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Abstract

Recent advances in the quantitative, computational methodology for the modeling
and analysis of heterogeneous large-scale data are leading to new opportunities for
understanding human behaviors and faculties, including creativity that drives creative
enterprises such as science. While innovation is crucial for novel and influential
achievements, quantifying these qualities in creative works remains a challenge. Here
we present an information-theoretic framework for computing the novelty and
influence of creative works based on their generation probabilities reflecting the
degree of uniqueness of their elements in comparison with other works. Applying the
formalism to a high-quality, large-scale data set of classical piano compositions—works
of significant scientific and intellectual value-spanning several centuries of musical
history, represented as symbolic progressions of chords, we find that the enterprise’s
developmental history can be characterised as a dynamic process composed of the
emergence of dominant, paradigmatic creative styles that define distinct historical
periods. These findings can offer a new understanding of the evolution of creative
enterprises based on principled measures of novelty and influence.

Keywords: Novelty; Influence; Computational creativity; Probabilistic reference;
Network; Paradigm shift; Classical music

1 Main text

Stories of how creative enterprises—science, technology, and art being principal examples—
have evolved are often filled with tales of revolutionary, triumphant “Eurekas” that usher
in a new era: Einstein’s theory of relativity, Kekulé’s determination of the structure of ben-
zene, Tesla’s invention of the alternating current (AC) motor, and Brunelleschi’s inven-
tion of the linear perspective in art are widely-cited examples [1]. But recent studies have
discovered that in reality the evolution of a creative enterprise is driven by innovations—
achievements based on new ideas and practice—on many ‘scales’ of significance [2-4],
rather than only by those that become parts of a legend or folklore. In order to under-
stand this important phenomenon properly, we must ask why innovations are so valued
in human society, and what are the characteristic patterns of their emergence and impact.
Recent scientific studies offer some clues: first, studies on human and animal brains have
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found their innate preference for new stimuli [5, 6]; and second, data-driven studies on
citation networks and impacts of scientific papers and patents have shown that novelty
is often a key feature in influential scientific knowledge and technological systems [7, 8].
This is also true in cultural creations such as music, where continual experimentations of
musical elements (e.g. notes, chords, and rhythm) and compositional rules (e.g. modes,
scales, forms, and tonality) have long been recognised as instrumental for innovation
throughout history [9, 10]; As a scientific publication is composed of results from experi-
ments and calculations put into words and figures, a musical composition is composed of
results of experimentation put down into notes, chord transitions, tempo markings, etc.
To achieve further progress in answering those questions quantitatively and to fully grasp
the role of innovation in the advancement of a creative field, however, there still remains
the challenge of how to quantify the novelty of a creative work. The ability to do so could
be very useful in identifying novel works and how a creative form develops dynamically
in time. In this work we introduce a foundational information-theoretic framework for
computing the novelty of a creative work utilising its mathematical representation as a
set of correlated elements and the past, prior works with which it is compared. We also
show that it allows us to define the influence of a creative work on later ones, allowing us
to identify the most followed or referenced works that could be understood as having laid
the groundwork of the styles found among the works of a given time.

1.1 Model and formalism

In order to compute the novelty of a creative work, we first consider the fact that any new
creative work—be it a scientific paper, a technological patent, or a musical composition—
contains the familiar, ‘conventional’ elements that can be found in known older works, and
the unfamiliar, ‘novel’ elements that have not [4, 7, 8]. Intuitively then a work that features
a larger novel-to-conventional ratio of elements could be considered more novel, and vice
versa. How can one tell if an element is conventional or novel? In some form of creative
works, notably research publications and patents, the information is explicitly given in
the form of a reference or a citation, represented as solid arrows in Fig. 1(A). The study
of citation networks with creative works as nodes and the citations as directed edges with
the adjacency matrix

