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structures of ego networks. We employ two clustering algorithms (k-means algorithm
and H/T break algorithm) to detect the layer structures for each node in both
networks. We find that the nodes in both networks can be clustered into two groups,
that one has a layer structure similar to the theoretical Dunbar Circle that alters in ego
networks exhibit a four-layer hierarchical structure with the cumulative number of 5,
15,50 and 150 from the inner layer to the outer layer, and the other one has an
additional inner layer with about 2 alters compared with the Dunbar Circle. We also
find that the scale ratios, which are estimated based on the unique parameters in the
theoretical model of layer structures, conform to a log-normal distribution for both
networks. Our results not only deepen our understanding on the topological
structures of EIN, but also provide empirical evidence of the channels of information
diffusion among investors.
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1 Introduction

Due to the lack of data recording the information communication between investors, un-
covering the information spreading path in investors is a great challenge. Recently, Oz-
soylev et al. [22] first proposed the empirical investor network (EIN) as a novel representa-
tion of the information diffusion network, based on their order placements: two investors
are said to be connected if they placed the same type (ask or bid) of orders within a short
time window (usually 30 seconds). The underlying hypothesis behind the EIN is that, when
new information comes, it spreads from source nodes to peripheral nodes in investor so-
cial networks and the time lags with which the information reaches different investors
determine the lags between their order placements. However, no direct evidence is found
to support the assumption of EIN, which is crucial for applying EIN on determining asset
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pricing dynamics and understanding the trading behaviors and profitability of investors.
As social network is the backbone of information diffusion, EIN can be regarded as a proxy
of investor social network. We thus propose to check the validity of the EIN construction
by studying the specific structures in social networks, such that the degree distribution of
entire network and the layer structures of ego network. As a reference and for compari-
son, we also test the hierarchical structures present in cellphone communication networks
(CN), which are usually considered as information spreading network. It is found that EIN
and CN share very similar network structures, characterized by the same distribution of
(weighted) degree, the same layer structure of ego network, and the same distribution of
scale ratio, giving credence to the hypothesis that EIN uncovers a significant part of the
information spreading path between investors.

The contributions of this paper are listed as follows. First, differing from the strand of
literatures which focus on the layered structure in western social networks, like cellphone
communication network in Europe, Christmas card exchange network in UK, and online
social networks in Facebook and Twitter [7, 13, 20], we empirically uncover the layered
structure in the Chinese social networks, including EIN and CN. Second, by investigating
the subtle structures in EIN and CN, we initially find that there are great similarities in the
layered structures between EIN and CN, which complements the existing studies on Dun-
bar’s number and EIN. Third, Ozsoylev et al. [22] conclude that EIN captures information
diffusion between investors by the evidence that central investors in EIN trade earlier and
gain higher returns than their peripheral neighbors. We complementally contribute the
evidence supporting that EIN reveals the information spreading path between investors
from the perspective of social network structures.

The present work is related to the research on Dunbar’s number and its generalised dis-
crete hierarchical structure in social networks. Recall that Dunbar’s number of about 150
represents the average size of the personal ego network, i.e., the group of people one can
typically maintain stable social relationships with due to cognitive limits [3, 4]. Further-
more, the social relations in human and animal network have been found to form layer
structures, each layer representing different emotional closeness [5, 6]. And layer struc-
tures have approximately the configuration of 3-5, 10-15, 30-50, and 100-200 alters from
the inner layer to outer layer [30]. Many empirical ego networks are found to exhibit such
layer structures, including the network abstracted from the exchange of Christmas cards
[13], the hunter-gatherer social networks [11, 30], and online societies in virtual world [8].

Another strand of literature relevant to our work is the use of cellphone and internet
communication data that enable one to test the classical social theories empirically in large
scale individuals. For example, the weak tie theory [9] has been validated for cellphone
communication networks [17, 21]. Such data have also been used to verify the hierarchi-
cal layer structures in social networks [20]. Arnaboldi et al. [1] found that the co-author
networks in academic fields also have discrete hierarchical structures. By scanning the
online social network from Facebook and Twitter, Dunbar et al. [7] found that the ego
networks exhibit limited size and hierarchical structures. More importantly, such layer
structure can be considered as a “social fingerprint” for a specific individual, because it is
stable and not affected by the change of friends [24].

