)),
the deterministic anonymization (panels (iv)) and the probabilistic anonymization (panels
(v)). The privacy-preserving scatter plots can be compared with the potentially-disclosive
scatter plots of the raw data (panels (i)).

We mentioned earlier that the k-anonymization can be applied to plots where data are
grouped either in bins (i.e. 1-dimension) or grids (i.e. 2-dimensions). So here, in order to
produce the scatter plots of panels (ii) in Fig. 2, we first generate a 30 by 30 density grid
matrix (or similarly a generalized 15 by 15 matrix for the scatter plots of panels (iii)) based
on the ranges of the X and Y variables, and suppress any data that exist in grids with less
than three counts. We then plot data points at the center of the remaining grids (i.e. those
having more than three observations) and size the dots by the density of observations in
their grid. It is therefore evident that the k-anonymization under-performs in the case of
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Figure 2 Privacy-preserving scatter plots. Figures (A), (B) and (C) show the scatter plots of X and Y from
datasets D1, D2 and D3 respectively. From left to right we demonstrate: (i) the scatter plots of the actual
variables; (ii) the scatter plots of the data aggregated in a 30 by 30 density grid matrix and suppressing any
grids with density less than three counts; (iii) the scatter plots of the data aggregated in a 15 by 15 density
grid matrix (i.e. additional generalization) and suppressing any grids with density less than three counts;
(iv) the scatter plots of the scaled centroids of each 3-nearest neighbours obtained by deterministic
anonymization; (v) the scatter plots of noisy X and Y obtained by addition of random stochastic noise in each
variable, of variance equal to 6.25% of the true variability. Notes: Each data point in panels (ii)–(iii) is located at
the center of the grid and its size corresponds to the number of observations in the grid. The grids are shown
with transparent lines. Panels (ii)–(iii) in Figure (A) include the actual linear trend line of X and Y (red) and the
weighted linear trend line of the k-anonymized data (grey). Panels (iv)–(v) in Figure (A) include the linear trend
lines of actual (red) and anonymized (grey) X and Y variables. The black dots in panels (iv) indicate the
positions where more than one centroids are identically placed

scatter plots, as there is a significant reduction of the information presented in the plots
(i.e. more than half of the data are aggregated and/or suppressed).

On the other hand, the deterministic and, on some level, the probabilistic anonymiza-
tion can retain the underlying dispersion of the original data in the 2-dimensional space.
Based on a visual inspection, the statistical properties such as the mean, the variance, the
covariance and the correlation of the variables appear to remain approximately stable, but
the exact values of the raw data cannot be identified. A characteristic of the deterministic
anonymization is that observations in a cluster of size k, which is isolated from the bulk of
the data, share the same set of k – 1 nearest neighbours and thus have identical centroids.
It is therefore possible that in a scatter plot of scaled centroids, less points are visible when
compared to the scatter plot of the corresponding raw data. The centroids that are located
at the same positions with other centroids are shown by black dots in panels (iv) of Fig. 2.
For the probabilistic anonymization, it is important to select an appropriate value for the
parameter q, in order to keep the noisy data within an area that is not extended too much
from the convex hull of the original values. This condition is important when the convex
hull of the data defines the boundaries of bounded (or semi-bounded) distributions. A vi-
olation of that condition is observed in panel (v) of Fig. 2 where the noisy counterpart of
variable Y has values out of its initial [0 – 1] range.
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Another graphical representation of data that is widely used is the heat map or image
plot. A heat map represents a 2-dimensional display of values contained in a density grid
matrix. Each grid is represented by different colours, indicating the density of the values
in the grid. To generate a heat map plot of bivariate data, we first create their density
grid matrix. We split the range of each variable into equal sub-intervals and enumerate
the count of values falling in each grid on a 2-dimensional matrix (i.e. the density grid
matrix). The pixels in the heat map plot then reflect the density in each cell of the grid,
with a colour determined by the observed count. Using density grid matrices we can also
display similar information in contour plots (i.e. topographic maps). A contour plot is a
graphical display for representing a 3-dimensional surface by plotting constant z slices,
called contours, on a 2-dimensional area. Given the values of z, which are the densities
in the grid matrix, the lines that form the isometric contours connect (x, y) coordinates
where the same z values occur.

Panels (i) at the top rows of Figs. 3(A), 3(B) and 3(C) show the heat map plots of X
and Y formed by using a 30 by 30 density grid matrix. In panels (ii), we show the privacy-
preserving heat map plots produced using suppression of the grids with densities less than
three counts (for example, in Fig. 3(A), panel (ii), 164 grids out of the 900 have been sup-
pressed). In panels (iii) we display the privacy-preserving heat maps produced using a 15
by 15 density grid of the X and Y variables (i.e. generalization) and then suppressing any
grids with densities less than three counts (for example, in Fig. 3(A), panel (iii), 42 out of
225 grids have been suppressed). Panels (iv) and (v) represent the privacy-preserving heat
maps produced using the 30 by 30 density grid matrices of the deterministic and prob-
abilistically anonymized data respectively. The bottom rows of Figs. 3(A), 3(B) and 3(C),
show the contour plots produced from the same density grid matrices as the correspond-
ing heat map plots.