A= {Atj}’ (1)

with A;; = 1 when paper i is cited by j and 0 otherwise, is a much-studied type in network
science [7, 11-13]. A citation network defined in this manner, while straightforward and
easy to visualise, possess conceptual issue that need to be discussed: Since it relies solely
on self-reporting by the creator subject to human shortcomings such as faulty memory
and bias, it could be incomplete and unreliable due to missing (unreported) citations, rep-
resented as dotted lines in Fig. 1(A). Also, such citation information, incomplete as it may
be, is rarely provided in many other types of written works as well as most cultural works
such as literature, music, and art. A more reliable and general method would be then to
make a direct comparison between an older work and a new one to identify common el-
ements. If there exists one, it would be an indication that the older work may have been
referenced in the creation of the new one. We say ‘may have been” because the shared
element could have been taken from a different work (either known, or unknown to us
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Figure 1 Reference and Information Network formalism for Novelty of Creative Works. (A) A citation network
for publications relies on self-reported bibliography connecting a new work to older works (solid arrows).
Various factors as human error and bias may cause missing links (dotted), indicating loss of information.

(B) A general probabilistic network is constructed by connecting two works that share a common element
that represents a probabilistic reference. Unlike a citation network, therefore, no known source is omitted due
to error or bias. Furthermore, since an element can be truly invented or come from unknown sources, the
Novel Pool (statistical prior) is also considered. (C) Calculating the generation probability of a creative work
given past works. The generation process is modeled as choosing elements from the Conventional Pool (CP)
that contains previous used elements (with duplication, so that often used elements are common in the CP as
well) or from the Novel Pool (NP) that represents ‘inventing’ the element or referencing an unknown source.
Setting NP to contain a fixed number of each possible element corresponds to the Maximum A Priori
estimator and additive Laplace smoothing, Eq. (6). The probability of choosing an element is proportional to
its multiplicity in the combined pool. Consider an example work of length four, ¢ ={1,4,6,8}. Here element 1
is the most common (four copies total, three from CP and one from NP), whereas 6 and 8 are the least so (one
from NP only). The total number of those elements in the pool represent the generation probability of .

(D) lllustration by comparison between three example creative works &1, &>, {3 composed of the same
number of elements (four). ¢; is composed of the most used element 1, making it the most conventional
(least novel), whereas &3 is composed of unused elements only, giving it the highest novelty.

presently), or been ‘invented’ by the creator oblivious to a previous usage. This indicates
another shortcoming of the citation network that characterises a publication based solely
on given relational information: The ‘combination’ of conventional and new elements—an
essential trait of a creative work—cannot be properly considered, as it takes into account
only the conventional elements in the work. The multiplicity of possible sources, known
or unknown, suggests the need for a probabilistic model of reference that assigns the prob-
abilities that an element in a work has been taken from a known older work, an unknown
(lost) older work, or been invented. This is depicted in Fig. 1(B) where the set of known
works £2 is considered a probable source of the generation of ¢, along with the other pos-
sibilities labeled as the ‘novel” source (since they are new to us). We later show that the
latter can be implemented mathematically as an uninformed prior.

Figure 1(C) shows in detail how an example work ¢ = {1,4, 6, 8} can be originating from
the known works (constituting the Conventional Pool of elements) or the novel sources
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(constituting the Novel Pool of elements). For instance, elements quite common in the
conventional pool (such as 1 and 4) raise the conventionality (and lower the novelty) of
¢, whereas rarer or nonexistent elements (such as 6 and 8) raise its novelty (or lower its
conventionality). This is consistent with the intuitive meaning of conventional and novel
as being common and familiar (conventional) and rare and unfamiliar (novel). As further
examples, in Fig. 1(D) we compare three hypothetical works ¢1, ¢, and {3 where the Green-
to-Red ratio of elements represents each work’s novelty v(¢1) < v(&2) < v(¢3) which is in the
opposite order of the generation probabilities I7(¢1) > I1(¢2) > I1(g3) represented by the
volume under the generation process of Fig. 1(B).

Formally, from our model of Fig. 1 we can represent the generation probability I7;(¢) of
a creative work ¢ = {e, e, €3,...,¢e,} as the probability of choosing its elements from the
element pools given by

Mo (¢) = [ [rale), (2)
i=1

where 7, (¢;) is the selection probability of element e;. Since a smaller generation proba-
bility /T means that a work is less expected and therefore more novel, the novelty of the
work is be a decreasing function of /7. We thus define the novelty v(¢) as the log inverse

I, normalised by the work ¢’s length m (we take log to mean log,, in this work):

m

1 1 1
U({):ZIO ngzlog

i=1

1

ﬂg(ei)'

