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Abstract
We propose high-order hypergraph walks as a framework to generalize graph-based
network science techniques to hypergraphs. Edge incidence in hypergraphs is
quantitative, yielding hypergraph walks with both length and width. Graph methods
which then generalize to hypergraphs include connected component analyses,
graph distance-based metrics such as closeness centrality, and motif-based measures
such as clustering coefficients. We apply high-order analogs of these methods to real
world hypernetworks, and show they reveal nuanced and interpretable structure that
cannot be detected by graph-based methods. Lastly, we apply three generative
models to the data and find that basic hypergraph properties, such as density and
degree distributions, do not necessarily control these new structural measurements.
Our work demonstrates how analyses of hypergraph-structured data are richer when
utilizing tools tailored to capture hypergraph-native phenomena, and suggests one
possible avenue towards that end.
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1 Introduction
In the study of complex systems, graph theory is often perceived as the mathematical
scaffold underlying network science [1]. Systems studied in biology, sociology, telecom-
munications, and physical infrastructure often afford a representation as a set of entities
(“vertices”) with binary relationships (“edges”), and hence may be analyzed utilizing graph
theoretic methods. Graph models benefit from simplicity and a degree of universality.
But as abstract mathematical objects, graphs are limited to representing pairwise rela-
tionships between entities. However, real-world phenomena in these systems can be rich
in multi-way relationships involving interactions among more than two entities, depen-
dencies between more than two variables, or properties of collections of more than two
objects.

Hypergraphs are generalizations of graphs in which edges may connect any number of
vertices, thereby representing k-way relationships. As such, hypergraphs are the natural
representation of a broad range of systems, including those with the kinds of multi-way
relationships mentioned above. Indeed, hypergraph-structured data (i.e. hypernetworks)
are ubiquitous, occurring whenever information presents naturally as set-valued, tabu-
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Figure 1 Two author-paper networks and their coauthorship graph. Letters denote authors and numbers
denote paper titles. These networks may be structured as hypergraphs on vertices A, B, C with hyperedges
e1 = e2 = {A,B,C} for the rightmost network, and hyperedges e1 = e4 = {A,B}, e2 = e5 = {B,C}, e3 = e6 = {A,C}
for the leftmost

lar, or bipartite data. Additionally, as finite set systems, hypergraphs have identities re-
lated to a number of other mathematical structures important in data science, including
finite topologies, simplicial complexes, and Sperner systems. This enables use of a wider
range of mathematical methods, such as those from computational topology, to identify
features specific to the high-dimensional complexity in hypernetworks, but not available
using graphs. Although an expanding body of research attests to the increased utility of
hypergraph-based analyses, many network science methods have been historically devel-
oped explicitly (and often, exclusively) for graph-based analyses. Moreover, it is common
that data arising from hypernetworks are reduced to graphs.

Before proceeding, let us consider an example. Figure 1 illustrates two author-paper
datasets, which may be naturally structured as a hypergraph by representing authors as
vertices, and the set of authors appearing on each paper as hyperedges.a The hypergraph
derived from the rightmost network exhibits higher-order relationships by virtue of hav-
ing papers with 3 authors. Comparing these examples highlights structural information
retained and lost between graph and hypergraph representations. For instance, both net-
works are similar in that each pair of authors A, B, C has co-authored a paper (in fact,
exactly two papers) together. This is captured by the coauthorship graph (center), which
is therefore identical for these two networks. However, there are also clear differences not
captured by the graph representation. For instance, each author appears on 4 versus 2
papers, and each paper features 2 versus 3 authors. Beyond these basic counts, these net-
works also exhibit more subtle differences: for any pair of authors in the leftmost network,
the set of papers they’ve coauthored is different from the set of joint papers between any
other pair of authors, whereas in the rightmost, every pair of authors has coauthored ex-
actly the same set of papers. As this toy example suggests, while graphs do capture some
properties of hypernetworks, they are insufficient as hypergraph substitutes.

In spite of this incongruity between graph and hypergraph analyses, effectively extend-
ing graph theoretical tools to hypergraphs has sometimes lagged or proven elusive. A crit-
ical aspect of this is axiomatization: as a generalization there are many, sometimes mutu-
ally inconsistent, sets of possible definitions of hypergraph concepts which can yield the
same results consistent with graph theory when instantiated to the graph case. In some
cases, developing any coherent hypergraph analog poses significant theoretical obstacles.
For example, extending the spectral theory of graph adjacency matrices to hypergraphs
poses an immediate challenge in that hyperedges may contain more than two vertices,
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thereby rendering the usual (two-dimensional) adjacency matrix insufficient for encoding
adjacency relations. In other cases, graph theoretical concepts may be trivially extended to
hypergraphs, but in doing so ignore structural nuance native to hypergraphs which are un-
observable in graphs. For instance, while edge incidence and vertex adjacency can occur in
at most one vertex or edge for graphs, these notions are set-valued and hence quantitative
for hypergraphs. Consequently, while subsequent graph walk based notions, such as con-
nectedness, are immediately applicable to hypergraphs, they ignore high-order structure
in failing to account for the varying “widths” associated with hypergraph walks.

Due to these challenges, scientists seeking tools to study hypergraph-structured data are
frequently left to contend with disparate approaches towards hypergraph research. One
approach for grappling with hypergraph complexity is to limit attention to hypergraphs
with only uniformly sized edges containing the same number of vertices. Much of the hy-
pergraph research in the mathematics literature, such as in hypergraph coloring [2, 3], the
aforementioned spectral theory of hypergraphs [4, 5], hypergraph transversals [6], and ex-
tremal problems [7], focus on this k-uniform case only. While imposing this assumption
facilitates more mathematically sophisticated and structurally faithful analysis of the hy-
pergraphs in question, real-world hypergraph data is unfortunately very rarely k-uniform.
Consequently, such tools are problematic in lacking applicability to real hypernetwork
data. Another approach towards hypergraph research is to limit attention to transforma-
tions of (potentially non-uniform) hypergraphs to graphs. Sometimes called the hyper-
graph line graph, 2-section, clique expansion, or one-mode projection, such transforma-
tions clearly enable the application of graph-theoretic tools to the data. Yet, unsurprisingly,
such hypergraph-to-graph reductions are inevitably lossy [8, 9]. Hence, although affording
simplicity, such approaches are of limited utility in uncovering hypergraph structure.

To enable analyses of hypernetwork data that better reflect their complexity but remain
tractable and applicable, we believe striking a balance between this faithfulness-simplicity
tradeoff is essential. With this goal at heart, we extend a number of graph analytic tools
popular in network science to hypergraphs under the framework of high-order hypergraph
walks. We characterize a hypergraph walk as an “s-walk”, where the order s controls the
minimum walk “width” in terms of edge overlap size. High-order s-walks (s > 1) are possi-
ble on hypergraphs whereas for graphs, all walks are 1-walks. The hypergraph walk-based
methods we develop include connected component analyses, graph-distance based met-
rics such as closeness-centrality, and motif-based measures such as clustering coefficients.
As each of these methods is based fundamentally on the graph-theoretic notion of a walk,
we extend them to hypergraphs by using hypergraph walks. Ultimately, our goal is not
only to formulate these generalizations in a cogent manner, but to probe whether these
tools reveal prevalent and meaningful structure in real hypernetwork data. To the latter
end, we compute these measures based on hypergraph walks on three real datasets from
different domains and discuss the results.

Our work is organized as follows: in Sect. 2, we provide background definitions and
review preliminary topics relevant to hypernetwork theory. In Sect. 3, we define the s-
walk notion underpinning our subsequent work, discuss related prior research, and reit-
erate our contributions. In Sect. 4, we introduce s-walk based analytical measures, apply
them to the aforementioned datasets, and analyze the results. In Sect. 5, we consider three
generative hypergraph models, and experimentally test the extent to which the structural
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properties observed in Sect. 4 can be replicated by synthetic models. Finally, in Sect. 6 we
conclude and outline several directions for future research.

2 Preliminaries
Hypergraphs are generalizations of graphs in which edges may link any number of vertices
together. Just as “network” is often used to refer to processes or systems yielding data
streams which are graph-structured, we will use the term “hypernetwork” to refer to those
yielding hypergraph-structured data. More formally, we define a hypergraph as follows:

Definition 1 A hypergraph H = (V , E) is a set V = {v1, . . . , vn} of elements called vertices,
and an indexed family of sets E = (e1, . . . , em) called hyperedges in which ei ⊆ V for i =
1, . . . , m.

When the hypergraph is clear from context, we call its hyperedges simply “edges”. The
degree of a vertex is the number of hyperedges to which it belongs, d(v) = |{e : v ∈ e}|, and
the size of a hyperedge is its cardinality, |e|. A hypergraph in which all hyperedges have
size k is called k-uniform, and a 2-uniform hypergraph is simply a graph.b Definitions of
hypergraphs given in the literature may differ slightly from author to author. For instance,
Bretto’s hypergraph definition [10] is identical to ours, apart from prohibiting empty edges
(ei such that ei = ∅). Berge [11] similarly prohibits empty edges, as well as isolated vertices
(vi such that vi /∈ ⋃m

i=1 ei). In contrast, Katona [12] allows empty edges and isolated ver-
tices, but defines E = {e1, . . . , em} as a set and explicitly prohibits pairs of duplicated edges
ei = ej for i �= j. In defining E as an (indexed) family of sets, we allow for duplicated edges
but require edges be distinguishable by index. Returning to the leftmost author-paper net-
work in Fig. 1, in the corresponding hypergraph with authors as vertices, the hyperedges
corresponding to papers 1 and 4 are examples of duplicate edges: they are equivalent as
sets yet distinguishable by paper title. The generality of Definition 1 in permitting iso-
lated vertices, as well as empty, duplicated, and singleton edges is intended to facilitate
the application of hypergraphs to real data, which commonly possess such features.

Definition 2 The incidence matrix S of a hypergraph H = (V , E), is a |V | × |E| matrix
defined by

S(i, j) =

⎧
⎨

⎩

1 if vi ∈ ej,

0 otherwise.