The last example we present here, of a common visualization used on explanatory data
analysis, is the box plot. A box plot visually shows the distribution of numerical data and
skewness, by displaying the data quartiles (or percentiles) and averages. Potentially disclo-
sive observations on a box plot are the outliers and the minimum and maximum points
which define the ends of the whiskers. To protect such information from being disclosed,
we apply the three anonymization techniques and generate privacy-preserving box plots.
For the k-anonymization, we take the 30 by 30 density grid matrix of variables X and Y
(or similarly the 15 by 15 matrix for the case of generalization), we suppress the grids
with less than three counts, and then use the remaining values of each variable separately,
to produce their privacy-protected box plots. For the deterministic and the probabilis-
tic methods, we generate the scaled centroids and the noisy values respectively, and we
then use those to produce the protected box plots. Figure 4 shows the box plots generated
by suppression (panels (ii)), generalization and suppression (panels (iii)), deterministic
anonymization (panels (iv)) and probabilistic anonymization (panels (v)) for the variables
of the three simulated datasets.

From Fig. 4 we conclude that the k-anonymization suppresses the observations with
high risk of identification (e.g. outliers), however it produces an undesirable information
loss, as it tends to shrink the variables’ range (compare for example the whiskers of box
plots of variable Y in panels (ii) and (iii) of Fig. 4(A) with the whiskers of the actual box
plot shown in panel (i)). Another disadvantage of that method (as we also observed earlier
in the case of histograms), is that it can suppress a significant number of observations and
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Figure 3 Privacy-preserving heat map and contour plots. Figures (A), (B) and (C) show the heat map (top
rows) and contour (bottom rows) plots of X and Y from datasets D1, D2 and D3 respectively. From left to right
we demonstrate the plots produced by: (i) the actual 30 by 30 density grid matrix; (ii) the actual 30 by 30
density grid matrix but suppressing any grids with density less than three counts; (iii) a generalized to 15 by
15 density grid matrix and suppressing any grids with density less than three counts; (iv) a 30 by 30 density
grid matrix of deterministically anonymized variables using the value of k = 3 when locating the k-nearest
neighbours; (v) a 30 by 30 density grid matrix of probabilistically anonymized variables generated by adding
random noise to the actual variables, of variance equal to 6.25% of their actual variance. Note that the colour
scale differs between the different heat map plots

therefore can deform the underlying distribution and distort its statistical characteristics.
One example of such distortion, is shown in the box plot of variable Y in dataset D3 for
which its mean is shifted to the left under suppression (compare the mean of the box plots
of Y between panels (i) and (ii) in Fig. 4(C)). This shift leads to the unwanted conversion
of a symmetrical distribution to a less-symmetrical distribution.
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Figure 4 Privacy-preserving box plots. Figures (A), (B) and (C) show the box plots of X and Y from datasets
D1, D2 and D3 respectively. From left to right we demonstrate: (i) the actual box plots of the variables; (ii) the
data are aggregated in a 30 by 30 density grid matrix, any grids with density less than three counts are
suppressed, and the box plots for the observations that are exist in the remaining grids are displayed; (iii) the
data are aggregated in a 15 by 15 density grid matrix (i.e. further generalization), any grids with density less
than three counts are suppressed, and the box plots for the observations that are exist in the remaining grids
are displayed; (iv) the box plots of the scaled centroids of each 3-nearest neighbours obtained by
deterministic anonymization; (v) the box plots of noisy variables obtained by addition of random stochastic
noise in each variable, of variance equal to 6.25% of the true variability

On the other hand, the other two methods, the deterministic and the probabilistic
anonymization, seem to perform better than the k-anonymization. One observation is
that both of the methods keep displaying outlier points, however this is not a concern, as
their location (and also their number) differs from the location of the outlier points in the
original box plot. The only observed limitation of the probabilistic technique is that high
level of noise might generate box plots with longer whiskers than the underlying whiskers,
denoting an expanded range for the variable (see for example the box plot of variable Y in
panel (v) of Fig. 4(C)).