3)

This form shows a clear connection to information theory. In information theory, the log
of inverse probability of an event is called its information content that measures the un-
expectedness (degree of surprise) of an event [14] (measured in bits had we used log of
base 2). Therefore, the novelty of a given work ¢ is defined to be the average unexpected-

ness of its elements (the normalisation 7!

is necessary because without it any new work
can be made arbitrarily novel by lengthening it), in agreement with its intuitive meaning.
Note that Eq. (3) is not to be confused with the Shannon entropy H(§2) = ), o pilog(1/p;)
of the ensemble §2 which is the mean information content (degree of surprise) from a
random sample i chosen from the ensemble with probability p;. The Shannon entropy is
therefore a characteristic of the whole ensemble, whereas v(¢), Eq. (3), is a characteristic
of a specific work ¢.

Although we have above argued for the appeal of novel works to living beings and their
value for progress, it is unlikely that novelty alone is a sign that the work is of any value;
if it were, one could simply assemble elements not found in the older works (or ask a
chimpanzee that has just completed composing a piece of ‘literature’ on a typewriter to
play the piano now, practically to the same effect), and claim to have created the most
valuable work. In addition to quantifying a work’s difference from the past, it is necessary
to gauge a work’s value via how much it has influenced the posterity, in other words how
much the later works have referenced it. To do so, we can again use Egs. (2) and (3) to
define the influence of an earlier work or a set of earlier works w (for instance, the works
by a specific creator) on a later work ¢. Intuitively, we can suspect influence of an earlier
work when ¢ shares common elements with it. We say only ‘suspect’ because, as before,
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the shared elements could have been taken from a different work or invented (i.e. from
the novel pool) by ¢’s creator. What we can be more certain of, however, is the lack of
influence when ¢ shares no element w, meaning that all the elements of ¢ can only be
found in @ = §2 — w or the novel pool. Mathematically, we can interpret the discrepancy
between the full generation probability I7;(¢) and the reduced one I15(¢) as w’s influence
on ¢; if the two are identical, for instance, it means that @ has had no effect on ¢, i.e. no
influence. In other words, influence is the share of the generation probability of ¢ that w

is accountable for. More specifically, we define 7,,(¢) as

>0, (4)

a form more consistent with Eq. (3). As stated above, the equality 1,,(¢) = 0 (no influence)
holds when w shares no elements with ¢, i.e. has not contributed at all to its generation.
Note that this is also a characteristic value for a specific set-work pair (w, {) based on their
composition.

With these quantitative measures of novelty and influence of creative works, we tackle
the following important questions regarding the advancement of creative enterprises:
How do the novelty and influence change over time? How do they correlate, i.e. does
novelty lead to influence and later recognition? How do these characterize the evolution
patterns of a creative field? We illustrate our methodology by analysing a representative
example of a creative enterprise with a long history of high scientific and intellectual value,
Western classical piano music.

2 Novelty and influence in classical piano music

We study Western classical piano music from the so-called common practice period (circa
1700-1900 CE) chosen for the following advantages: High scientific and cultural signif-
icance, widely credited for having produced many fundamental musical styles that are
influential today; A rich body of musicological understanding available from traditional
research that could be compared with new, alternative approaches such as ours; And the
abundance of high-quality data. The availability of large-scale musical databases and ad-
vances in scientific, analytical methods continue to enable novel and interesting findings
on their properties [10]. Recent examples include researches on the topology and dynam-
ics of the networks of musicians for the discovery of human and stylistic factors in the
creation of music [15-20] and stylometric analyses of music that lead to corroborations
or fresh challenges to established musicological understanding [21-25].

