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Abstract
Pattern detection in network models provides insights to both global structure and
local node interactions. In particular, studying patterns embedded within remittance
and migration flow networks can be useful in understanding economic and
sociologic trends and phenomena and their implications both in regional and global
settings. We illustrate how topo-algebraic methods can be used to detect both local
and global patterns that highlight simultaneous interactions among multiple nodes,
giving a more holistic perspective on the network fabric and a higher order
description of the overall flow structure of directed networks. Using the 2015 Asian
net migration and remittance networks, we build and study the associated directed
clique complexes whose topological features correspond to specific flow patterns in
the networks. We generate diagrams recording the presence, persistence, and
perpetuity of patterns and show how these diagrams can be used to make inferences
about the characteristics of migrant movement patterns and remittance flows.
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1 Introduction
Migration and remittances have become important facets of modern human society. The
United Nations’ Department of Economics and Social Affairs (UNDESA) reports that the
total number of international migrants, defined as foreign-born or foreign citizens for the
purpose of estimation, has continued to grow rapidly from year 2000 to year 2015 at a rate
faster than that of the world’s population. Many published reports, such as UNDESA’s
[1] and World Bank’s [2], provide comprehensive statistical descriptions and forecasts on
world migration and remittances. These, however, tend to focus on statistics about direct
and specific region-region interactions: origin and destination of highest flow, rate of in-
crease or decrease of flow, etc. On the other hand, studying migration and remittances
in the network setting allows us to generate a clearer picture of the complex interactions
embedded in its structure. Fagiolo and Mastrorillo [3] used a complex-network perspec-
tive to study the binary and weighted architecture of the international migration network,
exploring link and node statistics, assortativity, and clustering among others. In [4, 5], cen-
trality in the migration network was studied in terms of weighted and unweighted vertex
indegreea and outdegree. Simply put, these measure the diaspora and reach of migrants
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Figure 1 Asian net Migration and Remittance Networks. (a) Each edge in the Asian net migration network is
weighed using a weight function similar to equation 1, and colored according to increasing weight from red
to blue. Country abbreviations are as in Table 1. (b) The directed graph of the Asian net remittance network is
constructed similarly. (c) A circular flow of migrant surplus between Tajikistan, Kazakhstan, and Kyrgyztan.
(d) Net remittance flow among Indonesia, India, Malaysia, Saudi Arabia, and Singapore. (e) An example of a
more complex flow of migrant surplus among groups of countries in Asia. Each triangle is colored according
to flow magnitude, and graded with respect to flow direction. (f) An example of the complex flow of
remittance surplus among groups of countries in Asia

coming in and going out of a particular country. In addition, community detection via link
density was also explored.

In this note, we demonstate how we can use topo-algebraic methods to identify flow
patterns in the Asian net migration and remittance networks resembling cycles involving
multiple countries. One advantage of this method over graph theory methods is that it is
able to recover higher dimensional patterns, capturing more complex interactions among
multiple nodes and offering a more holistic perspective on the topology of the network
(see Fig. 1). For a list of countries included in this analysis, see Table 1.

We define net remittance to be the positive difference in the remittances exchanged
by two countries. We consider the net remittance network R = (V , ER) whose vertex set
V represents countries, and edges weighed according to net remittances with direction
towards the country that recieves more. Hence, the weight of a directed edge (a, b) ∈ ER ⊆
V × V represents the profit country b gains from exchanging remittances with country
a and can be thought of as a measure of the flow of remittance surplus between the two
countries. We can store the information in this directed network into an incidence-weight
matrix W = [wab] where

wab =

⎧
⎨

⎩

rab – rba if rab > rba,

0 otherwise,
(1)
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Table 1 Ordered list of Asian countries with abbreviation codes

Order Country Abbrev. Order Country Abbrev.