4.2 Regression plot diagnostics
In linear regression analysis, key statistical properties of the model, such as likelihood ratio
tests, Wald tests, associated p-values, and the R2 statistic, can provide information about
the extent to which a model and its various components provide an adequate representa-
tion of its generating data. Amongst the approaches to exploring model fit, diagnostic plots
are amongst the most important; they typically provide a quick and intuitive way to look
at key aspects of model fit. For example, they can provide information about assumptions
of linearity or constancy of variance. They can also reveal unexpected patterns in the data
and can give insights on how the model structure may be improved. One important class
of diagnostic plots makes use of regression residuals, representing the discrepancy be-
tween the observed outcome variable and the fitted model predictors in individual records.
However, by combining the model covariates, the estimated regression coefficients, and
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knowledge of basic model structure (such as the link function), one can generate the pre-
dicted values and by then adding the vector of residuals to directly obtain the exact values
of the outcome variable [27]. This is, by definition, disclosive. Furthermore, one of the
most informative, and widely used, diagnostic tools is to plot residuals versus fitted (or
predicted) values. With no other information at all, this can allow direct calculation of the
actual values of the outcome variable. Because of the analytic value of such plots (whilst
recognising the basic disclosure risk they create), we use the anonymization approaches to
generate privacy- and information-preserving regression plot diagnostics. To do this, we
first apply the regression model to the actual data and then use an anonymization process
to anonymize the regression outcomes, and hence, allow visualization of the diagnostic
plots, while mitigating the risk of disclosure. This approach can be used to visualize plots
of residuals, metrics of leverage, influence measures and their relationships with fitted
values.

Figures 5(A), 6(A) and 7(A) show the plots of residuals against fitted values for the data
from datasets D1, D2 and D3 respectively. For a number of classes of model, for exam-
ple those with a Gaussian error and identity link (like the fitted model of the relationship
between X and Y from dataset D1 which is given by Ŷ = β0 + β1X), this type of plot can
provide a convenient way to explore the basic assumptions of linearity and homoscedas-
ticity (i.e. the residuals have constant variance) [28]. If the residuals are symmetrically dis-
tributed around the horizontal axis without nonlinear patterns and without a systematic
trend in their dispersion, then it can reasonably be concluded that there is little or no evi-
dence against the assumption that the regression relationship is linear and homoscedastic.
Thus, Fig. 5(A) validates the assumptions of linearity and homoscedasticity, Fig. 6(A) pro-

Figure 5 Privacy-preserving regression diagnostic plots of data from dataset D1. (A) Residuals against fitted
values; (B) Normal QQ plots; (C) Residuals against leverage. From left to right we demonstrate the plots: (i) for
real regression outcomes; (ii) the regression outcomes aggregated in a 30 by 30 density grid matrix and
suppressing any grids with density less than three counts; (iii) the regression outcomes aggregated in a 15 by
15 density grid matrix and suppressing any grids with density less than three counts; (iv) the scaled centroids
of each 3-nearest neighbours of the regression outcomes obtained by deterministic anonymization; (v) the
noisy regression outcomes obtained by probabilistic anonymization. Note that for plots B and C we use the
standardized residuals that are the residuals divided by their standard deviation
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Figure 6 Privacy-preserving regression diagnostic plots of data from dataset D2. (A) Residuals against fitted
values; (B) Normal QQ plots; (C) Residuals against leverage. From left to right we demonstrate the plots: (i) for
real regression outcomes; (ii) the regression outcomes aggregated in a 30 by 30 density grid matrix and
suppressing any grids with density less than three counts; (iii) the regression outcomes aggregated in a 15 by
15 density grid matrix and suppressing any grids with density less than three counts; (iv) the scaled centroids
of each 3-nearest neighbours of the regression outcomes obtained by deterministic anonymization; (v) the
noisy regression outcomes obtained by probabilistic anonymization. Note that for plots B and C we use the
standardized residuals that are the residuals divided by their standard deviation

Figure 7 Privacy-preserving regression diagnostic plots of data from dataset D3. (A) Residuals against fitted
values; (B) Normal QQ plots; (C) Residuals against leverage. From left to right we demonstrate the plots: (i) for
real regression outcomes; (ii) the regression outcomes aggregated in a 30 by 30 density grid matrix and
suppressing any grids with density less than three counts; (iii) the regression outcomes aggregated in a 15 by
15 density grid matrix and suppressing any grids with density less than three counts; (iv) the scaled centroids
of each 3-nearest neighbours of the regression outcomes obtained by deterministic anonymization; (v) the
noisy regression outcomes obtained by probabilistic anonymization. Note that for plots B and C we use the
standardized residuals that are the residuals divided by their standard deviation
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vides evidence of a non-linear relationship between X and Y , and Fig. 7(A) indicates that
there is no relationship between X and Y (i.e. the solution of a simple linear regression
model is a horizontal line at Ŷ ≈ 0.5).

Figures 5(B), 6(B) and 7(B) present normal quantile-quantile (QQ) plots for the residuals
of the regression outcomes of data from datasets D1, D2 and D3 respectively. The QQ plots
compare the observed distribution of residuals against a theoretical normal distribution
by plotting their quantiles (percentiles). If the residuals do not seriously deviate from the
line of identity, then we may conclude that they are consistent with a normal distribution.
Thus, Fig. 5(B) confirms the normality of the residuals (as we have deliberately created the
error term to follow a standard normal distribution – see Sect. 3), while Figs. 6(B) and 7(B)
indicate that the residuals do not follow a normal distribution (for dataset D2 we already
know that the residuals follow a uniform distribution – see Sect. 3). Finally, the plots in
Figs. 5(C), 6(C) and 7(C) display the residuals against Cook’s distance which is a measure
of local influence [29, 30]. Large Cook’s distance could be due to a large residual, high
leverage or both. For the three examples shown in Figs. 5(C), 6(C) and 7(C), all cases are
well inside the Cook’s distance lines which are not visible in the selected narrow window
frames.