This paper is organized as follows. Data and methods are given in Sect. 2. Section 3
presents the results on the degree distribution, clustering, and theoretical model fits. Sec-
tion 4 concludes.
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2 Data and methods

2.1 Empirical investor networks

Our empirical investor networks (EIN) are constructed from the order flows of 100 stocks
included in the Shenzhen 100 index (399,004). The order flow data span the whole year of
2013. Following Ozsoylev et al. [22], on each trading day, the EIN is obtained by connecting
investors if they submit at least 3 buy (or sell) orders for the same stocks within 30 seconds.
By aggregating the EIN on each trading day together, we obtain the annual EIN, which
contains 381,345 nodes and 8,143,541 links. Ozsoylev et al. [22] argue that the links in EIN
may reflect the potential channels of information diffusion among investors, indicating
the existence of localized structures in social networks formed by investors. Thus, the
larger the occurrence of links between two investors, the higher the probability for the
existence of social connections between them. We further employ a statistical validated
method [2, 10, 12, 19, 25, 27] to check whether two investors are occasionally connected,
which provides us with the statistical validated empirical investor networks, abbreviated
as SVEIN.

2.2 Cellphone communication network

The cellphone call records obtained from one Chinese cellphone operator cover periods
from June 28th to July 24th and October 1st to December 31st in 2010. By excluding
the days October 12th, November 5th, 6th, 13th, 21st and 27th, and December 6th, 8th,
21st and 22nd on which the data were missing, we have a total of 109 days. In the data,
there are 91,911,735 cell phone users and 4,599,472,652 calls. As we cannot access the call
records from the other cellphone operators, only the call records in which both mobile
phone subscribers belong to the data provider are included in our analysis, which leads to
1,173,501,607 records. As it is known that the frequency of calls may represent the inti-
macy between friends, the higher the communication frequency between two cellphone
users, the stronger their assumed intimacy. We exclude the users who are identified as
robots, telecom frauds and telephone sales [15]. Finally, we build cellphone communica-
tion networks based on the reciprocal calls between normal users. The statistical validated
method mentioned above is also employed to remove the random calls, thus providing us

with the statistical validated cellphone communication networks, abbreviated as SVCN.

2.3 Statistical validated method

Asis well known, EIN and CN contain a great deal of noise: for instance, two investors may
submit orders at the same time by pure coincidence and callers may make wrong calls to
callees. This suggests to remove such irrelevant signals by testing whether two nodes are
randomly connected. For this, we employ a statistically validated method, proposed by
Tumminello et al. [25] and used in different systems [2, 10, 12, 19, 27] to extract the links
that are not randomly generated.

For two given nodes i and j, the purpose of the statistical validation is to check whether i
preferentially connects to j. The EIN is taken as an example to illustrate the statistical val-
idation method. Let us denote by N is the total number of transactions between investors
in EIN, by N;. the number of transactions initiated by investor i, by N, the number of
transactions matched by investor j, and by X = N the number of transactions initiated

by investor i and matched by investor j. We can then calculate the probability of observing
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X co-occurrences via the following equation [25, 26],

x ~Nir=X
Nijc “N-Nj,

H(X|N»Niw]\]jr) = (1)

where CI)\(GC is a binomial coefficient. We can also estimate the p-value associated with the
observed N as follows:

]\]icjr*1

pWNig) =1= > H(XIN, Nic, Nj). (2)
X=0

For the EIN, we need to perform 2 x 8,143,541 = 16,287,082 tests. The corresponding
Bonferroni correction of our multiple testing hypothesis is p, = 0.01/Ng where Ng =
N(N -1)/2 is the maximal possible number of edges. If the estimated p(Nj;) is less than py,
we can infer that investor i preferentially connects to investor j. Otherwise, we conclude
that the edge pointed from i to j is randomly generated.