1 Afghanistan AF 26 Lebanon LB
2 Armenia AM 27 Malaysia MY
3 Azerbaijan AZ 28 Maldives MV
4 Bahrain BA 29 Mongolia MN
5 Bangladesh BD 30 Myanmar MM
6 Bhutan BT 31 Nepal NP
7 Brunei Darussalam BN 32 Oman OM
8 Cambodia KH 33 Pakistan PK
9 China CN 34 Philippines PH
10 Hong Kong HK 35 Qatar QA
11 Macau MO 36 Republic of Korea KR
12 Cyprus CY 37 Saudi Arabia SA
13 Dem. People’s Rep. of Korea KP 38 Singapore SG
14 Georgia GE 39 Sri Lanka LK
15 India IN 40 State of Palestine PS
16 Indonesia ID 41 Syria SY
17 Iran IR 42 Tajikistan TJ
18 Iraq IQ 43 Thailand TH
19 Israel IL 44 Timor-Leste TI
20 Japan JP 45 Turkey TR
21 Jordan JO 46 Turkmenistan TM
22 Kazakhstan KZ 47 United Arab Emirates AE
23 Kuwait KW 48 Uzbekistan UZ
24 Kyrgyzstan KG 49 Vietnam VN
25 Laos LA 50 Yemen YE

and rab represents the total remittance from a to b. The definition of the weight function
yields a simple directed graph admitting no self-loops (see Fig. 1). We define net migra-
tion and the migration network M = (V , EM) in a similar manner. With these definitions,
the extracted patterns then reflect the flow dynamics of migrants and remittances within
groups of countries, which may provide insights about inter-country relationships and
their relative impacts on the group’s overall dynamics. The incidence-weight matrix of
the net migration and remittance networks used in this study is available upon request
from the authors.

Our approach utilizes a relatively new method in data analysis known as persistent ho-
mology whose early roots trace back to Size Theory in the 90’s [6–9] (for connected compo-
nents) and later generalized to higher dimensions by Edelsbrunner, Letscher, and Zomoro-
dian [10]. We refer the reader to [11–13] for a detailed account of the history and devel-
opment of the theory. In this note, we apply persistent homology to data viewed as a di-
rected network, from which we build a sequence of mathematical objects each contained
in the next. Distinct (non-homologous) generators of topological features that persist sig-
nificantly along the sequence of mathematical objects are then regarded as encoding the
overall shape of the point-cloud. We make precise what we mean by generators in Sect. 3.2.
Several works have employed this approach in studying the topology of undirected net-
works [14–17]. An extension of this approach to directed networks using path complexes
has been explored by Chowdhury and Mémoli [18, 19], and via neighborhood complex
by Horak et al. [20]. In [17], Petri et al. introduced a filtration that allowed them to com-
pute the persistent homology of weighted undirected networks, and remarked that their
methods are amenable to extension to directed networks following the directed clique
construction of Palla et al. [21]. Reimann et al. [22] used the same directed clique con-
struction to compute homology of neural networks, but they did not analyze the persis-
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tence of features. The contribution of our work is the implementation and development
of Petri et al.’s idea to extend persistent homology theory to directed networks via cliques.
The integration of the directional component to the theory allows us to talk about cycle
types and perpetuity of topological features of directed networks. We expound on these
notions in Sect. 3. We also present a modification to barcodes, the output diagram of per-
sistent homology, by introducing a coloring scheme that distinguishes features of the same
dimension.

The rest of the paper is organized as follows. Section 2 describes the data sets and the
estimation measures used. In Sect. 3, we discuss the theoretical foundations, highlight the
contributions of our work, and present an example using a toy network. Section 4 presents
the patterns and shapes extracted from the Asian net migration and remittance networks.
Finally, Sect. 5 presents a summary and concluding remarks.