Under Definition 1, any rectangular Boolean matrix uniquely defines a labeled hyper-
graph;c conversely any labeled hypergraph uniquely defines an incidence matrix. Conse-
quently, there is a bijection between hypergraphs and bicolored graphs. Recall a bicolored
graph is a triple (V , E, f ) where V is a set of vertices, E is a set of pairs of vertices, and
f : V → {0, 1} satisfies f (vi) �= f (vj) for all vi, vj ∈ V where {vi, vj} ∈ E. Indexing rows and
columns by vertices such that f (vi) = 0 and f (vj) = 1, respectively, incidence matrices may
be uniquely associated with bicolored graphs by defining S(i, j) = 1 for {vi, vj} ∈ E. Note
bicolored graphs specify a fixed bicoloring f and differ from bipartite graphs, which are
graphs admitting some bicoloring. Accordingly, a bipartite graph with k connected com-
ponents has 2k possible bicolorings, each of which may correspond to a distinct hyper-
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graph. In applications, however, the data often comes with a bicoloring (e.g. in an author-
paper network) and hence the terms “bipartite” and “bicolored” graphs have been used
synonymously. For the purposes of this work, gearing our exposition towards hypergraphs
rather than bicolored graphs is more natural because our approach is set-theoretic.d Be-
yond these bijective correspondences, mathematical research on hypergraph categories
and their isomorphisms requires careful consideration [13–15].

As an upshot of the hypergraph-bicolored graph correspondence, a number of com-
plex network analytics for bipartite data extend naturally to hypergraphs, and vice versa.
However, interpreting this in light of the fact that bicolored graphs are graphs does not
mean graph theoretic methods suffice for studying hypergraphs. Whether interpreted as
bicolored graphs or hypergraphs, data with this structure often require entirely different
network science methods than (general) graphs. An obvious example is triadic measures
like the graph clustering coefficient: these cannot be applied to bicolored graphs since (by
definition) bicolored graphs have no triangles. Detailed work developing bipartite analogs
of modularity [16], community structure inference techniques [17], and other graph-based
network science topics [18] further attests that bipartite graphs (and hypergraphs) require
a different network science toolset than for graphs.

Another important topic highlighted by the bicolored graphs-hypergraph correspon-
dence is the duality of hypergraphs. That is, just as it may be arbitrary to label one partition
in a bicolored graph “left” and the other partition “right”, which class of objects one desig-
nates as “vertices” versus “hyperedges” in a hypernetwork may also be arbitrarily chosen.
However, hypergraph properties and methods may be vertex-based or edge-based, and
hence differ depending on which choice is made. To avoid limiting one’s analysis towards
either a vertex-centric or edge-centric approach, it may be prudent to consider both the
hypergraph and its dual hypergraph. Loosely speaking, the dual of a hypergraph is the
hypergraph constructed by swapping the roles of vertices and edges. More precisely:

Definition 3 Let H = (V , E) be a hypergraph with vertex set V = {v1, . . . , vn} and family
of edges E = (e1, . . . , em). The dual hypergraph of H , denoted H∗ = (E∗, V ∗), has vertex set
E∗ = {e∗

1, . . . , e∗
m} and family of hyperedges V ∗ = (v∗

1, . . . , v∗
n), where v∗

i := {e∗
k : vi ∈ ek}.

Put equivalently, the dual of a hypergraph with incidence matrix S is the hypergraph as-
sociated with the transposed incidence matrix, ST . Clearly, (H∗)∗ = H . Furthermore, ob-
serve that two vertices belonging to the same set of edges in H correspond to multi-edges
in H∗ and isolated vertices in H correspond to empty edges in H∗. Thus, the generality of
our Definition 1 in permitting multi-edges, empty edges, and isolated vertices ensures the
dual of a hypergraph is also a hypergraph. Indeed, as a formal matter, one could go so far
as to always consider that hypergraphs present in dual pairs.e

Continuing this line of observation, in the complex networks literature, one of the most
oft-used tools for studying hypergraph data is its line graph. In the line graph of a hy-
pergraph, each vertex represents a hyperedge, and each edge represents an intersection
between a pair of hyperedges. More formally:

Definition 4 Let H = (V , E) be a hypergraph with vertex set V = {v1, . . . , vn} and family of
hyperedges E = (e1, . . . , em). The line graph of H , denoted L(H), is the graph on vertex set
{e∗

1, . . . , e∗
m} and edge set {{e∗

i , e∗
j } : ei ∩ ej �= ∅ for i �= j}.
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Figure 2 From left to right: the line graph of H∗ , the hypergraphs H∗ and H, and the line graph of H

In order to additionally capture information about the size of hyperedge edge inter-
sections, line graphs of hypergraphs may be defined with additional edge weights where
{e∗

i , e∗
j } has weight |ei ∩ ej|. By definition of matrix multiplication, it is easy to see the line

graph of a hypergraph with incidence matrix S has edge-weighted adjacency matrix ST S
with diagonal entries all converted to zero. Figure 2 gives an example of a hypergraph, its
dual, and their respective line graphs. All hypergraph visualizations in this paper were cre-
ated using HyperNetX (HNX) [19], a recently releasedf Python library echoing NetworkX
[20] for exploratory hypergraph data analytics.

Hypergraph line graphs are also referred to by a plethora of other names. Berge [11]
refers to L(H) as both the “line graph” and “representative graph” of H ; Naik [21, 22] refers
to L(H) as the “intersection graph” of H . In the complex networks literature on bipar-
tite graphs or “2-mode” graphs, the oft-mentioned “one-mode projections” are equivalent
to hypergraph line graphs. For instance, L(H) and L(H∗) are referred to as the “top and
bottom” projections in [18], similarly, [23] dubs these the “column and row” projections.
Moreover, L(H∗) is commonly referred to as the “2-section”, “clique graph”, or “clique ex-
pansion” of the hypergraph H , since the edge set of L(H∗) is generated by taking all 2-
element subsets of each edge in H , hence vertices within each hyperedge H form a clique
in L(H∗). Consequently, if G is a graph, L(G∗) is identical to G.

Line graphs play an important role in hypernetwork science. Due to the relative dearth
of hypergraph analytic tools, line graphs are often analyzed in place of the hypergraphs
they were derived from so that classical network science techniques can be applied. How-
ever, hypergraph line graphs are fundamentally limited in several ways. First, line graphs
are lossy representations of hypergraphs in the sense that distinct hypergraphs can have
identical line graphs. We note such structural loss does not occur for graphs, as Whitney’s
theorem [24] states, apart from the triangle and 4-vertex star graph, any pair of connected
graphs with isomorphic line graphs must be isomorphic. In the case of hypergraph line
graphs, Kirkland [9] recently illustrated the structural loss in a severe sense by giving an
example of two distinct 19 × 19 incidence matrices S and R respectively, such that both

ST S = RT R,

SST = RRT .

Put equivalently in the language of hypergraphs: although non-isomorphic, the weighted
line graphs of the hypergraphs represented by S and R, as well as those of their dual hy-
pergraphs, are both identical. Kirkland also constructed infinite familities of such pairs of
hypergraphs and showed they constitute a vanishingly small proportion of hypergraphs.
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Accordingly, while one isn’t likely to encounter such pairs of hypergraphs in empirical data,
Kirkland’s work illustrates structural properties of hypergraphs may be lost even when si-
multaneously accounting for hypergraph duality and using weighted line graphs. Conse-
quently, depending on the properties under consideration, the extent to which line graphs
faithfully represent hypergraphs may be unclear. Nonetheless, researchers have offered
preliminary evidence that some meaningful, albeit incomplete, hypergraph structure can
be extracted from their line graphs [23].

Lastly, as noted in [18, 25], another important limitation of hypergraph line graphs is
computational: sparse hypergraphs can still yield relatively dense line graphs that may be
difficult to analyze or store in computer memory. This can be easily seen by observing
that k-way edge intersections (guaranteed by a vertex of degree k) in the hypergraph yield
(k

2
)

edges in its line graph. Particularly if the hypergraph is large and its vertex degree and
edge cardinality distributions are heavily skewed (common features in real world network
data), its line graphs may be too dense to analyze computationally or even construct at all.

3 From graph walks to hypergraph walks
One of the most fundamental concepts in graph theory, underpinning a myriad of areas
including Hamiltonian and Eulerian graphs, distance and centrality measures, stochastic
processes on graphs and PageRank, is that of a walk. For a graph G = (V , E), a walk of
length k is a sequence of vertices v0, v1, . . . , vk , such that each pair of successive vertices
are adjacent. By definition of a (simple) graph, two adjacent vertices belong to exactly one
edge, and conversely, two incident edges intersect in exactly one vertex. Consequently, any
valid graph walk can be equivalently expressed as either a sequence of adjacent vertices or
as a sequence of incident edges, i.e.

v0︸︷︷︸
e0\e1

, v1︸︷︷︸
e0∩e1

, . . . , vk–1︸︷︷︸
ek–1∩ek

, vk︸︷︷︸
ek\ek–1

←→ e1︸︷︷︸
{v0,v1}

, . . . , ek︸︷︷︸
{vk–1,vk }

.

In the setting of hypergraphs, this simple observation no longer holds. Hypergraph edge
incidence and vertex adjacency is set-valued and quantitative in the sense that two hyper-
edges can intersect at any number of vertices, and two vertices can belong to any number
of shared hyperedges. This motivates two walk concepts for hypergraphs that are dual but
distinct: walks on the vertex level (consisting of successively adjacent vertices), and walks
on the edge level (consisting of successively intersecting edges). For ease of presentation,
and to be consistent with related prior work, we limit our exposition to edge-level hy-
pergraph walks. Nonetheless, both notions are captured when duality is considered, as a
vertex-based walk on a hypergraph H is simply an edge-walk on the dual hypergraph H∗.
We define a hypergraph walk as an “s-walk” on a hypergraph, where s controls for the size
of edge intersection, as follows:

Definition 5 For a positive integer s, an s-walk of length k between hyperedges f and g is
a sequence of hyperedges,

f = ei0 , ei1 , . . . , eik = g,

where for j = 1, . . . , k, we have s ≤ |eij–1 ∩ eij | and ij–1 �= ij.
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When interpreted on the dual hypergraph H∗, an s-walk corresponds to a sequence of
adjacent vertices in which each successive pair of vertices belong to at least s shared hy-
peredges. Since in a graph a pair of vertices can belong to at most 1 edge, the usual graph
walk between vertices x, y on a graph G is equivalent to a 1-walk between hyperedges x∗,
y∗ on the dual, G∗. Consequently, the s = 1 case recovers the usual graph walk and s-walks
for s > 1 are only possible on hypergraphs.