Those three regression diagnostic plots can be considered as scatter plots, as they
present the dispersion of points in a 2-dimensional space. Therefore, the three anonymiza-
tion techniques are applied here to generate privacy-preserving diagnostic plots for the re-
gression model assumptions, in the same way as they used to produce privacy-protected
scatter plots. Consequently, their performance is similar to what we observed in scatter
plots. In other words, the k-anonymization causes a significant information loss (which is
evident in almost all panels (ii) and (iii) of Figs. 5–7), while the deterministic and the prob-
abilistic approaches preserve most of the actual characteristics of the plots. An exception
is when the addition of random noise, through the probabilistic anonymization, on the
points displayed in QQ plots, might obscure some characteristics of the actual trajectory
of the points around the line of identity.

4.3 The effect of parameter k of the k-anonymization process
We assess the performance of the k-anonymization on generating privacy-preserving vi-
sualizations when varying the value of the parameter k. We use the values of k equal to 3,
5, 7 and 9 and produce visualizations of exploratory statistics and regression diagnostics.
For simplicity, we only use the data from dataset D1. In Fig. 8 we show that when k in-
creases the utility of the plots degrades with the exception of the histograms. As the two
variables follow a normal distribution, the suppression rule suppresses – an equal number
on average – bins from the two tails of their histogram. Thus, the histograms remain in
some sense informative, even for k = 9, as the symmetrical shape and the mean of the dis-
tributions remain stable. For all the other graphs (i.e. scatter, heat map, contour and box
plots) there is an inevitable information loss, even when k = 3, which increases with the
increase of k and results in non-informative plots, which are useless for statistical analysis
and derivation of conclusions.

Moreover, when the k-anonymization is applied for the generation of privacy-preserving
graphs, we need to examine not only the impact of the parameter k in the protection (and
consequently the distortion) of the individual-level data, but also the level of generaliza-
tion. For the scatter, heat map, contour and box plots of Fig. 8, we use a 30 by 30 density
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Figure 8 The effect of parameter k of the k-anonymization method on exploratory data visualizations. From
left to right we demonstrate the effect of k for the values of 1 (this is equivalent to the real data), 3, 5, 7 and 9
on generating privacy-preserving scatter plots (A), heat map plots (B), contour plots (C), histograms of X (D)
and Y (E), and box plots (F)

grid matrix and suppress any grids with less counts than the selected value of k. For the
histograms, we divide the range of each variable in sub-intervals (which define the bins)
of width equal to 0.2, and then suppress any bins with less than k observations. In Fig. 9,
we present the same plots as those in Fig. 8, with the same variation of the value of pa-
rameter k, but with a doubled level of generalization. In other words, we use a 15 by 15
density grid matrix for the generation of scatter, heat map, contour and box plots and bins
of width equal to 0.4 for the generation of histograms. As a result, there is again a loss of
information on the graphical outputs, however this loss is lower than the loss we observed
previously.

Using the same values of parameter k and the same considerations of generalization, we
reproduce the regression diagnostic plots for the regression outcomes of the linear model
between the variables X and Y of dataset D1. As those graphs are of the same type as
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Figure 9 The effect of parameter k of the k-anonymization method on exploratory data visualizations with
additional generalization. From left to right we demonstrate the effect of k for the values of 1 (this is
equivalent to the real data), 3, 5, 7 and 9 on generating privacy-preserving scatter plots (A), heat map plots
(B), contour plots (C), histograms of X (D) and Y (E), and box plots (F)

scatter plots, the information loss is significant and thus the statistical utility of the plots
is negligible (see Figs. 10 and 11).

4.4 The effect of parameter k of the deterministic anonymization process
We analyse the performance of the deterministic anonymization on generation of privacy-
preserving visualizations, with different values of the parameter k. Here we use the values
of k equal to 5, 10, 20 and 50. Figure 12 displays the generated protected graphs that can
be used for explanatory statistical analysis. We observe that, as the value of parameter k
increases, the anonymized data are shifted to the center of their mass (compare panels
from left to right in Fig. 12(A), (B), and (C)). This behaviour causes some level of informa-
tion loss, as the trend line that best describes the linear relationship between the variables
X and Y , slightly deviates from its actual position (compare red and grey trend lines in
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Figure 10 The effect of parameter k of the k-anonymization method on regression plot diagnostics. From left
to right we demonstrate the effect of k for the values of 1 (this is equivalent to the real data), 3, 5, 7 and 9 on
generating privacy-preserving residuals vs fitted values plots (A), normal QQ plots (B), and standardized
residuals vs leverage (C)