For a given edge between node i and node j in the CN, we are able to estimate the p-
value for the number of calls Nj;, initiated by j and received by i in a similar way. We need
to conduct 2 x 296,928,030 = 593,856,060 tests. And the Bonferroni correction is set as
P = 0.01/Ng. When p(Nj,) is less than py, this suggests that individual i preferentially
calls individual j. Only when the two conditions that (1) i preferentially calls j and (2) j
preferentially calls i are simultaneously satisfied, we conclude that the edge between i and
j is significant.

2.4 Clustering method

Figure 1 illustrates the layer structure of a typical ego network. The ego in the center are
surrounded by the alters, who have direct connections with the ego. The alters usually
form a layer structure, in which their emotional closeness decrease from the inner layer
to the outer layer. The theoretical Dunbar Circle corresponds to a four-layer hierarchi-
cal structure with the cumulative number of 5, 15, 50, and 150 from inside to outside.
We employ two clustering algorithms, including the k-means algorithm and the head-to-
tail (H/T) break algorithm [14], to detect the layer structures of the ego network in the
SVEIN and SVCN based on the activity frequencies on links. The k-means algorithm is
implemented with the R package CKmeans.1d.dp [28]. The optimized number of clusters
are determined according to the BIC. In the H/T break algorithm, the data is split into
two parts according to the data mean 1, and the head part in which all values are larger
than m; is further separated into two parts according to the head mean m,. Such process
iterates until the head is not heavy-tailed distributed. The H/T break algorithm is pro-
posed to cluster the data with a heavy-tailed distribution, corresponding to the case of
link weights in the SVEIN and SVCN.

3 Result

3.1 Degree distribution

We first report the descriptive statistics of both filtered networks. As reported in Panel A
of Table 1, in the SVEIN we find that there are 2.23%, 6.39%, and 91.37% of the total num-
ber of users (21,806 users) whose degrees are in the range of k > 100, 50 < k < 100, and
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Figure 1 lllustration of the theoretical Dunbar
Circle in ego networks. The square in the center
represent the ego and the circles around are the
alters, who have direct connection with the ego.
The circle size is proportional to the emotional
closeness between the alters and the ego.
According to the emotional closeness, the alters
form a hierarchical structure with different layers in
which their closeness to the ego decrease from
inner layer to the outer layer. The theoretical Dunbar
Circle corresponds to a four-layer hierarchical
structure with the cumulative number of 5, 15, 50,
and 150 from inside to outside

B Ego
@ Alters

Emotional closeness T

Table 1 Statistical descriptions of SVEIN and SVCN. k denotes the degree of users in the network

Degree Weighted degree
N f mean  std std/mean  mean std std/mean

Panel A: SVEIN

k> 100 487 2.23% 1429 385 26.95% 18,487.1 10,984.6 59.42%
50< k<100 1394 6.39% 68.8 139 20.22% 5504.3 29354 53.33%
k<50 19,925 91.37% 10.0 11.8 117.95% 477.0 1134.0 237.73%
Panel B: SVCN

k> 100 60,748 1.46% 1422 458 32.23% 1544.7 775.0 50.17%
50 < k<100 177,076 4.25% 69.4 13.7 19.79% 7803 4109 52.66%
k<50 3,930,604 94.29% 8.1 10.0 124.08% 921 161.7 175.68%

k < 50, respectively. And their average degree and standard deviation are 142.9 and 38.5,
68.8 and 13.9, and 10.0 and 11.8, leading to a coefficient of variation of 26.95%, 20.22%,
and 117.95% (standard deviation/mean). Their average weighted degree and standard de-
viation are 18,487.1 and 10,984.6, 5504.3 and 2935.4, and 477.0 and 1134.