As will become apparent in subsequent sections, a number of basic yet important prop-
erties of walks in graphs immediately extend to s-walks on hypergraphs. For instance, just
as any graph walk ending at vertex vk can be concatenated with any walk starting at vertex
vk to form another walk, any s-walk ending at a particular edge can be concatenated to
any other s-walk starting at the edge. Consequently, the existence of an s-walk between
hyperedges defines an equivalence relation under which hyperedges can be partitioned
into s-connected components, which we explore in Sect. 4.2. Furthermore, this also en-
sures the length of the shortest s-walk between edges, called s-distance (Sect. 4.3), satis-
fies the triangle inequality and defines a bona-fide distance metric on the hypergraph. Fi-
nally, in Sect. 4.4 we explore how one may distinguish between different kinds of s-walks
in a hierarchical way, and how the subsequent notions of s-traces, s-meanders, s-paths,
and s-cycles lend themselves to discerning substructures native to hypergraphs, such as s-
triangles. For readers interested in random walks on hypergraphs, the Appendix includes
a brief discussion of recent literature and its relationship to s-walks.

Prior work Many researchers have considered different notions of “high-order walks”
on hypergraphs, abstract simplicial complexes, and related set systems. Concepts closely
related to s-walks have for long appeared in the mathematics literature. Bermond, Heyde-
mann, and Sotteau [33] introduced and analyzed k-line graphs of uniform hypergraphs,
which are derived from hypergraphs by representing each hyperedge as a vertex, and link-
ing two such vertices if their corresponding hyperedges intersect in at least k vertices. In
this way, a (graph) walk on their line graphs corresponds to an s-walk on a hypergraph. In
[34], Lu and Peng define higher order walks on hypergraphs for k-uniform hypergraphs as
sequences of edges intersecting in exactly s vertices, where the vertices within each edge
are ordered. Their work is related to a rich literature on Hamiltonian cycles in k-uniform
hypergraphs (e.g. [35, 36]) and takes a spectral approach: these generalized walks are used
to define a so-called s-Laplacian matrix. Wang and Lee [37] define hypergraph paths as
edge sequences in which no successive intersection is a subset of any other. Their moti-
vation is to prove enumeration formulas for certain cycle structures in hypergraphs. In a
series of three recent papers [38–40], Kang, Cooley, Koch, and others consider a notion
of s-walk between s-tuples of vertices. They conduct a rigorous mathematical analysis of
the asymptotic s-walk properties of binomial random k-uniform hypergraphs, consider-
ing hitting times, the evolution of high-order s-components, and high-order “hypertree”
structures. Lastly, in [41, 42], authors of the present work briefly considered the s-walk
based notion of s-distance as applied to Domain Name System (DNS) cyber data, and the
Enron email dataset, respectively.

Contributions The main contributions of the present work are:
• developing hypergraph generalizations of graph network science measures using the

s-walk framework,
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• applying these new measures to real hypernetworks, analyzing and comparing the
results, discussing structural insights they reveal, and

• experimentally testing the degree to which existing generative hypergraph null models
are able to replicate the properties seen in real data captured by these measures.

To make clear how these new hypergraph metrics generalize their graph counterparts,
when appropriate we include a definition subheading called “Graph case & equivalence”.
This subheading addresses two distinct questions: first, it describes how the definition(s)
in question reduce to the graph case when the hypergraph is a graph. As we will see, most
of the proposed hypergraph measures reduce to a graph analog by taking s = 1 and ex-
amining the dual of the graph, G∗ (taking the dual converts our edge-based exposition to
match the vertex-based notions common in network science).

Second, this heading describes whether the hypergraph measure is equivalent to a graph
measure on the hypergraph’s s-line graphs (Definition 7), which are generalizations of the
aforementioned line graph. In the case of s-connected components and s-distance mea-
sures (Sects. 4.2–4.3), these have natural equivalences on, and thus may be obtained via,
s-line graphs. However, the s-path, s-cycle, and s-clustering coefficients (Sect. 4.4) rely
on subset information not encoded in, and hence not discernible from, the s-line graphs.
Furthermore, properties of the hypergraph generative models we consider, such as hyper-
graph degree distributions and metamorphosis coefficients, also cannot be determined
from the s-line graphs. A takeaway from this is that our study of s-walks and hypernet-
work science includes, but extends beyond, the study of s-line graphs.

Lastly, we briefly compare our approach with that of the related research surveyed in
“Prior work” above: while the present work is similarly based around the concept of high-
order hypergraph walks, we utilize them for different ends. In particular, we use this frame-
work to develop network science concepts that are aimed at messy, real hypergraph data.
In contrast to all the work mentioned above, apart from that of Wang and Lee [37], we
do not assume k-uniformity, as real hypernetworks are frequently non-uniform. Further-
more, our methods apply to disconnected hypergraphs and permit duplicate hyperedges—
both of which are also common in real data. Additionally, we make design choices to en-
sure our methods are more computationally tractable in light of the combinatorial explo-
sion inherent in hypergraphs. For instance, as opposed to Lu and Peng who define s-walks
between arbitrary ordered s-tuples of vertices,g defining our notion of s-walk between pairs
of unordered hyperedges (or when working with the dual, pairs of single vertices) permits
the development of methods more tractable in application to real data.

4 Hypergraph walk framework
In this section, we explore how analytic tools from network science extend to hypergraphs
in the hypergraph walk framework. Within each subsection, we focus on one topic (e.g.
s-distance, a hypergraph geodesic), and introduce relevant methods in the “Methods” sec-
tion. In the “Application to Data” section, we apply these methods to real hypernetworks
and analyze the results. Our goal is not to explain why the observed structure exists us-
ing domain-specific analyses. Rather, we identify abstract structural properties revealed
by these measures, and highlight how these properties differ within each dataset (as we
vary the walk order s), as well as across datasets. This illustrates particular properties these
measures capture, as well as new insights revealed by considering s-walk based metrics.
While we take a broader, methods-based viewpoint here, we believe such an approach
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may be more useful in guiding future application-specific studies of these methods across
multiple domains. To that end, we consider three datasets from three domains: corporate
governance, biology, and text analysis.

4.1 Test data sets
For each dataset, we define the associated hypergraph, review prior graph or hypergraph
analyses of these (or closely related) datasets, and discuss basic properties which are sum-
marized in Fig. 3. In this figure and throughout, we use the same notation as in Definition 4
to refer to the dual hypergraph associated with a data set (e.g. LesMis* refers to the dual
hypergraph of LesMis, in which the roles of the vertices and edges are swapped relative
to how they are defined below). Figure 3 plots the edge cardinality distribution and pair-
wise edge intersection cardinality distribution. For instance, the point (x, y) = (3, 100) on
the “edges” distribution means there are 100 edges which consist of exactly 3 vertices in
that hypergraph; the same point on the “pairwise edge intersection” distribution means
there are 100 distinct, unordered pairs of hyperedges whose intersection contains exactly
3 vertices. We remind the reader the edge cardinality distribution of the dual hypergraph
H∗ is the same as the vertex degree distribution of H .

The table in Fig. 3 highlights basic statistics for each hypergraph. The number of “multi-
edges” is the number of edges that duplicate (in the sense of set equality) another edge,
i.e. |{i : ei = ej for j < i}|. The maximum edge size and edge intersection sizes, reported be-
low the multi-edge counts, are particularly pertinent because they determine the range of

Figure 3 Plots: Edge and pairwise edge intersection distributions of LesMis, Diseasome, and CompBoard (top
row) and their dual hypergraphs (bottom row). Table: Basic statistics on edge and multi-edge counts, the
maximum edge and pairwise edge intersection cardinality, and density for each dataset and their dual
hypergraphs
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interest for our measures: the former determines the largest value of s for which s-walk
based measures are defined while the latter determines the maximum value of s for which
s-walk based measures are non-trivial. Finally, “density” measures the number of vertex-
hyperedge memberships relative to the number of possible vertex-hyperedge member-
ships. Put equivalently, this is the number of nonzero entries in the incidence matrix S
divided by the product |V | · |E|. By definition, density is always the same for the hyper-
graph and its dual, whereas the other reported values are edge-based and may differ.

CompBoard
Data set. A company-board network. Vertices represent people and hyperedges
represent company boards. A vertex belongs to a hyperedge if that person sits on the
company board. The data consists of 4573 companies and 32,189 people. Companies
are identified by ticker symbols, excluding any location or exchange code suffixes (e.g.
Vodafone group is represented solely by VOD, not VOD.L or VOD.O) taken from the
NYSE, AMEX, and NASDAQ stock exchange listingsh on 10/1/2018. The data was
collected from publicly availablei board director information listed on Reuters. Board
director names were cross referenced against age data to better distinguish different
people with the same full name.
Prior work. Company-board network studies are historically rooted in corporate elite
theory, focusing on companies which share a common board member called
interlocking directorates. Many such studies focus on line graph representations of the
network, linking companies whose boards interlock. For instance, Conyon and
Muldoon [43] studied the small-world properties of company-board networks from
the US, UK, and Germany, focusing on the clustering coefficient and average path
length of the line graphs. In [44], Newman compares the clustering coefficient of a
company-board network line graph to that of a random model.j Levine and Roy [47]
appear to be among the first to analyze bipartite representations of company-board
networks directly, rather than solely line graphs. They considered topics such as the
average path length, connected component sizes, and proposed a “rubber-band
model”k to cluster the bipartite network. Later, Robins and Alexander devised a
bipartite global clustering coefficient, based on the ratio of bipartite 4-cycles to
3-paths, to measure “the extent to which directors re-meet one another on two or
more boards” [48]. In Sect. 4.4, we propose a new notion of hypergraph clustering
coefficients and explain how it compares to that of Robins and Alexander, as well as
graph clustering coefficients measured on the line graph. More generally, since an
“interlocking directorate” is represented by a hyperedge intersection, our methods can
be interpreted in this context as not only based on the existence of interlocks (i.e. a
pure line graph analysis) but also their size and relative set relationships.
Basic properties. The edge size distribution shows the sizes of company boards are
tightly concentrated around 7–10 members and drop off sharply at either end: only
about 3% of companies have fewer than 4 members, and 3% have more than 14. In
contrast, the edge size distribution of the dual hypergraph is monotonically
decreasing, showing more than 99% of board members belong to between 1–3
company boards. The pairwise edge intersection distribution for the hypergraph and
its dual similarly exhibit a sharp decrease, and the range of these distributions imply
different companies share up to a maximum of 12 board members, while different
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members serve on up to 5 common company boards. Among the three datasets,
CompBoard is the sparsest: it contains about 0.03% of possible vertex-hyperedge
memberships, as opposed to 0.33% and 2.68% for Diseasome and LesMis, respectively.