2 Dataset description
According to UNDESA’s international migration report in 2015 [1], nearly half of all inter-
national migrants worldwide were born in Asia, and nearly a third live there. From year
2000 to year 2015, this region had more new international migrants than any other major
area.b Interestingly, Asia also ranks second on the percentage (60%) of people living in
a different country but within the same region. These make Asia one of the most highly
fluid regions in terms of internal migrant mobility.

We perform our analysis on the 2015 Asian net migration and remittance networks
which include 50 countries and states as listed in Table 1. We use data on foreign-born
population obtained from the UN Global Migration Database and on bilateral remittances
from the World Bank database as reported respectively in [23] and [24].

The migration data uses estimates on foreign-born population based on censuses, regis-
ters, and models. These estimates also take into account factors such as the estimated size
of the total population in the country of destination, and specific country circumstances
such as sudden migrant influx or exodus due to conflict, economic booms or busts, and
major changes in migration policies. For lack of data source, estimates for the Democratic
People’s Republic of Korea were based on “model” countries chosen according to similarity
in criterion for enumerating international migrants, proximity, and migration experience.
A complete documentation of the migration data set is available in [25].

The data set on bilateral remittances is a composite of the migration data and the total
remittance inflows. Let Mji represent the number of migrants from country j living in
country i, and Rj the total remittance inflow to country j from all countries, computed as
the sum, where data is available, of two components in the International Monetary Fund’s
Balance of Payments Statistics: compensation of employees and personal transfers. For
some countries, data is obtained from the respective country’s Central Bank and other
relevant official sources. A detailed account of this computation can be found in [2]. From
Mij and Ri, the bilateral remittances between two countries are estimated using a method
devised by Ratha and Shaw [26]. The remittance from country i to country j is the product
of the number of migrants Mji, and the average remittance ρij sent home by a migrant as
modeled by

ρij =

⎧
⎨

⎩

Yj if Yi < Yj,

Yj + (Yi – Yj)β if Yi ≥ Yj,
(2)
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Figure 2 Pipeline for persistent homology. Given a directed network, a simplicial complex is constructed.
Topological features in the simplicial complex are then extracted using tools from algebraic topology and are
used to identify corresponding flow patterns in the directed network

where Yi and Yj are respectively the average gross national income per capita of the host
and home countries, and β is a parameter between 0 and 1. This model assumes that an
average migrant sends at least as much as the per capita income from home. For each
country, the parameter β is estimated so that the total lateral remittances to country j
matches Rj, that is

Rj =
∑

i

ρijMji. (3)

The World Bank [24] states that some issues about these estimates are:
(a) the data on migrants in various destination countries are incomplete;
(b) the incomes of migrants abroad and the costs of living are both proxied by per

capita incomes in terms of purchasing power parity;
(c) there is no way to capture remittances flowing through informal, unrecorded

channels.
The data for bilateral remittances does not include State of Palestine so we treat these
missing values as zero.

3 Methods
3.1 Directed clique complexes
The central idea is the following: given a directed network, construct a mathematical ob-
ject C (called a simplicial complex) in such a way that resulting topological features of C
correspond to patterns in the network (see Fig. 2). One advantage of this approach is that
these patterns, which give a higher-order description of the underlying network (i.e. be-
yond clustering or linking), can be easily extracted via their corresponding topological
features using tools from algebraic topology.

A directed network can be viewed as a collection of smaller subnetworks called directed
cliques [21]. A k-clique {vi1 , vi2 , . . . , vik }, ij a nonnegative integer for 1 ≤ j ≤ k, is a set of k
vertices that induce a subnetwork where every pair of vertices is connected by an edge.
A directed k-clique is a k-clique with a unique sourcecand a unique sink (see Fig. 3). Ob-
serve that this definition induces an ordering on the set of k vertices and a maximal di-
rected path v0 → v1 → ·· · → vk–1. Thus, this directed k-clique will be denoted by the
ordered k-tuple [v0, v1, . . . , vk]. This gives a natural way of simplifying network flow struc-
ture by adopting, whenever possible, an overall unidirectional flow from the source to the
sink in vertex communities having complete local connections.