Using our framework we start by computing the level of novelty in musical composi-
tions and composers, and study how they relate to the known characteristics of music at
a given point in history. We then compute their influence on later times and how it can
be used to characterize the evolution of compositional styles throughout history. The first
step in using the formalism of Egs. (3) and (4) is representing music as a set of elements,
in other words modeling. Since modeling a system is an abstraction process that neces-
sarily leaves out some real features of the system, it is ideal to retain the most sensible,
relevant ones that also suit the modeler’s interests. For instance, for written works such
as literature, scientific publications, etc., they could be words or groups of words such as
the n-grams [7, 8, 26], and for paintings they could be colours and shapes [27, 28]. Here
we model a musical composition as a temporally ordered set of simultaneously played
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Figure 2 (A) A musical score can be converted to a sequence of codeword (simultaneously-played notes)
transitions (blue box). (B) The backbone of the network of codeword transitions in our data. Only 2267 out of
144,183 codewords (1.5%) are shown. The node radius indicates the number of transitions into and out of the
corresponding codeword, while the edge width indicates the number of the corresponding transition. The
node colour indicates the period when the corresponding codeword first appeared (blue-Baroque,
green-Classical, yellow-Transition, red-Romantic). (C) The cumulative distribution of the occurrences of the
codewords and the cumulative number of unique codeword transitions ever used (inset). The distribution
exhibits a highly-skewed, power law-like behavior with power exponent p = 2.13 £ 0.02 established early in
history (Fig. S1).

nodes or codewords. For the actual element we take the codeword transition, the bigram
(2-gram) of codewords. They are shown in Fig. 2(A) with the beginning of one of Chopin’s
preludes as an example. While our methodology can be applied in a clear and straight-
forward manner to analysing musical compositions, we note that other aspects of music
such as structure, tempo, instrumentation, etc. are also important in music. Our primary
focus on codeword transitions here are based on the importance of harmony and melody
in the Western classical music tradition [29] and the fact that for this paper we will be
studying the piano, but for a more complete and useful modeling of music those elements
will need to be incorporated in the future, and later we discuss some recent developments
therein. We also note that our definition of a codeword retains all the original information
on octaves and the keys in which the works were composed, resulting in a more complete
and truthful representation than the one used in Ref. [22] where only the pitch class was
considered (i.e. discarding the octave information; for instance, F4 and F5 were considered
both F) and the keys were unified to the C scale.

Our data set consists of MIDI (Musical Instrument Digital Interface) files collected from
Kunst der Fuge (www.kunstderfuge.com) and Classical Piano MIDI (www.piano-midi.de)
archives of 900 classical piano works by 19 prominent composers from the common prac-
tice period spanning the Baroque (c. 1700-1750), Classical (c. 1750—1820), Classical-To-
Romantic Transition (c. 1800—1820), and Romantic (c. 1820—1910) periods, featuring Jo-
hann S. Bach and Georg F. Handel of the Baroque era, and Maurice Ravel of the late Ro-
mantic era. The composers and their works are in the Additional file 1 (SI Dataset 2). The
MIDI files were converted into musicXML format via MuseScore2 software and chordi-
fied using Music21, a python library toolkit for computer-aided musicology [30]. The
chordify method in Music21 converts a multiple-part complex musical score into a


http://www.kunstderfuge.com
http://www.piano-midi.de

Park et al. EPJ Data Science (2020) 9:2 Page 7 of 15

series of simultaneous notes as visualised in Fig. 2(A). Since each codeword transition is a
directed dyad, they can be collectively visualised as a network whose backbone is shown
in Fig. 2(B). The cumulative distribution of the number of occurrences of the codewords
is shown in Fig. 2(C), and approximates a power law with exponent p = 2.13 £ 0.02, indi-
cating significant disparities in popularity between codeword transitions. Although such
a pattern is established early in history (Fig. S1), the number of unique codeword transi-
tions ever used also constantly increases in time (inset of Fig. 2(C)), with the highest rate
of increase observed during the Romantic period.

We now compute the novelty and influence of musical compositions. Writing a compo-
sition ¢ as a sequence of codewords ¢ = {1, ¥,..., Vm} the generation probability of ¢ is
given by the first-order Markov chain

o) =mo()me(i = v2) - T2 (Vm-1 = Ym)» (5)

For 7, we employ the Maximum A Priori (MAP) estimator [31] commonly used in
Markov chains, given as

2(y; = v) +ao(yi — v)
Y ereyi— v)+aolyi— )