In Panel B of Table 1, we find that the number of users in the SVCN with degree k > 100,
50 < k <100, and k < 50 are 60,748, 177,076, and 3,930,604, accounting for 1.46%, 4.25%,
and 94.29% of the users, respectively. The corresponding average degree and standard
deviation are 142.2 and 45.8, 69.4 and 13.7, and 8.1 and 10, resulting in a coefficient of
variation of 32.23%, 19.79%, 124.08%. And their average weighted degree and standard
deviation are 1544.7 and 775, 780.3 and 410.9, and 92.1 and 161.7. The absolute number
of nodes with k > 100 in the SVEIN is much smaller than those in the SVCN, and the
relative numbers are very close to each other. According to the descriptive statistics, both
filtered networks exhibit great similarities in their degree distributions.

We further fit the empirical degree and weighted degree distributions of the SVEIN
and SVCN with the following four distributions, including the power-law, the normal, the
exponential, and the log-normal distribution,

fP(x) = O;_ ! (xi>_ , a>1, (3)
1 (x— un)?

) == exp| -0 @

felx) = re™, x>0 (5)

1 [ (lnx—m)z]
xp| — .

2
20}
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Table 2 Results of fitting the (weighted) degrees to the power-law, normal, exponential, and
log-normal distribution for the SVEIN and SVCN and statistically testing on whether the (weighted)
degrees are drawn from the four distributions. The symbols *, **, and *** indicate the significant
levels of 5%, 1%, and 0.1%, respectively

SVEIN SVCN

Degree Weighted degree Degree Weighted degree

k>0 k>100 k>0 k>100 k>0 k> 100 k>0 k>100
Panel A: Fits to the power-law distribution.
o 1.50 3.50 1.50 1.84 1.50 3.50 1.50 1.50
KS 0.19 0.11 0.33 0.26 0.16 0.09 042 042
p-value 0.00*** 0.13 0.00***  0.00*** 0.00*** 0.00*** 0.00*** 0.00%**

AlC 161511.77 4693.74 32526595 1056802 28,130,126.25 580,173.13 49,774,22093 1,084,909.45

Panel B: Fits to the normal distribution

mn - —1031.56 -93.68 1200.60 18/487.09 1261 =-2292.22 14247 142238
oN 131.70 107.86 3570.82 1097334 23.12 327.80 298.20 881.68
KS 0.26 0.03 0.37 0.15 0.31 0.03 0.32 0.09
p-value 0.00%*** 0.77 0.00***  0.00***  0.00*** 0.40 0.00%* 0.00%**

AIC 166,010.36 4632.85 41865691 1044739 3801246268 576466.02 59330827.17 975316.25

Panel C: Fits to the exponential distribution

o 16.71 4291 1200.60 18,487.09 1262 4223 14247 1446.69
KS 0.24 0.05 041 0.28 0.24 0.02 0.30 0.28
p-value 0.00*** 0.46 0.00***  0.00***  0.00*** 0.63 0.00%* 0.00%*

AIC 16643262 463731 35284835 10,540.11 2947298201 576,270.11 49,680,143.77 1005,464.72

Panel D: Fits to the log-normal distribution

' 1.83 4.65 5.08 9.67 1.61 4.20 334 7.24
o 143 0.39 2.04 0.54 1.30 0.54 2.04 045
KS 0.13 0.04 0.06 0.08 0.1 0.02 0.07 0.01
p-value 0.00** 0.71 0.00***  0.00** 0.00%* 061 0.00%* 0.17

AlC 157,319.09 4634.67 314,478.41 10,208.38 27,447,309.97 575,902.17 45,639,797.91 955,503.08

The parameters of these distributions are obtained by Maximum Likelihood Estimation
(MLE). The results are listed in Table 2. Kolmogorov—Smirnov (KS) tests are also con-
ducted to check whether the (weighted) degrees are drawn from the four distributions.
The null hypothesis is that the data set follows one of the four distributions. One find that,
for both networks, the samples of the degree with k > 0 and the weighted degree with k > 0
and k > 100 conform precisely to none of the four distributions. This is not surprising,
given the large sizes of our data sets, which will thus reject null hypotheses on the basis of
even slight deviations. However, we can still compare the goodness of the fits by the four
distributions using the Akaike information criterion (AIC) listed in Table 2. Except for the
sample with k > 100 in the SVEIN, the log-normal distribution has the smallest AIC value.
Thus, among the four distributions, the log-normal distribution fits the empirical degree
distributions best.