Diseasome
Data set. A human gene-disease network from [49]. Vertices represent genes and
hyperedges represent genetic disorders. A vertex belongs to a hyperedge if mutations
in that gene are implicated by that disease. The data consists of 903 genes and 516
diseases.
Prior work. Goh et al. [49] collected the list of genes, disorders, and their associations
from the Online Mendelian Inheritance in Man (OMIM) [50] compendium in 2005.
Their study considered the line graphs of the hypergraph and its dual, which they
dubbed the Human Disease Network and Disease Gene Network. They show the size
of the largest connected component in these networks differed with those generated
by random models. In Sect. 4.2 we study a generalized notion of high-order connected
components and compare these against those of random hypergraph models in
Sect. 5.1. For a broader discussion of the potential applications of hypergraphs and
hypergraph statistics in biology and genomics, see [51].
Basic properties. The edge size distributions of Diseasome and its dual show the most
genes implicated by a disease is 41 while the most diseases implicated by a gene is 11.
The pairwise edge intersection size distribution show 94% of pairs of diseases
implicating common genes share exactly 1 gene; conversely, examining this
distribution for the dual hypergraph reveals 98% of gene pairs associated with a
common disease share exacltly 1 disease. Among the three datasets, Diseasome and
its dual features the narrowest range of pairwise edge intersection sizes, with
maximum edge sizes of 5 and 4, respectively.

LesMis
Data set. A character-scene network from [52]. Vertices represent characters and
hyperedges represent scenes from Victor Hugo’s novel, Les Misérables. There are 80
characters and 402 scenes.
Prior work. This dataset was collected by Donald Knuth [52] and can be structured
according to different granularities in which hyperedges represent the scenes,
chapters, books, or volumes of the novel. The line graph of the LesMis hypergraph,
often dubbed the Les Mis co-appearence network, has appeared frequently in network
science literature for the purpose of demonstrating clustering or modularity methods
[53, 54], or centrality and ranking methods [55]. With regard to the latter, we apply
our proposed hypergraph centrality measure to rank LesMis characters in Sect. 4.3.
Basic properties. In LesMis and its dual, the largest hyperedge features 9 characters
and 137 scenes, respectively, with the latter hyperedge (unsurprisingly) corresponding
to the protagonist, Jean Valjean. Compared against other datasets, the edge
intersection size distributions are particularly distinct. LesMis* features the largest
range of edge intersection sizes across all datasets. Both LesMis and its dual are also
notable for featuring the most edge intersections relative to the number of possible
edge intersections: respectively, 22% and 8% of all pairs of edges in LesMis and its dual
intersect, whereas this ratio is an order of magnitude smaller for Diseasome and its
dual and two orders of magnitude smaller for CompBoard and its dual.
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4.2 Connected components
Methods Under Definition 1, the graph notions of connectedness and connected compo-
nents extend naturally to the s-walk framework.

Definition 6 For a hypergraph H = (V , E), a subset of hyperedges C ⊆ E is called s-
connected if there exists an s-walk between all f , g ∈ C and is further called an s-connected
component if there is no s-connected J ⊆ E such that C � J .

Since for any e ∈ E, there can be no s-walk from e to any other hyperedges if |e| < s, the
order of an s-connected component is bounded above by |Es|, where Es = {e ∈ E : |e| ≥ s}.
More precisely, for any positive integer s and hypergraph H , the edges in Es can always
be partitioned into s-connected components. We call a hypergraph s-connected if Es is
s-connected.

While an s-connected component of a hypergraph H is an equivalence class of edges, a
vertex-based notion of s-connected components is obtained by simply applying the above
definition to the dual hypergraph H∗. In comparing these edge and vertex-based notions,
note the number of 1-connected components for H and H∗ are always the same: it is
straightforward to see, in either case, the number of such components is the same as the
number of nontrivial connected components (i.e. excluding isolated vertices) in the bi-
partite graph representation of the hypergraph. In this sense, edge and vertex-based con-
nectedness are equivalent for s = 1 and whenever H is a graph. However, for s ≥ 2, the
number of s-connected components for H and H∗ may differ. Hence, s-connectedness in
hypergraphs is richer and more varied for high-orders, yielding dual but distinct vertex
and edge-based notions.

An effective way of visualizing and studying basic properties of s-connected components
is via its s-line graph. As previously mentioned, s-line graphs were studied for k-uniform
hypergraphs by Bermond, Heydemann, and Sotteau [33] as early as 1977. A definition for
the general case may be stated as follows:

Definition 7 Let H = (V , E) be a hypergraph with vertex set V = {v1, . . . , vn} and edge set
E ⊇ Es where Es = {e ∈ E : |e| ≥ s} = {e1, . . . , ek} for an integer s ≥ 1. The s-line graph of
H , denoted Ls(H), is the graph on vertex set {e∗

1, . . . , e∗
k} and edge set {{e∗

i , e∗
j } : |ei ∩ ej| ≥

s for i �= j}.

In other words, each vertex in the s-line graph represents a hyperedge with at least s
vertices in the hypergraph, and two vertices are linked in the s-line graph if their corre-
sponding hyperedges intersect in at least s vertices in the hypergraph. In this way, the
1-line graph is simply the line graph from Definition 4 and the connected components
of the s-line graph represent the s-connected components of the hypergraph. Hence, we
have:

Graph case & equivalence If H is a graph, H is connected iff H∗ is 1-connected. A hy-
pergraph H is s-connected iff Ls(H) is connected.

Table 1 presents examples of two hypergraphs and their associated s-line graphs. Ob-
serve that both hypergraphs have identical 1-line graphs. Nonetheless, comparing their
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Table 1 The s-line graphs for two hypergraphs

Table 2 The s-connected components of the datasets. For a full-sized image, see the Appendix

s-line graphs for s = 2, 3, 4 suggests differences otherwise lost when solely considering the
(usual) line graph, which s-line graphs generalize.

Although more general, s-line graphs are still subject to a limitation underlying (the
usual) hypergraph line graphs: they do not uniquely identify a hypergraph, up to isomor-
phism. For instance, while we previously observed the two author-paper networks in Fig. 1
to be different, the corresponding hypergraphs formed by letting hyperedges denote au-
thors have the same s-line graphs for s = 1, 2 and either trivial or empty s-line graphs
for s > 2. More generally, Kirkland’s aforementioned work [9] shows even when duality
is considered, s-line graphs may not uniquely identify a hypergraph. Nevertheless, s-line
graphs can be utilized to determine a number of informative s-walk properties, including
s-distance, which we explore in the next section. It is worth repeating, however, the study
of high-order hypergraph s-walks is not limited to s-line graphs. As we will see in Sect. 4.4,
s-line graphs cannot distinguish between finer classes of s-walks, such as s-meanders and
s-paths, and consequently cannot be used to compute s-clustering coefficients, for exam-
ple. Returning again to the examples in Fig. 1, we will see that while these hypergraphs
have identical nontrivial s-line graphs, they are distinguished by their s-paths.

Application to data Table 2 presents the s-components of LesMis, Diseasome, and
CompBoard s = 1, . . . , 5 by visualizing their s-line graphs. A page-sized version of this table
is included in the Appendix.

Qualitative differences are readily apparent from the visualization. For LesMis, the ma-
jority of hyperedges are contained within a giant component for s = 1, . . . , 5. This means
one can link most characters with each other via a pathway of characters co-occurring in at
least one to five scenes together. For s = 1 in Diseasome, we similarly observe a giant com-
ponent; however, for s ≥ 2, this giant component fragments into small, roughly equally
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sized components. Here, as s increases from one to five, many of the shared-gene path-
ways linking diseases for s = 1 break down. By s = 5, the s-components consist almost en-
tirely of isolated hyperedges (apart from a single pair of closely related diseases,“Diabetes
Mellitus” and “Mature onset diabetes of the young (MODY)”) implying diseases associ-
ated with 5 or more genes do not share 5 or more of those genes with other disorders. The
most dramatic fragmentation occurs for CompBoard. For s = 1, 74% of the companies are
contained within the giant component (pictured in the lower-left hand corner), while for
s = 2, this drops to 0.5%. This affirms shared board-member pathways linking companies
almost always rely on single shared board members.

To quantify these changes in s-connected component sizes more rigorously, we com-
pute several entropy-based measures on the s-connected component size probability dis-
tribution, ps = 〈ps

1, . . . , ps
k〉, defined by taking ps

j to be the fraction of hyperedges in Es that
are in the j’th s-component. For a discrete probability distribution p, its Shannon entropy
is given by H(p) = –

∑k
i=1 pi log2(pi). However, direct comparisons of Shannon entropy

on our data may be problematic, as the number of hyperedges in Es and number of s-
components varies not only between datasets, but also as s varies within each dataset,
thereby complicating cross-comparisons of the (unitless) Shannon entropy. To facilitate
more meaningful entropy comparisons, we consider the normalized entropy

H̃(p) =
H(p)

log2(k)
∈ [0, 1],

called p-smoothness by the authors [56]. This normalization derives from the fact that
H achieves its maximum value of log2(k) for the uniform distribution, 〈 1

k , . . . , 1
k 〉, and a

minimum value of 0 for a fully skewed distribution, e.g. 〈0, . . . , 0, 1〉. For the special case in
which k = 1, one takes the limiting definition as k → 1, and defines H̃(p) := 1.

We consider the p-smoothness of the s-component size distribution ps, which we de-
note H̃s = H̃(ps). If all s-components are equally sized, then H̃s is 1, whereas if the disparity
between component sizes is maximal (e.g. |Es| – 1 hyperedges in one s-component, and 1
hyperedge in the other), then H̃s approaches 0. In this sense, p-smoothness reflects how
smooth or uniform the s-component sizes are, but may not reflect how dispersedly the
hyperedges are distributed among s-connected components. For that purpose, we con-
sider an additional measure, again from [56], aptly called dispersion. The dispersion of
the s-component size distribution compares the number of s-components to the number
of possible s-components on a logarithmic scale, i.e.

Ds =
log2(|Cs|)
log2(|Es|) ∈ [0, 1],

where Cs denotes the set of s-connected components and Es denotes the set of s-
hyperedges.