(6)

wo(Vi—>v) =

where z(y; — ;) is the number of the y; — y; transition in the conventional pool £2 and
ao(y; — v)) is the prior representing the novel pool in our scheme. The form can also be
viewed as a type of additive Laplace smoothing. When «y is a constant it is also called the
uninformed prior, and interpreting the prior as the novel pool allows us to make a graph-
ical representation in Fig. 1(C) with oy = 1 meaning the novel pool contains exactly one
copy of each possible transition. I" is the codeword space. The probability of the first code-
word e (1) is similarly 7o (y1) = (z(y1) +1)/(O_(z(y) + 1)), where z(y;) is the number of oc-
currences of y; as the first codeword in §2. Plugging this into Eq. (3), we obtain the novelty

1 1 1
v<f>=z1°gm=z[ 719(7/1) Z W} v

2.1 Historical and psychological novelty

When computing the novelty of Eq. (7), we are free to choose £2, the reference set of previ-
ous works that determine the conventional pool. A straightforward choice of £2 would be
all known works that preceded ¢ in history. This was aptly given the name historical nov-
elty (H-novelty) in Artificial Intelligence (AI) research circles [1], and represents a given
work’s novelty within the entire history of the field up to its creation. Another interesting
choice of §2 contains all the previous works by the very creator of ¢. The resulting novelty
is named psychological novelty (P-novelty) [1] that represents, for instance, the degree
of improvement in a new version of an algorithm or a machine over its previous versions.
Applied to our data it would show how a composer evolves in compositional style against
his own past works [32].

We show in Figs. 3(A) and (B) the cumulative distributions of the H- and P-novelties
of the piano works in our data for each period. Of the four, the Classical compositions
tend to score low in both novelties, showing that many past conventions were reused both
historically and psychologically (see Fig. S2 for the H- and P-novelty scores of the pieces
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Figure 3 The H-novelty (left) and P-novelty (right) of the piano compositions (top) and the composers
(bottom). (A) The cumulative distribution of the H-novelty scores vy of the works. The median and mean
values are (4.80,4.78) for the Baroque, (4.38,4.40) for the Classical, (4.73,4.729) for the Transition, and
(4.82,4.78) for the Romantic periods. (B) The cumulative distribution of the P-novelty scores vp of the works.
The median and the means are (4.90,4.86) for the Baroque, (4.69,4.66) for the Classical, (4.88,4.87) for the
Transition, and (4.97,4.94) for the Romantic periods. (C) & (D) The novelty Ny and Np of the composers
(defined as the mean of vy and vp of their works). A composer’s position on the x-axis (year) is the midpoint
between his birth and death years. One should note that the conventional pool of elements is smaller for
baroque composers, which could skew the H-novelty to look higher. However, the P-novelty does not suffer
from limitation, and Bach and Scarlatti still have high P-novelty values.

over time). The novelties of the composers (given by the average of their works’) noted
Ny and Np are shown in Figs. 3(C) and (D). We note that the confidence in the high H-
novelty of the Baroque composers should be low due to the much smaller conventional
pool than other periods. The raised H-novelty of the Romantic composers, on the other
hand, should be considered more impressive since it is achieved against the largest con-
ventional pool. The high level of P-novelty shows Romantic composers having also actively
introduced diverse and new codeword transitions throughout their careers. This is in clear
agreement with the widely-accepted thesis that credits Romantic composers with having
broken many accepted musical conventions and diligently conducting personal experi-
mentation with new combinations of pitches [33]. The H- and P-novelties are generally
positively correlated throughout, with the Spearman correlations equal to 0.820 & 0.013
for the compositions and 0.827 £ 0.113 for the composers, respectively, meaning that pur-
suing novelty involved deviating from both the others and oneself (Fig. 4). The most no-
table outlier from this trend is Muzio Clementi (1752-1832) whose H-novelty is signifi-
cantly lower than what his P-novelty would suggest, as shown in Fig. 4(B). This means that
while he produced works distinct from his own earlier works (even more so than Handel,
Mozart, and Haydn, and on par with Beethoven), they as a whole would sound conven-
tional when compared with other composers’ This may be a quantitative corroboration
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Figure 4 (A) Scatter plot of the H- and P-novelty scores of the piano works, with a high level of correlation
(Spearman correlation 0.82 = 0.01). (B) The H- and P-novelty scores of composers (Spearman correlation
0.83 £ 0.11). A notable outlier is Muzio Clementi who shows a significantly small H-novelty given P-novelty.

of the explanation behind the common assessment of Clementi that in his time his rep-
utation rivaled Haydn’s among his contemporaries, but languished for much of the 19th
century and beyond [34]; The diversity of codeword transitions that he employed in his
works (reflected in the high P-novelty) could have been the source of high reputation dur-
ing his lifetime, but as time passed his works failed to distinguish themselves from others
(reflected in the low H-novelty) and caused his loss in stature.