The results of Table 2 strongly suggest that the correct distribution of degrees is a mix-
ture of at least two log-normal distribution, one for small k and one for large k. Roughly, we
can find a threshold &y, the degrees less than &y, are fitted by the left truncated log-normal
distributions and the degrees greater than ky are fitted by the right truncated log-normal
distribution. Following Refs. [16, 29], the threshold k can be estimated by minimizing
the following residual,

1
S 3 1l 2
ng Ki,ﬁt_Ki,emp + nj Kj,ﬁt K/‘,Gmp
E S| E | L=
i Kt K emp j I</'l,ﬁt+1<'l

R= j,emp ) i
N @
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Figure 2 Results of the optimal truncated distribution of degrees for SVEIN (a), (c), (e) and SVCN (b), (d), (f).
(@), (b) Plots of the fitting residual (Eq. (7)) as a function of threshold k. (c), (d) Plots of the right-truncated

degree distributions. (e), (f) Plots of the left-truncated degree distributions

where Kg and Kemp represent the fitting distribution and empirical distribution, the su-
perscripts s and / stand for the sample less and greater than the threshold kx, and # is the
sample size. The parameters of both truncated distributions are determined through the
Maximum Likelihood Estimation (MLE). Figure 2(a) and (b) illustrate the fitting residuals
as a function of the possible thresholds for the degrees of SVEIN and SVCN. Thus, we
can find that the optimal threshold are 152 and 48 for SVEIN and SVCN, respectively.
The corresponding right-truncated and left-truncated degree distributions are plotted in
Fig. 2(c)—(f) for SVEIN and SVCN. The solid lines in each panel represent the best fits
to the truncated log-normal distributions. For the weighted degrees of both networks, we
perform the same analysis and illustrate the results in Fig. 3. The optimal thresholds are
374 and 653 for the weighted degrees of SVEIN and SVCN, respectively. One can see that
the empirical distributions agree well with the fitted distributions in Figs. 2 and 3, which
support that the (weighted) degrees of both network conform to a mixed log-normal dis-
tribution.

As is well known, the log-normal distribution plays an important role in describing nat-
ural phenomena in which growth processes are driven by the accumulation of many small
percentage changes (growth rates), which is additive on the logarithmic scale. If each per-
centage change is small enough, the summation on the logarithmic scale tends to be nor-
mally distributed according to the central limit theorem, which means that the percentage
change follows a log-normal distribution in the linear scale. One intriguing feature of the

log-normal distribution is that the growth rate is independent of its size. According to

Page 7 of 15
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Figure 3 Results of the optimal truncated distribution of weighted degrees for SVEIN (a), (c), (e) and SVCN (b),
(d), (f). (@), (b) Plots of the fitting residual (Eq. (7)) as a function of threshold k. (c), (d) Plots of the
right-truncated degree distributions. (e), (f) Plots of the left-truncated degree distributions

the log-normal degree distributions, one can infer that the growth rate of one’s “friends”
should be independent of one’s current number of “friends” in the SVEIN and SVCN.

3.2 Clusters

The layer structures in ego networks are usually determined based on the emotional close-
ness on links [23]. Here, we cannot measure the emotional closeness directly. As an alter-
native, we employ the number of order placements in the EIN and the number of calls
in the CN as a proxy for the emotional closeness on links. For a given node with # links,
we first normalize the number of order placements (respectively, the number of calls) W;

(i=1,2,3,...,n) on each link via the following equation,

VVi - Wmin

Wmax - Wmin

, (8)

where Wiin = min({W;}) and W = max({W;}). Equation (8) insures 0 < W, < 1. The
presence of natural breaks (associated with network layers) should then be reflected in
the existence of sharp peaks in the distributions of W;. We thus plot the distribution of
the normalized weights W/ in Fig. 4 for both networks. As shown in Fig. 4(a), no break can
be observed for the SVEIN. A possible explanation is that the data sample of SVEIN is too
small. In contrast, there is a significant peak at around 0.1 for the SVCN, as illustrated in
Fig. 4(b), which corresponds to the natural break w; & 0.1 = 15/150, i.e. the second layer

at 15 of Dunbar’s discrete hierarchy. In the following, we use the clustering algorithms
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Figure 5 Plots of the percentage of the users who have the same number of layers in the SVEIN (a), (b) and
SVCN (), (d) based on the k-means (a), (c) and H/T (b), (d) break algorithm