To transform our directed network into a topological object, it is sufficient to define
what the simplices are. The directed clique complex is obtained by defining simplices of
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Figure 3 Examples and non-examples of Simplices. The order on the vertices is preserved by the
corresponding simplex name: (a) a 0-simplex [a], (b) a 1-simplex [a,b], (c) a 2-simplex [a,b, c], (d) 3-simplices
[a,b, c,d], and [d,a,b, c]. (e) and (f) Since not all vertices are connected, the set {a,b, c,d} does not form a
4-clique, and hence is not a 3-simplex. (g) An example of a 3-clique that is not directed since a unique source
(nor sink) does not exist. (h) An example of a directed clique complex having four 0-simplices, five 1-simplices,
and one 2-simplex

dimension k to be directed k + 1 cliques. Doing so transfers, in a natural way, the direc-
tional information on cliques to spatial information on simplices as the latter can be vi-
sually represented by geometric objects: a 0-simplex is a point, a 1-simplex is a directed
edge connecting two points, 2- and 3-simplices are respectively filled in triangles and solid
tetrahedra whose edges form directed paths from the unique source to the unique sink as
in Fig. 3.

We remark here that our definition of simplices via directed cliques is motivated by the
flow structure we are concerned with. A k-simplex represents a group of k + 1 countries
where pairwise interactions exist between any two members, and the overall flow struc-
ture can be characterized by the unidirectional flow from a unique source (that sends to
every country) to a unique sink (that receives from every country). Masulli and Villa [27]
used the same construction to investigate how resulting topological invariants, the Euler
characteristic and network degree, can be used to assess specific functional and dynami-
cal properties of directed networks. This definition can be modified to fit an appropriate
alternate model. One alternative construction, due to Grigor’yan et al. [28–30] uses paths
in a directed network to define simplices. This construction allows more flexibility in the
definition of simplices, which in turn gives rise to an increased complexity in simplex va-
riety that makes the approach less intuitive. For example, the network on four vetices in
Fig. 3(e) is in fact the sum of two 2-paths, and hence regarded as a two-dimensional sim-
plex generator in a path complex. This however, as Chowdhury and Mémoli [19] point out,
shows that path homology is able to differentiate this particular motiff from other types of
cycles. Another construction due to [31] is via ordered tuple complexes where simplices
are ordered tuples (v0, v1, . . . , vp) closed under deletion of entries, and where repetition of
vertices is allowed.

3.2 Directed clique homology
Now that the directed network has been converted to a simplicial complex, we can extract
its topological features by employing a standard method in algebraic topology originally
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used to classify topological spaces. Let C denote the simplicial complex associated to the
directed network. For each n = 0, 1, 2, 3, we consider the set Kn(C) of all n-simplices in
C, and the free vector space Cn = Z/2Z[Kn(C)] of all formal linear combinations of n-
simplices with coefficients either 0 or 1. We can relate consecutive spaces Cn and Cn–1 by
extending linearly the boundary map ∂n : Kn → Kn–1 defined on simplices as

∂n(σn) =
n∑

i=0

[v0, v1, . . . , v̂i, . . . , vn], (4)

where v̂i means vi is omitted. By definition, the boundary of a 0-simplex is zero. For ex-
ample, if σ2 = [a, b, c] as in Fig. 3,

∂2(σ2) = [b, c] + [a, c] + [a, b].