Figure 4 plots the p-smoothness and dispersion for s = 1, . . . , smax, where smax =
maxf ,g∈E |f ∩ g|. For s > smax, the s-components are either all isolated hyperedges, or non-
existent. In all datasets, both dispersion and p-smoothness tend to increase in s, although,
as evident from LesMis, this increase is not always monotonic. LesMis* exhibits lower
values of p-smoothness for each of s = 1, . . . , 5 relative to those for corresponding values
of s in the other datasets, consistent with the highly skewed distribution reflecting the
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Figure 4 The p-smoothness and dispersion values of the s-connected components for LesMis, Diseasome,
and CompBoard (top row) and their dual hypergraphs (bottom row)

large component we observed in the visualization. CompBoard exhibits a large separation
between p-smoothness and dispersion for s = 1. In this case, while the component size dis-
tribution is still skewed—and hence has low p-smoothness—the remaining s-components
consist of many isolated hyperedges, reflected in the high dispersion value. Lastly, for Dis-
easome, p-smoothness is maximal while dispersion is minimal for s = 1, and for s ≥ 2 both
p-smoothness and dispersion closely coincide at values near 1. This reflects the fragmen-
tation of a single giant component into many s-components (hence the high dispersion)
that are equally sized (hence the high p-smoothness).

4.3 Distance and centrality
Methods Under Definition 1, it is straightforward to show the length of the shortest s-
walk serves as a distance metric function over a set of hyperedges. More precisely

Proposition 1 Let H = (V , E) be a hypergraph and Es = {e ∈ E : |e| ≥ s}. Define the s-
distance function ds : Es × Es → Z≥0 by

ds(f , g) =

⎧
⎨

⎩

length of the shortest s-walk if an s-walk between f , g exists,

∞ otherwise.

Then (Es, ds) is a metric space.

We omit the proof, as the triangle inequality can be proved constructively, and the other
metric space axioms follow immediately from Definition 3.

Graph case & equivalence If H is a graph, then the graph distance between vertices x
and y in H is equivalent to the 1-distance between hyperedges x∗ and y∗ in H∗. For a hy-
pergraph H , the s-distance between x and y is equivalent to the graph distance between
x∗ and y∗ in Ls(H). Consequently, the forthcoming s-distance based measures in Defini-
tions 8–9 are equivalent to their graph counterparts on Ls(H) and, whenever H is a graph,
reduce to their graph counterparts on H∗ for s = 1.
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With s-distance serving as hypergraph geodesic distance, hypergraph s-analogs of local
and global distance-based graph invariants easily extend.

Definition 8 Let H = (V , E) be a hypergraph.
(i) The s-eccentricity of a hyperedge f is max

g∈Es
ds(f , g).

– The s-diameter is the maximum s-eccentricity over all edges in Es, while the
s-radius is the minimum.

(ii) The average s-distance of H is
(|Es|

2

)–1 ∑

f ,g∈Es

ds(f , g).

(iii) The s-closeness centrality of a hyperedge f is
|Es| – 1

∑

g∈Es

ds(f , g)
.

Important caveats arise when applying Definition 8 to real data. As we’ve observed, H
may contain more than one s-component for some values of s, in which case the s-distance
between some pairs of edges is infinite. Consequently, the s-eccentricity of every edge
(and hence s-diameter and s-radius) and mean s-distance are all infinite; similarly, the s-
closeness centrality of every edge is trivially 0. Similar to how these issues are sometimes
addressed for graphs, one alternative is to compute these measures on only the largest
s-component. Depending on the analyst’s aims, this approach might be satisfactory, par-
ticularly if the majority of hyperedges in Es are contained within the largest s-component,
as was seemingly the case in LesMis*.

However, restricting to the largest component may be unsatisfactory in cases where the
largest s-component does not constitute the overwhelming majority of edges in Es, as in
CompBoard for s ≥ 2. In such cases, one may wish to compute s-eccentricity on a per-
component basis, taking the extrema over all s-components as the s-diameter and s-radius.
One may similarly compute mean s-distance or s-closeness per-component, however, it is
unclear how to properly synthesize these values in order to obtain (in the former case)
a single global numerical measure or (in the latter case) a ranking over all hyperedges in
the entire network. Instead of a per-component approach, an elegant alternative for aver-
aging graph distances in disconnected graphs, advocated by Newman [57], is to use the
harmonic mean instead of the arithmetic. This approach was adopted by Latora and Mar-
chiori [58] to define network efficiency as the reciprocal of the harmonic mean path length,
proposed as a quantitative measure of small-worldness. Latora and Marchiori termed this
measure “efficiency” in reference to how efficiently information might be exchanged over
the network. Later, a similar approach was adopted by Rochat [59] to define the harmonic
closeness centrality index of vertices in a disconnected graph. Extending these notions
to the hypergraph context, a more practical definition of the aforementioned s-distance
based notions is given by:

Definition 9 Let H = (V , E) be a hypergraph and let Cs denote the set of its s-connected
components.

(i) The s-eccentricity of a hyperedge f ∈ C where C ∈ Cs is max
g∈C

ds(f , g).

– The s-diameter is the maximum s-eccentricity over all edges in Es, while the
s-radius is the minimum.

(ii) The average s-efficiency of H is
(|Es|

2

)–1 ∑

f ,g∈Es
f �=g

1
ds(f , g)

.
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(iii) The harmonic s-closeness centrality index of a hyperedge f is
1

|Es| – 1
∑

g∈Es
f �=g

1
ds(f , g)

.

We take the limiting value of 0 for the summand in (ii) and (iii) when f and g are in
different s-components. Both (ii) and (iii) are numerical quantities between 0 and 1, with
larger values indicative of closer s-distances between hyperedges, either globally (in the
former case) or locally (in the latter case). If |Es| = 1, they are undefined. In practice, one
may ignore such isolated hyperedges when computing centrality or assign them a value
of 0 by convention, analogous to how [60, p. 221] sets the closeness centrality value of an
isolated vertex in a graph to 0.

Application to data We compute three of the aforementioned s-distance-based mea-
sures: the average s-efficiency index, the s-diameter (i.e. the maximum s-eccentricity over
all s-components) and the harmonic s-closeness centrality index.

Figure 5 plots the maximum s-diameter (over all s-components) and average s-efficiency
for the hypergraph and its dual. Larger values of average s-efficiency imply smaller s-
distances among the hyperedges in question. For some of the data (e.g. LesMis, Diseasome,
Diseasome*) average s-efficiency and s-diameter tends to decrease as s increases. In these
networks, the shortest s-walks linking hyperedges tend to become longer (or infinite) as s
is increased. However, for CompBoard*, average s-efficiency increases in s for each s ≥ 2.
This suggests that, among company board members who sit on multiple boards, those who
sit on more boards tend to (on average) be closer to one another in s-distance. LesMis* ex-
hibits a similar phenomena regarding average s-efficiency, where for characters appearing
in at least s ≥ 22 scenes, the more scenes they appear in, the closer they are to each other
in s-distance.

Turning to s-diameter, it is possible for s-diameter (taken as the maximum over all s-
components) to increase or decrease in s. In the former scenario, as s is increased, shorter
s-walks linking hyperedges may disappear, and those edges may only be linked via longer
s-walks, thereby increasing s-diameter. LesMis exhibits this most prominently, where s-
diameter increases from 5 to 9 as s increases from 1 to 2. On the other hand, if increasing

Figure 5 Maximum s-diameter over all s-components and average s-efficiency for LesMis, Diseasome, and
CompBoard (top row) and their dual hypergraphs (bottom row). Note the s-diameter values are in linear scale
whereas the s-efficiency values are in logarithmic scale
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Figure 6 Top row: top 15 ranked hyperedges for s = 1, 2, 3 in CompBoard, Diseasome, and LesMis*. Boxes
enclosing items in the table indicate those hyperedges are tied in rank. Bottom row: Kendall’s τB rank
correlation coefficient between the top k ranked hyperedges for a value of s (listed first in the legend)
compared against those hyperedge’s ranking under a different value of s (listed second)

s eliminates all s-walks between pairs of hyperedges, then these hyperedges are separated
into different s-components in which hyperedges may be closer to each other. In such
cases, the s-diameter may decrease, as in Diseasome. Consistent with our intuition from
the Diseasome visualization in Fig. 2, this s-diameter drop reflects the fragmentation of
the network into small components; accordingly average s-efficiency also drops because
of the infinite s-distances between edges in different s-components.

Lastly, Fig. 6 (top row) lists the top 15 hyperedges in CompBoard, Diseasome, and
LesMis* for s = 1, 2, 3, as ranked according to their harmonic s-closeness centrality. Boxes
enclosing hyperedges indicate a tie in s-closeness centrality. Comparing the ordinal rank-
ings across the datasets, for some data the the top 15 ranked hyperedges for s = 1 remain
within the top ranked for s = 2 (e.g. for LesMis*, 10 remain in the top 15) whereas in other
data, the top ranked hyperedges may change completely (e.g. in CompBoard, none of the
top 15 companies with highest 1-closeness centrality remain in the top 15 for 2-closeness
centrality).

A drop in a hyperedge’s rank from s = 1 to 2 may indicate short pathways linking that
hyperedge to others rely on sparse hyperedge intersections. For example, in Diseasome we
observe that while “Colon cancer” and “Breast cancer” remain in the top 3 ranked hyper-
edges for s = 1, 2, 3, “Diabetes mellitus” drops from having the second largest 1-centrality,
to having the 34th largest 2-centrality. “Diabetes mellitus” shares genes with 24 other dis-
eases and hence this hyperedge intersects with 24 other hyperedges. However, of these
24 diseases, “Diabetes mellitus” shares at least 2 genes with only two diseases: “Obesity”
and “Mature Onset Diabetes of the Young (MODY)”. Thus, any 2-walk between “Diabetes
mellitus” and another disease can only go through one of these diseases, which (in this
case) results in larger average 2-distance between diabetes and other diseases, relative to
the average 2-distance between other pairs of diseases. In contrast, “Breast cancer” shares
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at least 2 genes with 9 other diseases, and (on average) can be linked to other diseases via
a shorter 2-walk than for “Diabetes mellitus”.

To more rigorously explore these changes in ordinal rankings by s-closeness, we com-
pute Kendall’s τB rank correlation coefficient between the top k ranked hyperedges for one
value of s and the rankings of those same hyperedges under another value of s. We com-
pute this coefficient for each of k = 10, . . . , |E| and for each ordered pair of s-values from
{1, 2, 3}. Hyperedges with equal s-closeness centrality are considered tied in rank, and we
assign the minimum s-closeness centrality score of 0 to any hyperedge with fewer than s
vertices. Kendall’s τB ranges from –1 (if the ordinal rankings are perfectly inverted) to 1 (if
the ordinal rankings are identical), and is explicitly formulated to handle ties in rank [61].
Figure 6 plots results for CompBoard, Diseasome, and LesMis*. CompBoard exhibits an
absence of correlation for the 1-closeness rankings when compared against 2 or 3, and a
stronger correlation for the 3-closeness rankings compared against the 2-closeness rank-
ings. When all hyperedges in the network are considered (i.e. for k = |E|, given by the
rightmost points in each plot), the 1-closeness rankings of LesMis* exhibits the strongest
correlations between the 2 and 3-closeness rankings.