(k-means and H/T break) to uncover the discrete hierarchical structure of the node with
k > 100 based on the normalized weights W;.

Figure 5 shows the percentage of users who have the same number of layers according
to the clustering algorithm of k-means and H/T break. As shown in Fig. 5(a) and (b), the
alters belonging to investors with degree k > 100 in the SVEIN are mainly divided into 2—4
classes and 4—6 classes according to the k-means and H/T Break algorithm, respectively.
And we also find 56.9% of the investors whose alters can be grouped into 5 layers. In order
to measure the similarity and robustness of the clustering results, we further estimate the
Jaccard coefficient between the clustering results of the two algorithms for the same user.
The average Jaccard coefficient of all users is 0.11. As illustrated in Fig. 5(c) and (d), we find
that in the SVCN the alters of the users with degree k > 100 are mainly divided into 3-6
classes and 4-5 classes based on the k-means algorithm and the H/T Break algorithm.
And the average Jaccard coefficient of the clustering results is 0.23. Our results indicate
that the overlapping degree of the clusters from both algorithms is low.

Table 3 shows the comparison of the clustering results for the users with degree k > 100
in both networks based on the k-means and H/T break algorithms. The results of the two
clustering algorithms for the SVEIN are reported in panel A of Table 3. We find that 43% of
users with degree k > 100 in SVEIN are grouped into 3 layers and the average cumulative
number of alters in layers is 10.9, 45.8 and 141.7, in which the last two layers correspond
to the middle two layers of the empirical discrete hierarchical structure and the first layer
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Table 3 Comparison of the clustering results for the users with degree k > 100 based on the k-mean
and H/T break algorithm for the SVEIN and SVCN. N and f represents the total number and the
percentage of users. ny stands for the cumulative number of users in the k-th layer. {r) is the average
scale ratio

N f n ny n3 Ny ns Ne (r)

Panel A: Clustering results of SVEIN

k-means

c=2 114 27.9% 278 121.7 3.84
c=3 176 43.0% 10.9 458 141.7 3.04
c=4 119 29.1% 54 20.8 575 1514 264
H/T break

c=4 54 11.3% 29 11.0 37.1 133.1 345
c=5 273 56.9% 16 53 15.0 42.8 133.0 3.00
c=6 153 31.9% 1.2 32 75 18.5 513 156.0 2.88
Panel B: Clustering results of SVCN

k-means

c=4 16,918 41.1% 30 12.8 428 1320 322
c=5 15,209 36.9% 2.1 7.3 204 54.2 1414 2.66
c=6 9049 22.0% 1.6 5.1 12.5 289 66.5 154.0 233
H/T break

c=3 3308 5.7% 50 27.1 126.7 4.71
c=4 29,125 50.2% 2.1 87 334 1339 3.97
c=5 25,539 44.1% 12 38 1.7 395 147.6 3.61
Zhou 5 15 50 150 3.00

seems to correspond to the amalgamation of the first two layers of the empirical structure
reported in Refs. [13, 30]. The H/T Break algorithm reveals that about 90% of the investors
whose alters exhibit a configuration with 5 and 6 layers. One can observe that the number
of alters in the outer four layers are very close to the theoretical Dunbar Circle 5, 15, 50,
and 150. The number of alters in the inner or two layers is only 1-3.