Figure 11 The effect of parameter k of the k-anonymization method on regression plot diagnostics with
additional generalization. From left to right we demonstrate the effect of k for the values of 1 (this is
equivalent to the real data), 3, 5, 7 and 9 on generating privacy-preserving residuals vs fitted values plots (A),
normal QQ plots (B), and standardized residuals vs leverage (C)

Fig. 12(A)). However, this information loss is significantly lower than the information loss
which can be introduced through the use of the k-anonymization. Another observation is
that the number of centroids that are placed in identical positions (black dots in Fig. 12(A))
is decreasing as the value of k increases.
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Figure 12 The effect of parameter k of the deterministic anonymization method on exploratory data
visualizations. From left to right we demonstrate the effect of k for the values of 1 (this is equivalent to the real
data), 5, 10, 20 and 50 on generating privacy-preserving scatter plots (A), heat map plots (B), contour plots (C),
histograms of X (D) and Y (E), and box plots (F)

The observation that the centroids tend to be “attracted” towards their center of mass
as the value of k increases, is also observed in the residuals versus fitted values, and the
residuals versus leverage plots (Figs. 13(A) and (C)). This attraction does not change con-
siderably the structure of the displayed points on the graphs (at least for the case of the
bivariate normal distribution), and therefore valid conclusions about the linearity of the
model, the homoscedasticity of the errors and the existence of any influential points could
be derived. However, for big values of k (e.g. greater than 10), the extreme quantile val-
ues of the residuals presented in QQ plots disappear (see for example the right panel in
Fig. 13(B)), and therefore such plots are not informative for the diagnosis of the residuals’
normality. However, it should be noted that small values of k (e.g. values between 3 to 10)
can be used to generate privacy- and utility-preserving visualizations.
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Figure 13 The effect of parameter k of the deterministic anonymization method on regression plot
diagnostics. From left to right we demonstrate the effect of k for the values of 1 (this is equivalent to the real
data), 5, 10, 20 and 50 on generating privacy-preserving residuals vs fitted values plots (A), normal QQ plots
(B), and standardized residuals vs leverage (C)

4.5 The effect of parameter q of the probabilistic anonymization process
A sensitivity analysis is also performed for different levels of noise added to the underly-
ing variables through the probabilistic anonymization. We select the values of parameter
q equal to 0.1, 0.5, 1, and

√
2. When q = 1 the variance of the added noise is equal to the

variance of the real variable; when q =
√

2, the variance of the noise is double the vari-
ance of the real variable. Figure 14 shows the privacy-preserving data visualizations for
exploratory analysis, generated by the probabilistic anonymization with variation of pa-
rameter q. In this Figure, we observe an outspread of the data points when q increases.
This was an expectation due to the increase in the variability of the data. Therefore, large
values of q (e.g. greater than 1) generate large noise, which distort the displayed data and
misrepresent the underlying statistical properties. For example, the heat map plot on the
right panel of Fig. 14(B), obscures the apparent correlation of the variables which is ob-
served in the heat map plot of the actual variable on the left panel. Similar deformation is
observed in the generated histograms (Figs. 14(D) and (E)), which still indicate the sym-
metry of the normal distributions and retain their average, but expand their variance.

In Fig. 15 we show how the variation of parameter q affects the utility of regression di-
agnostic plots. Here, as we use the two normally distributed variables from dataset D1,
the generated plots of the residuals versus fitted values (Fig. 15(A)), preserve the correla-
tion between the two quantities (even for q =

√
2), as the independent noise added to each

vector follows a normal distribution. Therefore, valid inferences for the model linearity
and homoscedasticity can be derived. On the other hand, the addition of random noise
on the quantiles of residuals (Fig. 15(B)), and on the leverage and residuals (Fig. 15(C)) de-
form the underlying characteristics of the corresponding plots when q increases. Thus, the
privacy-preserving QQ plots can not provide evidence for the errors’ normality. Similarly,
the noisy points displayed in the residuals versus leverage plots spread on the vertical di-
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Figure 14 The effect of parameter q of the probabilistic anonymization method on exploratory data
visualizations. From left to right we demonstrate the effect of q for the values of 0 (this is equivalent to the real
data), 0.1, 0.5, 1 and

√
2 on generating privacy-preserving scatter plots (A), heat map plots (B), contour plots

(C), histograms of X (D) and Y (E), and box plots (F)

rection of the graph as q increases, hence may produce leverage points which do not exist
in the real data.