4.4 Paths, cycles, and clustering coefficients
Methods So far, our methods have centered solely around the base definition of s-walk.
However, just as graph walks may be distinguished into finer classes such as trails, paths,
circuits and cycles, s-walks may also be distinguished from each other and organized hi-
erarchically. As we’ll show, doing so allows one to define high-order substructures native
to hypergraphs, such as s-triangles, that cannot be determined from their s-line graphs.

Definition 10 For a hypergraph H = (V , E), let the sequence of hyperedges ω = (ei0 , ei1 , . . . ,
eik ) be an s-walk of length k. For ease of notation let Ij = eij–1 ∩ eij be the j’th intersection.
The s-walk ω may be further defined as:

(i) An s-trace if ix �= iy for all x �= y (all hyperedges are pairwise distinct by label).
(ii) An s-meander if ω is an s-trace in which Ix �= Iy for all x �= y (all intersections are

pairwise distinct).
(iii) An s-path if ω is an s-meander in which Ix \ Iy �= ∅ for all x �= y (no intersection is

included in another).

Graph case & equivalence If H is a graph, a 1-trace on H∗ is equivalent to a walk on
H in which vertices are distinct but edges may be repeated. Furthermore, if H is a graph,
s-meanders and s-paths on H∗ are both equivalent to a graph path on H . However, if H is
a hypergraph, a path in Ls(H) does not necessarily correspond to an s-path in H . Conse-
quently, the forthcoming s-path based triadic notions in Definition 11 cannot be obtained
from Ls(H) but reduce to their usual graph counterparts on H∗ for s = 1 whenever H is a
graph.

We note Wang and Lee [37] also define hypergraph paths using the same subset condi-
tion stated in Definition 10 above. The notions of s-walk, s-trace, s-meander, and s-path
form a nested hierarchy: every s-trace, s-meander, or s-path is an s-walk; every s-meander
and s-path is an s-trace; and every s-path is an s-meander. However, in each case, the re-
verse may not be true (e.g. an s-meander may not be an s-path). With regard to s-distance
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(Sect. 4.3), it is straightforward to show constructively that if there exists an s-walk (resp.
s-trace, s-meander) of length k between two hyperedges, there exists an s-trace (resp. s-
meander, s-path) of length at most k. This implies the length of the shortest s-walk be-
tween two hyperedges is equivalent to the length of the shortest s-path; consequently,
s-distance as given by the length of the shortest s-walk is equivalent to that given by the
length of the shortest s-path.

While not having ramifications for the notion of s-distance, the finer classes of s-walks
above provide a means, within the s-walk framework, to define high-order substructures
or motifs that cannot be determined from the s-line graph. To define an example of these
substructures, we require the notion of a closed walk. Analogous to its usage in graph the-
ory, we call an s-walk closed if i0 = ik , and call a closed s-path an s-cycle. As a point of
clarification, closed s-traces, meanders, or paths are still considered valid s-traces, mean-
ders or paths (that is, only the terminal edges are exempt from the s-trace requirement
that all edges be distinct by label). Using s-cycles, we define hypergraph s-analogs of tri-
adic measures commonly applied to graph data. Whereas graph triadic notions like the
local clustering coefficient [62] are defined for vertices, the s-analogs below are defined for
hyperedges, keeping consistent with the rest of our presentation. We remind the reader
vertex-based notions are obtained by simply applying the below definition to the dual hy-
pergraph, H∗.

Definition 11 For a hypergraph H , an s-triangle is a closed s-path of length 3 and an
s-wedge is an s-path of length 2. For an s-wedge e0, f , e2, we say f is the center of the
s-wedge.

(i) The s-local clustering coefficient of a hyperedge f ∈ Es is given by

s-LCC(f ) =

⎧
⎨

⎩

number of s-triangles containing f
number of s-wedges centered at f if f is the center of an s-wedge,

0 otherwise.

(ii) The s-global clustering coefficient of a hypergraph H is given by

s-GCC(H) =
3 · total number of s-triangles

total number of s-wedges
.

In the same way as for the LCC of graphs, one may obtain a global measure for the s-LCC
of a hypergraph by taking the mean s-local clustering coefficient over all edges in Es.

Figure 7 illustrates examples of three different hypergraphs induced by a closed s-walk
e1, e2, e3, e1 of length 3; namely, from left to right: a closed s-trace that is not an s-meander,

Figure 7 Examples of different closed s-walks of length 3 given by e1, e2, e3, e1. From left to right: a closed
1-trace of length 3, closed 3-meander of length 3, and closed 2-path of length 3 (i.e. a 2-triangle)
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a closed s-meander that is not an s-path, and a closed s-path of length 3 (i.e. an s-triangle).
Observe the 1-line graphs of all three of these hypergraphs consists of a single triangle,
while only the rightmost pictured hypergraph in Fig. 7 is a 1-triangle (as well as a 2-
triangle). Another example may be found by reconsidering the author-paper networks
in Fig. 1: for the hypergraphs constructed by letting hyperedges denote authors, the 2-
walk A, B, C, A is a 2-triangle for the leftmost network, while the same walk is a 2-trace
for the rightmost. These examples illustrate s-triangles cannot be determined from line
graphs (a fact that is unsurprising, since s-line graphs do not encode the subset relation-
ships stipulated for s-paths).

Since other definitions of hypergraph clustering coefficients have appeared in the com-
plex networks literature, it is worth clarifying how these notions compare to ours. Estrada
[63] proposes a global hypergraph clustering coefficient as a ratio of (non s-walk based)
hypergraph triangles to hypergraph wedges. More precisely, Estrada defines a hypertri-
angle as an alternating vertex-hyperedge sequence with three distinct vertices and three
distinct hyperedges such that for each subsequence vi, ek , vj, we have that vi, vj ∈ ek (put
equivalently, these are 6-cycles in the bipartite representation of the hypergraph). Thus,
returning to the rightmost hypergraph pictured in Fig. 7, the alternating sequence given
by interlacing the pair of vertex and hyperedge triples (v1, v3, v6) and (e1, e2, e3) constitutes
a triangle, as does the same pair with v1 replaced with v2. It is easy to see the existence of
an s-triangle implies the existence of at least one such hypertriangle as defined by Estrada;
however, the converse is not necessarily true (e.g. while the hypergraph pictured in the
center of Fig. 7 contains many such hypertriangles, neither this hypergraph nor its dual
contain any s-triangles). In this sense, Estrada’s notion of clustering and ours are funda-
mentally different.

Other proposed notions of hypergraph clustering differ to ours in being based on av-
eraging various pairwise set theoretic measures between pairs of hyperedges or vertices.
For instance, Latapy, Magnien and Vecchio [18] propose a pairwise clustering coefficient
between hyperedges ei, ej as |ei∩ej|

|ei∪ej| , which is the Jaccard similarity coefficient between the
sets of vertices constituting the two hyperedges (or, when applied to the dual, the Jaccard
similarity between the sets of hyperedges to which two vertices belong). They then de-
fine a local and global notion of hypergraph clustering by averaging this quantity. Zhou
and Nakhleh [64] propose local and global hypergraph clustering coefficients based on
the pairwise excess overlap between hyperedges. As described and studied further by the
authors in [8], excess overlap measures the proportion of the vertices in exactly one of
the edges that are neighbors of vertices in only the other edge. Lastly, notions of bipartite
graph clustering proposed in the literature, (applicable to hypergraphs via the bicolored
graph-hypergraph correspondence mentioned in Sect. 2) are frequently based on bipartite
4-cycles [48, 65]. In the language of hypergraphs, a bipartite 4-cycle is a subhypergraph
on two hyperedges and two vertices. Hence (in addition to again not being based in high-
order s-walks) these bipartite 4-cycle based notions of clustering differ from our s-triangle
based notions in involving only pairs (rather than triples) of hyperedges.

Application to data Figure 8 plots the mean s-LCC and s-GCC (left block) as well as
the proportion of triangles and wedges in s-line graph that correspond to s-triangles and
s-wedges in the hypergraph (right block) for each of our datasets. Recall every triangle
and wedge in the s-line graph represents a closed s-walk of length 3 and s-trace of length
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Figure 8 Mean local and global s-clustering coefficients (left), and proportion of triangles and wedges in the
s-line graph that correspond to s-triangles and s-wedges (right) for LesMis, Diseasome, and CompBoard, and
their dual hypergraphs

2 which, in turn, may or may not be an s-triangle or s-wedge, respectively. For all three
datasets, a higher proportion of wedges in the s-line graph correspond to s-wedges com-
pared with the proportion of triangles in Ls(H) that correspond to s-triangles.

On the other hand, the datasets exhibit different behavior regarding the absolute size of
these proportions, as well as how these proportions vary as s varies. For LesMis*, a rela-
tively larger proportion of triangles in Ls correspond to s-triangles than for CompBoard*.
Furthermore, the proportions of s-triangles to s-wedges are much greater, both on aver-
age locally (given by the mean s-LCC) as well as globally (given by the s-GCC) than for
CompBoard*. In contrast, CompBoard* exhibits an extremely small proportion of trian-
gles in Ls(H) corresponding to s-triangles. This means whenever there is a triad of board
members where each pair belong to common company boards, it is almost always the case
that for at least one pair of board members, the set of companies in common are either
identical (i.e. forming s-trace that is not an s-meander) or subsets of each other (i.e. an
s-meander that is not an s-path). In general, s-triangles in both CompBoard and its dual
are scarce, reflected by extremely low s-LCC and s-GCC coefficients.