The collection of the outputs of the map ∂n, which we will call boundaries, is denoted
by Im ∂n. It can be verified that the images under ∂1 for the directed clique complexes in
Figs. 3(e), 3(f ), and 3(g) are all zero. In general, elements of Cn whose image under ∂n is zero
are called n-cycles, and the collection of all such elements is denoted by ker∂n. Observe
that applying ∂n to the output of ∂n+1 always yields zero. This means that all boundaries of
sums of n + 1-simplices are n-cycles in Cn. The nth homology group Hn is then defined as
the abstract algebraic quotient space

Hn = ker∂n/ Im ∂n+1. (5)

In this space, any n-cycle that is the boundary of a linear combination of n+1-simplices
is treated as zero, and hence regarded algebraically trivial. For example, the cycle c1 =
[a, d] + [d, b] + [a, b] is trivial since it is the boundary of the 2-simplex [a, d, b]. As a con-
sequence, a pair of n-cycles whose difference is trivial in the above sense are consid-
ered homologous. For example, the 1-cycles [a, b] + [b, c] + [c, d] + [a, d] in Fig. 3(f ) and
[b, c] + [c, d] + [d, b] in Fig. 3(g) are homologous in the directed clique complex in Fig. 3(h)
since their difference is precisely c1. Alternatively, these two 1-cycles can be viewed as sur-
rounding the same “hole” in the directed clique complex. We then say that these 1-cycles
generate the same class in the homology group H1. In a similar manner, the generators
of the homology group Hn are the representative linear combinations of n-dimensional
simplices that surround distinct topological features embedded in the simplicial complex.
These topological features capture complex structures and interactions in the network
fabric (see Fig. 1(c)–(f )). For instance, the generators of H0 partition the vertices into clus-
ters in a manner similar to single linkage clustering. We will expound on this in Sect. 3.6.

Notice that a variety of patterns may arise from a given feature. For example, a 1-cycle
in the directed clique complex may correspond to any of the patterns in Figs. 3(e)–3(g).
For differentiation, we will refer to 1-cycles whose corresponding pattern in the directed
network has no source nor sink, as in Fig. 3(g), as circuits. This pattern depicts a circular
flow in the network. In addition, 1-cycles whose pattern has a unique source and a unique
sink will be called Type 1 1-cycles (see Figs. 3(e) and 3(f )), while 1-cycles with multiple
sources and sinks will be referred to as Type 2 1-cycles.
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Figure 4 Patterns within subnetworks. (a) The toy network in Fig. 2 with edge weights assigned. (b) The
associated directed clique complex of the entire directed network in (a). (c) A 1-cycle consisting of the sum of
four directed edges and a 2-cycle consisting of the sum of six 2-simplices embedded in the directed clique
complex in (b). (d) A subnetwork obtained by including only edges of weight exactly 1. (e) The associated
directed clique complex of the subnetwork in (c). (f) Three 1-cycles detected in the directed clique complex
in (e)

3.3 Filtrations, persistence, and perpetuity
Let us assign weights to our toy network (see Fig. 2). Examining the entire directed net-
work, we see in Fig. 4(c) that it contains a Type 1 1-cycle ([h, b] + [b, d] + [d, g] + [h, g]) and
a 2-cycle ([a, c, d] + [c, f , d] + [f , a, d] + [a, c, e] + [c, f , e] + [f , a, e]). Now, suppose we filter the
network by including only edges of weight exactly 1, then build it’s corresponding directed
clique complex (see Fig. 4(d)–4(f )). In this case, we detect three 1-cycles and no 2-cycles.
This shows that filtering the network via edge weight may reveal more patterns invisible
to homology when all edges are included. For this reason, we will consider a sequence of
directed networks (each a subnetwork of the next) parametrized by edge weight: for each
threshold ε ≥ 0 we construct the subnetwork consisting of all vertices and all directed
edges of weight at most ε (see Fig. 5(a)). This in turn induces an associated filtration of
directed clique complexes (see Fig. 5(b)).

By examining the features of each subcomplex and keeping track of their representative
generators, we can identify topological features that persist significantly across the de-
velopment of the complex. Persistent cycles are regarded as significant patterns in the
directed network. This is the main idea of persistent homology due to Edelsbrunner,
Letscher, and Zomorodian [10] who originally applied it over arbitrary filtrations of simpli-
cial complexes. Many adaptations and refinements have been proposed to make persistent
homology computationally efficient [32, 33] and suited for a wide variety of data sets. In
particular, Petri et al. [16, 17] applied persistent homology on the filtered clique complex
for weighted undirected networks. As suggested in their paper, we modify their approach
by adopting the directed k-clique construction of Palla et al. [21].