4.6 The performance of the techniques in different sample sizes
We acknowledge that it is a difficult task to protect the privacy of individuals in datasets
of small sample sizes, without losing information. Here, we use the three anonymization
techniques to generate privacy-preserving plots for data from small sample sizes to illus-
trate their performance. We simulate three sets of two normally distributed variables, each
having the same statistical characteristics as those of dataset D1, with 50, 100 and 300 ob-
servations respectively. Figures 16, 18 and 20 show the generated privacy-preserving plots
of exploratory statistics, and Figs. 17, 19 and 21 show the generated privacy-preserving re-
gression diagnostic plots for each sample size respectively. As we can see from those six
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Figure 15 The effect of parameter q of the probabilistic anonymization method on regression plot
diagnostics. From left to right we demonstrate the effect of q for the values of 0 (this is equivalent to the real
data), 0.1, 0.5, 1 and

√
2 on generating privacy-preserving residuals vs fitted values plots (A), normal QQ plots

(B), and standardized residuals vs leverage (C)

Figures, the k-anonymization can not be used on data from small sample sizes, because
it eliminates too much information from the plots. The deterministic anonymization per-
forms quite well in almost all of the instances, while the probabilistic anonymization also
performs well, but a careful selection of the parameter q is crucial to prevent unwanted
over-anonymization.

5 Discussion
In this article we demonstrate how data anonymization techniques can be used to pro-
tect the privacy of data displayed in graphical outputs. The efficacy of such techniques
may be assessed by their ability to simultaneously restrict: (a) the disclosure risk – i.e. the
risk that a user may be able, accidentally or maliciously, to identify sensitive individual-
level information from a graph, which may reveal either identity or important character-
ising information; and (b) the information loss arising from the process of anonymization.
The disclosure limitation methods described in this paper can help address both of these
issues, thereby facilitating the undoubted scientific benefits of presenting data in visual
formats that are easily understood while protecting against the risks of disclosing iden-
tity or sensitive information. However, we note that even when the generation of a graph
obeys a seemingly secure procedure, information that is made publicly available through
other statistical research (including other data visualizations and statistical outcomes) or
by the individual him/herself, may provide enough clues to permit a malicious and de-
termined attacker to infer sensitive personal information. The primary objective of our
work may therefore be viewed as making any such inference difficult, and wherever a for-
mal log is kept of all analytic procedures undertaken (e.g. as in DataSHIELD [31, 32])
to make it easier to detect that a deliberate attempt has been made to infer identity or
associated information, thereby opening up the option to sanction the action and/or to
limit the perpetrator’s future access to sensitive data. However, because of the capacity
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Figure 16 The performance of the techniques applied in a sample of 50 observations. From top to bottom
we demonstrate the scatter plots (A), heat map plots (B), contour plots (C), histograms of X (D) and Y (E), and
box plots (F) for real data (i), suppressed data (ii), generalized and suppressed data (iii), deterministically
anonymized data (iv) and probabilistic anonymized data (v)

to link data from multiple sources, it would be desirable for the possible need for ac-
tive privacy-preservation to be considered whenever sensitive data objects – including
visualizations – are made available (e.g. [33]) and objects such as these ought ideally to
be protected not only by data-privacy policies and procedures but also under a broader
meta-privacy framework [34].

Deciding and agreeing upon a framework for mitigating disclosure risk associated with
visually represented data should be seen as a shared responsibility of data custodians and
the analysts who will create the visualizations. They should make decisions based on a ra-
tional assessment of the real risks that are typically highly context dependent. The various
methods we present have different strengths and weaknesses. The final choice of method
should depend on a rigorous assessment of the real risks of disclosure – and its seriousness
should it occur – versus the magnitude of the disbenefits of applying privacy protection
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Figure 17 The performance of the techniques applied in a sample of 50 observations. From top to bottom
we demonstrate the residuals vs fitted values plots (A), normal QQ plots (B), and standardized residuals vs
leverage plots (C) for real regression outcomes (i), suppressed regression outcomes (ii), generalized and
suppressed regression outcomes (iii), deterministically anonymized regression outcomes (iv) and probabilistic
anonymized regression outcomes (v)

which not only include increased time and effort but also the potential information loss
that may be consequent upon it. All of these issues must be weighed up and applied to the
specific data/analysis context that applies. In many cases data protection through a judi-
cious application of suppression and generalization may be enough to mitigate the risk of
disclosure and preserve data utility, while in other contexts deterministic or probabilistic
anonymization may be preferable (particularly on scatter plots).

5.1 k-anonymization
The k-anonymization method significantly reduces the disclosure risk from graphical dis-
plays, but it generally degrades the information content and, not infrequently, this may
significantly impair data utility. For instance consider the apparent loss of information in
the heat maps shown in Fig. 3 where much of the peripheral data are lost. The utility loss
from this technique is clearly associated with the selection of the value of k. There is no
consensus on the optimal value for the parameter k. Commonly used values are 3, 5 or
10 but there is much debate over these values (see also a brief analysis on the impact of
the variation of that parameter in Sect. 4.3). Furthermore, even if it could be proven that
one choice of k was, in some sense, optimal in one context, that would not imply that
it was the best in other contexts. A higher value of k corresponds to a stricter privacy
standard, because more individuals are then required to exhibit any given combination
of identity-revealing traits. Any value less than three should probably be avoided because
with just two observations in a subgroup, precise values can be inferred directly from a
combination of mean and standard deviation (or variance) in that subgroup, and these
are often reported in data summaries. In some cases however, there is little choice but to
adopt the value of k = 1 (i.e. no suppression or generalization is to be applied, particularly
where rare combinations of attributes have an important role in the research questions
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Figure 18 The performance of the techniques applied in a sample of 100 observations. From top to bottom
we demonstrate the scatter plots (A), heat map plots (B), contour plots (C), histograms of X (D) and Y (E), and
box plots (F) for real data (i), suppressed data (ii), generalized and suppressed data (iii), deterministically
anonymized data (iv) and probabilistic anonymized data (v)