In the context of a company-board network an s-wedge is a generalization of a differ-
ent represenatives’ interlock,l a topic prominent in the corporate governance literature
[47, 48, 66]. Furthermore, pairs of hyperedges having an s-distance of 1 and 2 represent
so-called “direct interlocks”m and “third company interlocks”,n respectively, between com-
peting companies. This parallel illustrates how s-path and s-distance based notions may
provide a generalized framework for describing and measuring phenomenon already im-
portant to particular domains. For CompBoard, since the aforementioned interlocks be-
tween competing companies are regulated by Section 8 of the Clayton Act [66], it is un-
surprising our results show s-wedges (and hence s-triangles) are relatively rare.
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5 Comparison with generative hypergraph null models
Graph generation serves far-ranging purposes across scientific disciplines. Generative
graph models are used for benchmarking, algorithm testing, and creating surrogate graphs
to protect the anonymity of restricted data. Here, we apply hypergraph generative mod-
els as null models to experimentally test the significance of the high-order properties ex-
plored in Sect. 4. By “null model”, we mean a generative model that controls for certain
basic features of the data. Such models may be utilized to test whether observed measure-
ments in the data are necessarily consistent with controlled features. For example, in the
Erdős–Rényi graph model, the user specifies the desired number of vertices n and edge-
probability p; hence, by controlling n and p one can generate ensembles of random graphs
with the same expected edge density. A subsequent comparison of measurements on given
graph data against those on random graphs with the same edge density tests whether the
measured features can be explained as sole consequences of edge density. To the extent
to which the properties of the real and synthetic graphs diverge, this provides evidence
the properties under question cannot be explained as sole consequences of the structural
properties preserved by the model.

In comparison to their graph counterparts, generative hypergraph models are relatively
few. While work on random uniform hypergraphs dates back to at least the 1970s, re-
searchers have recently begun developing a wider variety of hypergraph models, both for
uniform hypergraphs [38–40, 67] and non-uniform hypergraphs [8, 68–71]. We consider
three generative hypergraph models from [65], which can be thought of as hypergraph in-
terpretations of the graph models Erdős–Rényi (ER) [72], Chung–Lu (CL) [73], and Block
Two-Level Erdős–Rényi (BTER) [74, 75]. These models were originally presented as “bi-
partite models” in [65], with similar acknowledgment of the bicolored graph-hypergraph
correspondence discussed in Sect. 2. While these models were inspired from their graph
counterparts and named as such, there may be multiple ways of conceiving these models in
the hypergraph/bicolored graph setting, as is often the case with graph-to-hypergraph ex-
tensions. In fact, others have proposed non-uniform hypergraph analogs of Erdős–Rényi
and Chung–Lu (see [8] and [71], respectively) differing to those considered here with re-
gard to the inputs required, the model itself, and the definition of hypergraph assumed.

We’ve chosen these particular models for several reasons. First, they can generate non-
uniform hypergraphs in accordance with the full generality of Definition 1. Notably, all
three of these models permit duplicated edges, which occur frequently in hypergraph-
structured data and are highly prevalent on our particular data (see Fig. 3). One might
expect duplicate edges to also be common in author-paper networks, occurring whenever
the same set of authors write multiple papers together (e.g. papers 1, 4 for authors A, B in
the leftmost network of Fig. 1). These joint papers suggest stronger relationships amongst
the authors in question; disregarding duplicate edges ignores this and skews measure-
ments, such as s-centrality, meant to capture such properties. In contrast to the models
we consider, the aforementioned non-uniform hypergraph ER and CL models proposed
by [8] and [71] do not permit duplicated hyperedges, but treat hyperedges themselves as
multisets.

Secondly, taken as a suite, these models provide tiered control over three fundamen-
tal properties: (1) vertex-hyperedge density, (2) vertex degree and edge cardinality dis-
tributions, and (3) metamorphosis coefficients, a measure of community structure from
[65] which we return to shortly. Specifically, ER controls for vertex-hyperedge density, CL
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controls for density as well as degree distributions, and BTER controls for all three of the
aforementioned properties. Taken in sequence, ER, CL and BTER can each be conceived
formally as a generalization of the previous model. All three models afford scalable im-
plementations and [65, 76] report results on hypergraphs generated using these models
with hundreds of millions vertex-hyperedge memberships; open source implementations
are availableo as part of The Chapel HyperGraph Library (CHGL, [76]), a prototype HPC
library [77] for large-scale hypergraph generation and analysis written in the emerging
programming language of Chapel.

5.1 Three generative hypergraph models
We define the generative models we consider below, and then briefly compare their prop-
erties.

1 Erdős–Rényi, ER(n, m, p). The user specifies three scalar parameters: the desired
number of vertices n, desired number of hyperedges m, and vertex-hyperedge
membership probability, p ∈ [0, 1]. For each of the nm vertex-hyperedge pairs, the
probability of membership is the same,

Pr(v ∈ e) = p.

2 Chung–Lu, CL( �dv, �de). The user specifies a desired vertex degree sequence
�dv = (dv1 , . . . , dvn ) and desired hyperedge size sequence �de = (de1 , . . . , dem ), which (in
order to be realizable by a hypergraph) satisfy c =

∑n
i=1 dvi =

∑m
i=1 dei . The probability

a vertex belongs to a hyperedge is proportional to the product of the desired vertex
degree and edge size, i.e.

Pr(vi ∈ ej) =
dvi · dej

c
.

To ensure this probability is always less than 1, one may further require the input
sequences satisfy maxi,j dvi dej < c.

3 Block Two-Level Erdős–Rényi, BTER( �dv, �de, �mv, �me). In addition to the desired vertex
degree and edge size sequences mentioned in Chung–Lu, the user also specifies
desired vertex and edge metamorphosis coefficients, �mv and �me, which, as clarified
further below, are measures of community structure based on the prevalence of small,
dense substructures in the hypergraph. The BTER model is designed to output a
hypergraph that matches the input degree distribution and metamorphosis
coefficients. The BTER model proceeds in two phases: in the first, metamorphosis
coefficients are approximately matched by grouping vertices and hyperedges into
small, disjoint sets called affinity blocks and applying the Erdős–Rényi model on each
block. In the second, the degree distributions are matched by running the Chung–Lu
model on the excess desired degrees, thereby linking the blocks. As formal details of
the BTER model are complicated, the reader is referred to [65] for a full specification.

For ER the expected number of vertex-hyperedge memberships is pnm, and hence
this simple model can be used to generate random hypergraphs with a specified vertex-
hyperedge membership density. We reported this density for our datasets in Fig. 3. For the
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CL model, each vertex v achieves its user-specified desired degree dv in expectation since

E

(
deg(v)

)
=

∑

e
Pr(v ∈ e) =

dv

c
∑

e
de = dv.

An identical argument also shows each hyperedge e achieves its desired size de in expecta-
tion. In this way, CL not only matches the desired vertex-hyperedge membership density
in expectation like ER, but additionally matches the vertex degree and edge size distribu-
tions in expectation. We reported these degree distributions for our datasets in Fig. 3.

The CL model is a generalization of the ER model in the sense that the ER can be ob-
tained from CL by taking the degree and edge size sequences to be constant, i.e.

CL
(
(mp, mp, . . . , mp
︸ ︷︷ ︸

n times

), (np, np, . . . , np
︸ ︷︷ ︸

m times

)
)

= ER(n, m, p).

Lastly, the BTER model (which, as explained in [65], utilizes the CL model as a subroutine)
can be understood as a generalization of CL. The BTER model is designed to match not
only vertex and edge size distributions, but also per-degree metamorphosis coefficients.
A complete definition of metamorphosis coefficients is involved; interested readers are
referred to [65] for full details. Nonetheless, to elucidate how metamorphosis coefficients
are interpreted in the hypergraph setting, we provide a high-level description.

Metamorphosis coefficients are measures of network community structure based on
counts of bipartite 4-cycles, also called butterflies, and bipartite 3-paths, also called cater-
pillars. In the language of hypergraphs, a butterfly is a subhypergraph consisting of two
vertices and two edges intersecting in those two vertices; a caterpillar is an edge with two
vertices intersecting with another edge in one of those vertices. The authors in [65] define
metamorphosis coefficients for vertices within each of the two partitions of a bipartite
graph, based on the ratios of butterfly to caterpillar counts those vertices participate in.
Stated equivalently, this defines metamorphosis for the vertices and hyperedges of a hy-
pergraph. If a hyperedge e has a large metamorphosis coefficient, this means a large pro-
portion of the edges that e intersects with intersect in (at least) 2 vertices; dually, if vertex
v has large metamorphosis, then a large proportion of vertices v shares an edge with share
(at least) 2 edges. For example, in Fig. 1 each author in the leftmost network repeats a coau-
thorship with someone on 1 out of 3 of their other papers, and thus has metamorphosis
1
3 ; in the rightmost, each author repeats a coauthorship on all their other papers, and thus
has metamorphosis 1. The BTER model is designed to match degree distributions, as well
as the average metamorphosis coefficients for vertices and hyperedges of a given degree
and cardinality, respectively.

Taken as a suite, these three models serve well as null-models since each provides suc-
cessively more control over hypergraph structure than the previous, providing the flexi-
bility to choose different tiers of structural nuance for the generated hypergraphs. In the
next section, we run each model multiple times on each dataset, and study how well each
model replicated s-walk properties. By (for example) “running CL on LesMis”, we mean
extracting the model inputs (in this case, the vertex degrees and hyperedge sizes) from the
data, and using the Chung–Lu model to generate a hypergraph under these inputs.
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Figure 9 Comparison of s-component size distributions, mean s-local clustering coefficients, s-diameter, and
average s-efficiency of the LesMis*, Diseasome, and CompBoard datasets against those of hypergraphs
synthetically generated by ER, CL, and BTER

5.2 Comparison
Figure 9 compares s-walk based properties of LesMis*, Diseasome, and CompBoard
against those of synthetic hypergraphs generated by ER, CL, and BTER. For each dataset,
we generate 100 instances of each synthetic model and compute the properties in ques-
tion for each instance. The plot reports the average values observed over the 100 trials, for
each s.

In the leftmost column in Fig. 9, we use Kolmogorov–Smirnov (KS) distance to com-
pare the s-component size probability distributions of the original and synthetic hyper-
graphs. KS distance is normalized between 0 and 1, with smaller KS-values indicating
greater similarity.p Comparing the models as s increases, the ER model exhibits higher KS
distance than for CL and BTER, indicating s-component size distributions that are more
dissimilar to the original. All three models seem to exhibit larger KS distances for larger
s values, although in some cases (e.g. for CL and BTER on LesMis*) this increase is not
monotonic in s. One notable exception is CompBoard, in which all models exhibit much
larger KS distance for s = 1 than s = 2. This can likely be attributed to the large number of
isolated hyperedges observed in 1-components of CompBoard: in contrast, all three mod-
els tend to output hypergraphs in which the majority of hyperedges are contained within
a single giant 1-component.