2.2 Influence and shifts in dominant styles

While novel achievements are indispensable for the progress and growth of a creative en-
terprise, our results above suggest that novelty alone would not cause one to be considered
‘the greatest’: Beethoven, for instance, stand among the lower half in computed novelty.
This is in line with many recent research findings that a creative work’s impact on its pos-
terity does not depend solely on the degree of its novelty, and how it builds on tradition is
also important [4, 7, 8]. Musical composition would be no exception: Past works exert in-
fluence on the future by serving not only as training material for new composers, but also
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by inspiring new works or lending themselves to be tweaked and transformed into new
original works [1, 10]. Even mimicry or imitation, normally associated with subpar works
lacking in originality and artistic value, can sometimes occur in renowned masters’ works
and gain recognition: Franz Liszt, a leading Romantic-era composer, admired Beethoven
so much that in a famous deed of homage he transcribed Beethoven’s complete symphony
cycle into the piano [35] now considered a significant and influential achievement in its
own right. These observations suggest that a sensible definition of ‘influence’ of a work
would be the the degree to which it has been referenced by later works as in Eq. (4).

To compute 1,,(¢) of Eq. (4), the influence of composer @ on ¢, we start by rewriting
z(y: — vj), the number of y; — y; transitions in £2, in Eq. (6) as

z2(Vi = V) = zoVi = V) + (Vi = ¥))s (8)

where z,, is the number of instances of the transition used by w, and z is that by all the
other composers before ¢. Then IT;(¢) becomes

(o) +za(n) + 1) (zo(y1 > 1) +za(1 = 12) +1)

11 = 9

S LR SHE Py S e — )+ 1) ©
Eliminating all z,,s in the numerator, we obtain

() = (za(y1) +1) (Za(r1 = v2) +1) (10)

ORRC A FEVRAD DRI /Ry P ) R,

After computing the influences {n} between all 7298 eligible composer—composition
pairs (self-influences were excluded) we plot each composer’s mean influence on the works
created at any given time ¢ (£10 years for smoother curves), shown in Fig. 5. During the

Baroque ‘ Classical Classical to Romantic Transition Romantic

*
|
|

LS. Bach (1685-1750) !

T —— 3

I |
Ludwig van Beethoven (1770-1827)

0100

Figure 5 The influence of composers and shifts in paradigmatic, dominant styles. (A) The common period
designations and the living years of ten major composers in our data. (B)-(E) The mean influence n of the
composers on the works composed at a given time t (10 years). Each period is distinguished by the
emergence of newly dominant composers that indicate paradigmatic shifts in composition styles, and
provide quantitative support for period designations. (B) During the Baroque period Handel exerts a
dominant influence on other composers. (C) In the Classical period initially Scatlatti’s influence increases,
while Handel's influence begins to wane. Then Haydn and Mozart’s influence rival Handel’s. (D) The
Classical-to-Romantic Transition period is characterised by Beethoven who overtakes the most influential
ones from the previous period (Handel, Haydn, and Mozart). (E) The Romantic period also witnesses the
emergence of newly highly influential composers such as Schubert, Chopin and Liszt.
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Baroque period (B) Handel is the most influential, indicating that his codeword transitions
were often also used at a later time by his contemporaries Bach and Scarlatti, whereas the
opposite did not occur as frequently. More interesting patterns can be found when we
observe the rise and fall of the composers’ influences over time. Since a high influence
means that later works share common elements, we can interpret such rise and fall of
composers’ influence as indicating shifts in compositional style, and providing a quantita-
tive justification for the distinct period labels. Let us examine, as a start, the Baroque and
the Classical periods in Figs. 5(B) and (C). While Handel maintains his dominant influ-
ence until around the mid-Classical period, we identify two notable patterns: First, Scar-
latti overtakes Bach in influence shortly before the Classical period, in agreement with the
well-acknowledged significance of Scarlatti on the Classical period [36]; Second, Haydn
and Mozart emerge during the Classical period with a high influence, soon rivaling Han-
del’s. Similar dynamics—the clear rise and emergence of a new leading influential figure and
therefore dominant ‘style; reminiscent of Kuhn's so-called paradigm shift [2]—are observed
in subsequent periods. The Classical-to-Romantic transitional period (Fig. 5 D) is charac-
terised by the emergence of Beethoven whose historical significance [37] is clearly shown.
Beethoven’s high influence in this period shows his younger contemporaries adopting his
codewords more willingly than any other predecessor’s (Figs. S6(C) and (D)) that contin-
ues well into the Romantic period. Also, from Eq. (4), we see that being referenced by a
highly-novel composer leads to high influence, as high novelty means referencing uncom-
mon elements, and so the one referenced is credited with more influence. This is likely why
Beethoven, referenced by highly novel Romantic composers, has a high influence score.
Then, through a similar mechanism, during the Romantic period new composers such as
Schubert, Chopin, and Liszt rise in influence to rival or overtake Mozart and Beethoven
(Fig. 5 E), befitting their reputation as of finally eclipsing those “classical sounds” and es-
tablishing many essential repertoire now permanently associated with the piano [37].