and analysis. This implies that k-anonymization is not the method of choice for studies
of rare diseases, conditions or health outcomes. Under such circumstances approaches
based on deterministic or probabilistic anonymization are likely to be preferable as they
can conceal unique combinations and outlier points without actually suppressing them.
This logic implies that it would be very unwise to bow any top-down pressure to adopt
k-anonymization as the norm, particularly if this also involved specification of a specific
value of k to be used in all circumstances. This could lead to serious scientific costs and
yet the decision could not, in principle, be based on a rational scientific logic. Additional
arbitrary rules have to be applied when using k-anonymization because there is no opti-
mal – or even best-practice – procedure that can be followed to take a given dataset and to
convert it into a k-anonymous form. This implies that implementation will typically differ
from study to study and this may lead to discrepant results.
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Figure 19 The performance of the techniques applied in a sample of 100 observations. From top to bottom
we demonstrate the residuals vs fitted values plots (A), normal QQ plots (B), and standardized residuals vs
leverage plots (C) for real regression outcomes (i), suppressed regression outcomes (ii), generalized and
suppressed regression outcomes (iii), deterministically anonymized regression outcomes (iv) and probabilistic
anonymized regression outcomes (v)

In practice, k-anonymization typically over-anonymizes data [35] an impact charac-
terised by substantive distortion of the data, including substantial information loss, and
reduction of the utility of the data for subsequent analysis and visualizations [36]. This
problem is most pronounced when k-anonymization is applied to a dataset with a small
sample size (see Sect. 4.6) or to high-dimensional data [37]. The suppression of a large
number of records threatens the integrity of a dataset and can produce systematic biases
when values are eliminated disproportionately to their original distribution. At the same
time, aggregated values formed through generalization are typically less informative than
granular values, and this also impairs the quality of inference based on resulting analyses.
For example, aggregated values preclude the fit of a linear regression based on generalized
numerical attributes [38].

5.2 Probabilistic anonymization
Under probabilistic anonymization the efficacy of the disclosure control, the magnitude
of the corresponding loss of information, and the balance between them, depend not only
on the variance of the added noise, but also – in any specific case – on the particular seed
used to start the pseudo-random number generator. An important implication is that, the
seed must be kept confidential, as users could otherwise generate the same set of errors
and by subtracting them from the ‘noisy’ data reverse the original anonymization. Perhaps
less obviously, it is also important not to release data anonymized multiple times using
different seeds, as the errors terms that protect against disclosure, will ultimately tend to
zero if one takes the mean of numerous realizations of the noise-augmented data.

Under some circumstances, like k-anonymization, probabilistic anonymization can dis-
turb the statistical properties of the underlying data and inferences based on their graph-
ical visualization. For example, for a QQ plot where the original data points are correctly
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Figure 20 The performance of the techniques applied in a sample of 300 observations. From top to bottom
we demonstrate the scatter plots (A), heat map plots (B), contour plots (C), histograms of X (D) and Y (E), and
box plots (F) for real data (i), suppressed data (ii), generalized and suppressed data (iii), deterministically
anonymized data (iv) and probabilistic anonymized data (v)

distributed along a coherent line, the addition of random noise to the data both in the
horizontal and vertical dimensions (as the method dictates) will convert the perfect line
(in which x and y values have the same ordering) into a random stochastic scatter plot,
which could result in misleading conclusions. For example, an analyst seeing the noise-
augmented data displayed in the right panels of Fig. 15(B), might conclude that the as-
sumption that the residuals are normally distributed is violated, however this is clearly not
true if we look at the corresponding Figure of the real data (left panel of Fig. 15(B)). This
happens because probabilistic anonymization, as described, adds vertical and horizontal
noise to each data point on the plot after it has been constructed and each individual point
may therefore move in any direction within a circle of radius proportional to the variance
of the added noise. We adopt this particular approach to noise augmentation because it
can be applied to any scatter plot. But in the particular case of a QQ plot this changes
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Figure 21 The performance of the techniques applied in a sample of 300 observations. From top to bottom
we demonstrate the residuals vs fitted values plots (A), normal QQ plots (B), and standardized residuals vs
leverage plots (C) for real regression outcomes (i), suppressed regression outcomes (ii), generalized and
suppressed regression outcomes (iii), deterministically anonymized regression outcomes (iv) and probabilistic
anonymized regression outcomes (v)