Panel B of Table 3 lists the cumulative number of friends in each layer for the SVCN. For
the k-means algorithm, we find that 16,918 (a fraction of 41.1%) users have a four-layer
structure. The average cumulative number of alters from inside to outside are 3.0, 12.8,
42.8 and 132.0, which is in agreement with the discrete hierarchical structure 3-5, 10-15,
30-50, and 100-200 reported in Refs. [13, 30]). The corresponding scale ratio is 3.22 which
is near to the Dunbar number 3. We also find that there are 15,209 users have a five-layer
structure with an average accumulative number of 2.1, 7.3, 20.4, 54. 2, and 141.4. Besides
the inner layer #; = 2.1, the number of alters in the outside four layers are very close to
the reported hierarchical structure in Refs. [13, 30]. For the H/T Break algorithm, 29,125
users (about 50.2%) exhibit a four-layer structure and the average cumulative number of
alters are 2.1, 8.7, 33.4 and 133.9. There are 25,539 (about 44.1%) users whose alters can be
classified into 5 layers and the average accumulative number of alters in successive layers
are 1.2, 3.8,11.7, 39.5 and 147.6.

Both clustering algorithms reveal a similar discrete hierarchical structure in cellphone
networks. We find that there is an extra innermost layer (1.2-2.1), with about 1-2 alters,
for the users with four layers in their ego networks. We further fix the number of clusters
to 4 for the k-means algorithm and estimate the cumulative numbers of in each layer,
obtaining 2.5, 10.3, 36.8, and 142.2. In addition, we perform the clustering analysis on the
link activities for each ego network, in which the ego investor with degrees 50 < k < 100,
by means of the k-means algorithm. We find that there are 621 investors (about 44.9%)
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Figure 6 Probability distribution of the number of alters in different layers for the SVEIN. The solid curves
represent the best log-normal fits to the empirical distribution. (a) Egos with three layers obtained from the
k-means algorithm. (b) Egos with four layers obtained from the k-means algorithm. (c) Egos with five layers
obtained from the H/T break algorithm. (d) Egos with six layers obtained from the H/T break algorithm

having a two-layer structure and the corresponding layer structure is 19.8 and 67.2, which
is close to the middle two layers of the reported hierarchical structure [13, 30].

The empirical hierarchical structures of the personal ego networks in SVEIN and SVCN
are compatible with the structure of 3-5, 10-15, 30-50, 100-200 from the inner to the
outer layer, which is close to the theoretical Dunbar Circle. And the average empirical
scaling ratio is close to the theoretically value 3 [18].

Figures 6 and 7 show the distributions of the numbers of alters in each layer for the
egos having degree k > 100 in the SVEIN and SVCN. We only show the nodes whose per-
sonal ego networks having three-layer and four-layer (respectively, five-layer and six-layer)
structures in the SVEIN (SVCN). For both networks, the clustering results of both algo-
rithms are not in agreement with each other, as reflected by the low values of their Jaccard
coefficients. An intriguing phenomenon is that the empirical distributions of the num-
ber of alters in each layer can be well fitted by the log-normal distributions, evidenced by
the solid curves. Such log-normal distributions are robust when using different cluster-
ing algorithms, which are in agreement with the results of the online social network from
Facebook and Twitter [7].

3.3 Fits to the theoretical model

We further fit the clustering results to the theoretical model of layer structures in personal
social network [24]. According to this model, the probability, that the alters of an individual
are divided into £ = (£1,£5,...,£,), is calculated as follows

L et —1\*/L 1
P L _ L— N-1 WD i k€k+11
etn-s(L o) (S55) (7)) ©

where £ = (£1,£5,...,¢,) represents the number of alters in each layer. £ represents the

sum of the alters expectation of each layer and is equal to the total number of alters L. N
is the total number of individuals in the network. B(L, p, N) = (12[ )p"(1 - p)Nt represents a
binomial distribution. There is a unique parameter u in the model, which is an indicator
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Figure 7 Probability distribution of the number of alters in different layers for the SVCN. The solid curves
represent the best log-normal fits to the empirical distribution. (a) Egos with four layers obtained from the
k-means algorithm. (b) Egos with five layers obtained from the k-means algorithm. (c) Egos with four layers
obtained from the H/T break algorithm. (d) Egos with five layers obtained from the H/T break algorithm

of the discrete hierarchy for the ego network. The parameter u is approximately equal to
the logarithm of the scale ratio log(r) between the cumulative numbers of individuals in
successive layers, if the personal investment (time and energy) decrease linearly with the
layers [24].