3 Discussion

This work presents a general mathematical framework for computing the novelty and in-
fluence of creative works based on the degree of shared elements between past and future
works. Novelty measures how different a work is from the past, representing original-
ity and unpredictability of generation. Influence measures how much a work has been
referenced in the future, representing its success and impact as an inspiration for future
creations. While originality and success are both important characteristics of meaning-
ful creative works, they do not correlate perfectly. That Handel was less novel than Bach
and many others but had more influence on Classical and Romantic composers (Figs. 3
and 5) is a good example. Similarly, Beethoven, Schubert, and Liszt were less novel than
Mendelssohn and Schumann (Fig. 3), but eventually came to exert more influence and
inspire more piano music to follow (Fig. S5). The separation between novelty and influ-
ence is particularly auspicious in the case of music from the Classical period (especially
Mozart): Mozart is shown to have used fewer novel codewords per se and opted to use the
conventions from the Baroque period, but his works nevertheless had enough high artis-
tic value that he gained much influence in the future. This is another agreement between
our findings and traditional musicology that characterises the Classical period as one that
“values shared conventions, rational restraint and the playful exploitation of established
constraints” [10]. This contrasts with the composers of the later Romantic period who
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introduced new elements at a faster pace (Fig. 3) and again corroborates the traditional
musicological assessment of their “pursuit of the value of being individual, peculiar and
original” [10, 37, 38].

We note that, while we employed the simplest first-order Markov model of codeword
transitions to model music, the framework is general enough for a higher-order Markov
model or related techniques such as Hidden Markov Model (HMM) and neural net-
works that have been previously applied to analysis of text and music [31, 39-44]. Higher-
order Markov modeling shows a broad agreement with our main findings using first-order
Markov, showing further robustness of our model and analysis (Figs. S7-13). One notable
extra finding from higher-order Markov involves Debussy whose most significant innova-
tion is believed to have been in the use of non-traditional scales. Also, since novelty and
influence were developed using concepts from information theory, there could be many
future possibilities for utilising other useful quantities such as cross entropy and others
to define relationships between creative works systematically, which would further enable
interesting theoretical advances.

We finally discuss the potential issues of using curated data such as ours and how they are
addressed in our framework. One can justifiably point out that throughout the common
practice era considered in our analysis there existed many active composers not included
in our data set but who nevertheless likely referenced and influenced one another. Note
that this situation is not unique to our data, but is becoming increasingly common in an
era when interesting data are collected from many open real-world systems where one
cannot easily expect them to be as complete or comprehensive as those from designed ex-
periments conducted in highly-controlled laboratory environments. It is more important
and practical, then, to deal with the situation by incorporating appropriate mechanisms in
the methodology and understanding the nature of the data. First, in our formalism, incom-
plete data results in underrepresented or missing elements in the Conventional Pool. But
our formalism addresses this issue via the Novel Pool that gives some weight to unknown
or as yet unknowable cases via the uninformed prior, a well-established, unbiased method
employed in statistics in the absence of usable information. Additionally, they can be up-
dated whenever new information becomes available in a straightforward manner. Second,
our data comprises works that are at the time of this study the most highly regarded, and
most often studied and performed, implying that of all imaginable data sets of similar size
it would be the most commensurate with the meaning of novelty and influence: Since they
are by definition based on what is available for comparison, our data would be closer to a
modern listener’s true experience than others comprising obscure or less popular works,
rendering it both desirable and useful given the conditions. Lastly, a potential temporal
bias that gives the early composers advantage in the case of the H-novelty (but not the P-
novelty) would need to be studied to fully solve the ‘cold-start’ by some type of temporal
scaling or a continued discovery of earlier data.