Turning to s-distances, we compare the original s-diameter (center right) and average
s-efficiency (far right) to those of the model’s synthetic hypergraphs. As the average s-
efficiency plots are in log-scale, average values of 0 (which occur whenever no two hy-
peredges intersect in s vertices) are not plotted. ER tends to have lower s-diameter and
average s-efficiency as s increases, when compared to CL and BTER. For LesMis* and
Diseasome, CL and BTER seem to perform comparably; for CompBoard, however, BTER
does noticeably better than both in matching average s-efficiency for s ≥ 2, although still
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diverging from the original values considerably for s ≥ 5. Lastly, we consider the model’s
performance with regard to mean s-local clustering coefficients (center left). For all three
datasets, ER produces smaller clustering coefficients than observed in the original data, for
all s. For CL and BTER, the mean s-local clustering coefficients sometimes exceed those
of the original data for small values of s (e.g. for s ≤ 2 on Diseasome), while for some larger
values of s (e.g. for 13 ≤ s ≤ 19 on LesMis*), BTER and CL produce smaller local clustering
coefficients than those of the original data.

Taking a broader view of these results, none of these three models are able to provide
a consistent, close match across values of s. This suggests the s-walk-based measures in
question cannot be explained as sole consequences of the model inputs (e.g. degree dis-
tributions for the Chung–Lu model), that are preserved in expectation in the output hy-
pergraphs. Nonetheless, this experiment should not be extrapolated to provide general-
ized guidance on which model best preserves certain s-walk properties. Depending on
the properties of the data in question, it may be the case that ER (the least accurate model
on our data) provides a closer match than CL or BTER. In order to provide more a com-
prehensive approach to such questions, it would be of interest to determine conditions
on model inputs under which certain s-walk properties of the output hypergraphs can be
tightly bounded or controlled. While such work is outside the scope of the present paper,
the aforementioned research by Kang, Cooley, and Koch [38–40] illustrates establishing
guarantees on even basic high-order walk based properties in random hypergraphs (such
as the size of the largest s-component) requires sophisticated probabilistic analysis.

6 Conclusion
The prevalence and complexity of hypernetwork data necessitates analytic methods that
are both applicable and able to capture hypergraph-native phenomena. We have proposed
hypergraph s-walks provide a framework under which graph analytic tools popular in net-
work science extend more meaningfully to hypergraphs. In applying these measures to
real data, we’ve explored how they may reveal varied, interpretable, and significant struc-
tural properties of the data otherwise lost when analyzing hypergraphs under the lens of
the usual graph walk. The methods we’ve focused on—connected component analyses,
distance-based measures, high-order motifs and clustering coefficients—are meant to il-
lustrate the breadth of tools to which this approach is relevant. However, ours is clearly far
from a comprehensive exploration. We conclude by outlining several lines of future work
that highlight the limits of our approach.

One immediate open question concerns how the methods we’ve developed may be
generalized further. For instance, it would be of both theoretical and practical inter-
est to develop tractable s-walk based measures for weighted hypergraphs (with real-
valued vertex and/or edge weights), directed hypergraphs (in which each edge’s ver-
tices are either in its “head” or “tail”), ordered hypergraphs (in which each edge’s ver-
tices are totally ordered), or temporal hypergraphs (consisting of sequences of hyper-
graphs). With regard to the latter topic, our work does not address how hypergraphs,
and the structural properties we observed, evolve throughout time. The suite of gener-
ative models we considered are effective as structural null models, but do not explicitly
posit a process or mechanism through which hypernetworks grow. In contrast, other re-
searchers have put forth and studied hypergraph evolution mechanisms, such as a pref-
erential attachment inspired model for non-uniform hypergraphs [78, 79]. An analysis of
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these, or the development of entirely new, temporal hypergraph models might shed in-
sight into how high-order structural properties put forth here emerge in network topol-
ogy.

Lastly, another open direction lies in devising efficient computational methods for the
s-walk measures put forth here. We did not explore the algorithmic aspects underlying
these methods. In some cases, the methods we utilized—while sufficient on our data—
were not scalable to massive hypergraph data (e.g. computing s-centrality via the s-line
graph quickly becomes infeasible for large hypergraphs with skewed degree distributions,
as the density of s-line graphs increase quadratically in the maximum vertex degree). De-
veloping algorithms that leverage the sparsity of the hypergraph (rather than resorting to
computation on dense s-line graphs) would help facilitate the application of these meth-
ods to larger-scale data. Furthermore, just as researchers have begun developing efficient
schemes for computing atomic bipartite graph motifs such as cycles of length 4 [80, 81],
work in a similar vein would prove useful for enabling large-scale s-triangle counting in
hypergraphs.

Appendix
Hypergraph random walks and s-walks Although not the focus of the present work, the
study of random walks is intimately related to many branches of graph and hypergraph the-
ory, underlying analytic methods such as PageRank, diffusion processes such as chip-firing
and load-balancing in distributed networks, as well as clustering methods. One popular
way of defining a random walk on a hypergraph H = (V , E) is as a discrete time Markov
Chain, X1, X2, . . . , with state space V , such that at time t, if Xt = vt , then Xt+1 is determined
by

1 Selecting an edge e containing vt , either uniformly at random or according to given
edge weights.

2 Selecting a vertex v from e, either uniformly at random or according to given vertex
weights.

3 Setting Xt+1 = v.
This process defines a probability transition matrix, symmetrizations of which yield cer-
tain Laplacian matrices frequently used as inputs to clustering methods, like spectral clus-
tering [26] and non-negative matrix factorization [27]. For instance, Zhou [28] proposed
a hypergraph Laplacian which may be used to cluster a hypergraph’s vertices according to
a normalized hypergraph cut criterion. Other hypergraph Laplacian matrices have been
proposed by Rodriguez [29] and Bolla [30]. However, Agarwal [31] proved these Lapla-
cians, while defined on the hypergraph, are nonetheless closely related to Laplacians of
graphs derived from the hypergraph, such as the aforementioned 2-section and bipar-
tite graph. Consequently, neither these Laplacians, nor the clustering methods that utilize
them, make full use of the higher-order relationships present in hypergraphs but absent
in graphs. Nonetheless, recent work by Chitra and Raphael [32], has identified a potential
culprit underlying this shortcoming: these Laplacians are based on random walks featur-
ing so-called edge-independent vertex weights. They show edge-dependent vertex weights
(i.e. each vertex has a collection of weights, one for each hyperedge to which it belongs)
is a necessary, albeit not sufficient, criterion for defining a random walk on a hypergraph
that isn’t equivalent to some random walk on the 2-section.
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We note there are at least two ways of utilizing the s-walk framework to define random
walks: (1) as an s-weighted random walk, and (2) as an s-stratified set of random walks.
In the former, the intersection cardinalities between hyperedges serve as the weights for
transitioning, which is equivalent to a weighted random walk on the graph with adjacency
matrix ST S, where S is the hypergraph incidence matrix. In this case, Laplacian matrices
derived from this walk are still subject to Agarwal’s aforementioned criticism. In the latter
case, one considers a set of random walks, one for each s-line graph (see Definition 7),
which may be either weighted or unweighted. However, whether and how this set of ran-
dom walks might be utilized to define a Laplacian (or whether there is a different way to
utilize s-walks to define stochastic processes of interest) is an interesting topic we leave to
future work.
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Endnotes
a One could also have formed a hypergraph by taking papers as vertices and hyperedges as the set of papers each

author has written. In this case, by virtue of having authors with 4 papers, the hypergraph derived from the leftmost
network exhibits higher-order relationships. The hypergraph obtained by swapping the roles of vertices is called the
dual hypergraph. Duality is an essential consideration in hypernetwork science, which we discuss further in the
Preliminaries section.

b More precisely, if a 2-uniform hypergraph contains duplicated hyperedges, it is a multigraph.
c By “labeled hypergraph” we mean a hypergraph in which each vertex and edge are distinguishable via an

assignment of distinct labels—this is not meant to be confused with so-called attributed hypergraphs in which the
vertices and edges have associated metadata.

d That is, our focus in this work is on hyperedge incidences and hyperwalks that arise from sequences of incident
hyperedges. Hyperedges themselves are defined explicitly for hypergraphs, but only implicitly for bicolored graphs
(as the neighborhood of a vertex in the color class designated for hyperedges). For this reason, framing our
exposition using the language of arbitrary set systems is natural, whereas adopting the constrained language of
bicolored graphs would be cumbersome and confusing.

e Note, however, this is not necessarily true when restricted to the graph case: for a graph G, its dual G∗ is 2-uniform
(and hence still a graph) if and only if G is 2-regular, in which case G is a cycle or disjoint union of cycles.

f https://github.com/pnnl/HyperNetX
g Consequently, the s-Laplacian matrix they study is ns × ns , where n denotes the number of vertices and xk =

(x
k

)
k!

denotes the falling factorial. Even for a modestly sized hypergraph on n = 104 vertices with s = 20, this matrix has
size ns ≈ 1080, approximately the number of atoms in the known universe.

h List of companies on these exchanges obtained from https://www.nasdaq.com/screening/company-list.aspx
i https://www.reuters.com/finance/
j Measuring hypergraph clustering on line graphs has been noted to be potentially misleading (see, for instance,
[45, 46]) since the cliques generated heavily skew the number of triangles.

k Described as a physical device consisting of two horizontal bars that support “hooks” representing companies and
board member nodes, with rubber bands that “join the appropriate hooks and physically represent the inclusion
between persons and boards”

l Defined in [66] as “the linking of two companies by a third company having different representatives on the board
of the two companies.”

m A direct interlock occurs when two company boards have 1 or more members in common. [47]
n Defined in [66] as “the linking of two companies by one company having a director on the board of a second,

. . .which has directors in common with a third company, . . .which in turn has directors on the board of a competitor
of the first company.”

o https://github.com/pnnl/chgl
p For example, the green point at (13, 0.2) in the LesMis* plot means that, over 100 trials, the average KS-distance

between the 13-component size distribution of original LesMis* dataset, and that of a CL hypergraph, is 0.2. In cases
where the synthetic graph had no hyperedges containing at least s vertices (and hence an empty s-component size
distribution) we define KS distance between the original s-comp distribution as 1 (the maximum).

https://github.com/gephi/gephi/wiki/Datasets
https://www-cs-faculty.stanford.edu/~knuth/sgb.html
https://github.com/pnnl/HyperNetX
https://www.nasdaq.com/screening/company-list.aspx
https://www.reuters.com/finance/
https://github.com/pnnl/chgl
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