Once the empirical hierarchical structure of egos is obtained, we calculate the aver-
age scale ratio (r) between adjacent cumulative layers based on the model proposed by
Tamarit et al. [24]. The estimated theoretical scale ratios of both algorithms are listed in the
last column of Table 3. For the SVEIN, the k-means algorithm indicates that the users are
preferentially divided into the group having a three-layer structure while the H/T break
algorithm uncovers that the ego networks exhibit a configuration of five layers. And their
scale ratio are very close to the scaling ratio 3 discovered by Zhou et al. [30]. However,
we find the existence of significant differences in the average scale ratio between the two
clustering algorithms for the SVCN. On average, the average scale ratio of the H/T break
algorithm is larger than 3.5 and the scale ratio obtained with the k-means algorithm is
smaller than 3.5. Both clustering algorithms reveal that most of the users exhibit a four-
layer structure in their ego networks, for which the scale ratio are respectively 3.2 and 4.0,
which are roughly compatible with the scale ratio reported in Ref. [30].

Figures 8 and 9 show the distribution of the estimated average scale ratios for the egos
having the same layer structure for both networks. We find that the scale ratio distribu-
tions given by the Tamarit’s model conform to the log-normal distributions for both clus-
tering algorithms. The x? test, KS test and AD test cannot reject the null hypothesis, that
the scale ratios are log-normal distributed, at the significant level of 5%. The solid curves
in Figs. 8 and 9 are the best fits to the log-normal distributions. The scaling ratios given by
exp(ji) are located in the range of 2.5-3.3, which is compatible with the previous scaling
ratio 3 discovered by Zhou et al. [30]. Our results reveal that the ego networks in SVEIN
exhibit very similar layer structures to those in SVCN, confirming that the SVEIN captures

the information spreading channels between investors.
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Figure 8 Empirical distribution of the scale ratios for the egos with different layers based on different cluster
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Figure 9 Empirical distribution of the scale ratios for the egos with different layers based on different cluster
algorithms for the SVCN. (a) Four layers and k-means algorithm. (b) Five layers and k-means algorithm. (c) Four
layers and H/T break algorithm. (d) Five layers and H/T break algorithm

4 Conclusion

We have performed a comparative analysis to detect the layer structures in Empirical
Investor Networks and Cellphone Communication Networks. The layer structures have
been quantified by two clustering algorithms, namely the k-means and H/T break algo-
rithms. And both clustering algorithms reveal that there are two types of inner structure
for both networks: one exhibits a layer structure similar to that of the theoretical Dunbar
Circle, while the other has an additional inner layer, which is also found in Facebook and
Twitter datasets [7]. Furthermore, we also find that both networks have a similar scale ra-
tio (close to 3). And more interesting, these scale ratios remain stable even when old alters
are replaced by new alters. By fitting our empirical clustering results to the theoretical
model of layer structures [24], we confirm that the scale ratios of different egos follow a
log-normal distribution for both networks. Our results suggest strong evidence that the
structures of ego networks in EIN and CN exhibit great similarities, which captures the
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information spreading routes between investors and validates the underlying assumption
of EIN.

The Dunbar Circle referred to the layered structure of ego social network is ubiquitous
in online and offline social networks [7, 13, 20]. In such layered structure, the size of each
layer increases as the emotion closeness decrease, which can be attributed to the fact that
individuals are restrained for maintaining more emotionally close social relationships due
to the constrained cognitive capacity [4]. Our work demonstrates that EIN share very sim-
ilar layered structure as CN, supporting that how many neighbors the investor having to
exchange information is dominated by his/her cognitive ability. Furthermore, the Dunbar
Circle also reveals that the ego shares information with the investors in inner structure
more often than those in outer structure, indicating the existence of tight cliques between
investors for exchanging trading information.
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