4 Conclusion

The availability of a quantitative computational methodology confers the ability to con-
firm or challenge existing knowledge and understanding about a system in a statistically
robust manner, and to find more detailed and advanced answers to both long-standing
questions and new ones. In this paper we proposed a framework for quantifying the nov-
elty of a creative work and the influence between those produced at different times based
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on the intrinsic compositions of the works. As an illustration of the methodology at work,
we applied it to the development of classical music by using 900 classical piano composi-
tions that cover the common practice era in the western musical tradition. For the intrinsic
element of music we focused on the codeword transitions to measure the novelty and in-
fluence of the compositions and composers. From the use of codeword transitions over
time, we found that commonly designated periods corresponded well to the emergence of
newly influential composers indicating notable paradigmatic shifts in styles. In addition to
a broad agreement with conventional understanding of the characteristic of periods and
composers, an interesting finding was that being more novel, i.e. more willing to break
from convention, did not necessarily translate to being influential on the posterity. This
means while novelty is still necessary in a creative endeavor—high-novelty composers in
our data set are undoubtedly universally recognised masters of the form themselves—it
cannot account for all the creative, artistic qualities that facilitated those codeword tran-
sitions that were more widely transmitted to later generations.

This suggests a future research direction employing a more elaborate modeling of code-
word transitions and other elements of music. Possibilities in the former category include
the change of the number of notes [10], the tonality [45, 46], melody [47—-49] and the chord
progression [50], to name a few. Possibilities in the latter category include the rhythmic
structure of music that is recently gaining increased attention [21, 32] and the global struc-
ture of a composition, given the common assertion that the most significant innovation
in the piano music during the Classical period was the establishment of the sonata form
[37] which may have little to do with the codeword transitions. To study such macroscopic
structures, note-level features would be insufficient, and even higher-order Markov mod-
els are limited as they focus on local dependencies in sequential data [51]. A possible ap-
proach would be to summarise the codewords onto segment level (e.g., bar or phrase) and
to find global features such as self-similar structures [52]. More recently, machine learn-
ing algorithms based on neural networks (e.g. LSTM-RNN and Deep Attention Networks)
have shown promise in modeling long-term musical patterns [53]. We believe that such
pattern-detection methods could be very useful in deeper future studies. An extension
beyond the piano is also an obvious possibility, as many composers we considered were
prolific in other forms including Haydn who is also very well known for his chamber music
and symphonies [54]. Given the continued importance of music as a creative cultural form,
analysis of modern-day composers would also be necessary and further illuminating.

Also, there are implications for the psychological study of novelty as well. It has been
known in optimal theory of novelty that the positive acceptance (also called the “hedonic
value”) of novelty follows the so-called Wundt curve that increases initially but decreases
after a peak, indicating that too much novelty can be off-putting to humans [55, 56], which
can potentially explain why some less novel composers can be well-received and become
influential. If a more comprehensive dataset including less appreciated composers could
be created, the theory could be studied comprehensively.

Given the generality of our methods, we envision our framework proposed here being
useful in addressing many questions pertinent to the development of various cultural, cre-
ative fields and genres other than music as we have presented here. To do so, much effort
will be needed find appropriate discretisation of elements depending on the form. In a nar-
rative with long-term correlations of story elements, for instance, topic modeling could be
more appropriate for dividing the text into related units than n-grams of words [57-59].
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For pictures, on the other hand, adjacent pixel clusters or motifs could be considered as
the elements [60]. We believe such principled scientific approach will permit new under-
standing of human creativity and the dynamics of the progress of intellectual and cultural

products.
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