the nature of the plot from what is usually expected – a coherent line with x and y values
in the same order – into a stochastic scatter plot. If the variance of the noise is large this
might easily confuse an analyst with limited experience of probabilistic anonymization. In
the particular case of the QQ plot it would be possible to add the probabilistic noise in a
different manner: specifically, to add one dimensional noise to the variable being explored
before, rather than after, creating the QQ plot. This would indeed produce a coherent line
that would therefore be familiar to any analyst. But if the added noise has a very large
variance, it is the noise – not the original data – that will dominate the distribution of
noise-augmented data and because the noise is normally distributed, the greater the noise
that is added, the closer the resultant variable will appear to being normally distributed.
Because the approach we describe effectively applies the anonymization process after the
plot has been constructed, it can be applied to any scatter plot and this is why we advocate
it. However, an alternative anonymization protocol may sometimes be viewed as prefer-
able but, if so, the QQ plot example demonstrates that one must properly understand the
impact of the noise augmentation to ensure that it does not do something unexpected.
In some circumstances, higher level of noise may deliberately be added to outliers or to
points with high leverage in contrast to data points lying in the body of the data [39]. This
can strengthen the control of disclosure risk for those particular points that are most likely
to be identified. However, because these same points may be reflective of those very re-
lationships in the data that are meant to be teased out by the graphical representation,
care must be taken when doing this and when interpreting privacy-preserving graphics
generated in this manner.

As an approach to statistical disclosure control, probabilistic anonymization offers an
important benefit. That is, an analyst who has permission to work with the data can be
provided with sufficient information (e.g. the variance of the noise) to correctly adjust
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inferences based on the noisy data to recover the underlying data structure and thereby
to produce consistent parameter estimates [15]. This is not the same as removing every
error term representing the noise – that would be fully disclosive – but rather through the
use of statistical techniques for fitting models with measurement errors [40].

5.3 Deterministic anonymization
In terms of minimizing the loss of utility while offering robust privacy-preservation, deter-
ministic anonymization appears to be a particularly promising approach to the generation
of disclosure-controlled data visualizations that faithfully retain important characteristics
of underlying statistical properties. Although it could in principle perform less well on
other classes of dataset, amongst the broad spectrum of examples we tested, there was no
example where a primary feature of the original data was lost, or an artifact was created.

As for k-anonymization and probabilistic anomyization, the chosen value of k again im-
pacts on both the quality of disclosure control and the potential for information loss or
data distortion. The only recommendations we make are that k should be three or more
and less than or equal to the number of the data points minus three. This range is chosen
to make it difficult to confidently infer the value of any individual data points from deter-
ministically anonymized data. In fact, given k is three or more, we have found no example
to date where it would be possible to infer individual data points without knowing more
about the underlying distribution of the data, e.g. the original relative distances between
observations in a particular cluster of outliers. Nevertheless, we are aware that such set-
tings might exist and when data are particularly sensitive it may therefore be preferable to
increase k. As the value of k increases the disclosure risk decreases while details in the ob-
served distribution gradually fade. However, major features of the individual variables and
relationships between variables are well preserved – hence our reason for recommending
this approach. That said, as k increases or when data are structured in discrete clusters
that happen to be of length k, the centroids generated for each cluster overlap and the
number of observations that are apparently visible in the graphs is less than the length of
original data.

One fortuitous characteristic of deterministic anonymization is that it further shifts out-
lying points because of the final scaling procedure and this adds to the difficulty of any
attempt to infer the position of the original data points. On the other hand, we have found
no setting in which this additional unpredictability has substantially degraded the true in-
formation content in a deterministically anonymized visualization. As we note earlier, if
the scaling factor is large enough, it is in fact possible for some outlying and influential
points to be shifted out of the convex hull of the original data and users need to be aware
that this is not an error – just a feature of the approach – and we have again found no
setting in which this makes a visualization misleading.

5.4 Conclusion
The work described in this paper contributes a variety of techniques that can be used
to render informative visualizations whilst protecting the confidentiality of data. These
methods can be used across a range of disciplinary domains wherever data are viewed as
sensitive either because of concerns relating to information governance and/or data ethics
or because of their value in terms of intellectual property. These approaches are therefore
of interest to a wide range of data stakeholders: not just data analysts, but also data custo-
dians, study participants and the general public who all have an interest in ensuring that
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data are used as widely as possible in ways that are of value to society and yet protect their
confidentiality. The development of privacy-preserving data visualizations has important
applications in scientific research including visual data exploration, visual representations
of descriptive and summary statistics, and regression plot diagnostics. In order to encour-
age and facilitate the widespread adoption of techniques such as these, there is a need to
develop new data science methodologies and infrastructures that incorporate them. Such
solutions have the potential to enhance the discoverability and utility of individual-level
data across all disciplines where data can be sensitive. These techniques can help to bolster
public support for the collection and appropriate use of personal data; maintain the trust
of participants joining research studies; and to support and enhance compliance with the
increasingly robust frameworks that underpin the governance and ethico-legal oversight
of the management, use and presentation of research data.
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