Throughout the network development, cycles can be trivialized by becoming the bound-
ary of higher dimensional simplices. Cycles can also become homologous to older cycles.
In these cases, we say that the cycle dies. Otherwise, we say it persists. This birth and
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Figure 5 Two filtrations of the toy network. (a) A sequence of subnetworks paremetrized by edge weights.
(b) Filtration of clique complexes induced by the sequence in (a). (c) The persistence barcode recording the
birth and death history of distinct topological features in the complex: connected components (black bars),
holes (red bars), and voids (blue bars)

death history of homological cycles throughout the filtration can be transcribed in a bar-
code, a diagram consisting of bars representing the birth and death history of features of
all dimensions. In a barcode, the length of the bars record the persistence of the features,
and measure how long a pattern survives before it gets killed off. Figure 5(c) shows the per-
sistence barcode of the filtered directed clique complex in Fig. 5(b): black bars represent
connected components, red bars represent 1-cycles, and the blue bar represents the lone
2-cycle. The long black bar signifies that connectivity in the directed network is charac-
terized by a single component. Similarly, the longest red bar detects the single persistent
1-cycle ([h, b] + [b, d] + [d, g] + [h, g]), and the blue bar detects the 2-cycle in Fig. 4(c).

It must be noted that the intrinsic structure of the directed network and the filtration we
use significantly influence how the resulting persistence barcode is read. In the usual undi-
rected persistent homology on finite metric spaces, since the threshold filters only through
distances between vertices, higher dimensional simplices are always created as the thresh-
old scans through all distances, and holes of any dimension eventually get filled in. This
means that all but one 0-dimensional bar in the barcode must die. In contrast, our con-
struction of the simplicial complex limits the simplices to maximally connected subnet-
works built up from actual directed edges connecting vertices. Hence, 1-dimensional sim-
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plices are introduced only when corresponding directed edges are present, and once the
threshold reaches the maximum edge weight, no additional simplices can be constructed.
This then means that in the barcode, the topological features of the entire directed net-
work are encoded by the bars that never die. We will refer to these bars as perpetual. We
note that perpetual bars indeed represent the Betti numbers after computing homology
at the end of the filtration. As we are using a similar filtration (see Sect. 3.4) implemented
by jHoles [34] to compute persistent homology for weighted undirected networks, the
Betti numbers computed by jHoles and the perpetual bars in our barcode have the same
interpretation.

We compute persistent directed clique homology using the standard persistence algo-
rithm that appears in [35] adapted for directed clique complexes using code written from
scratch.

3.4 Max-to-min weight filtration
Given a network with incidence-weight matrix [wij], we can transform nonzero weights
wij using the function

f (wij) =
(
max

(
[wij]

)
+ 1

)
– wij (6)

and induce the filtration of clique complexes using the transformed values. This transfor-
mation amounts to thresholding from the largest weight in the network to the smallest,
and is done so that persistence picks up the most significant (magnitude-wise) flow pat-
terns. With this transformation, cycles having large weights (i.e. significantly large flows)
are born early, and since persistence depends on birth and death of features, cycles that
are born early but get killed off by edges having significantly smaller weights still have
large persistence. This approach is essentially the weight rank clique filtration introduced
in [17] with the threshold reparametrized to reflect increasing differences from the maxi-
mum weight, and is different from most other filtrations as thresholding is via decreasing
dissimilarities: two 0-simplices will be connected early if the directed flow between them
is large.

We will employ this approach in computing persistent features in both net migration
and remittance networks.

3.5 Variation on persistence barcodes
Since homological cycles correspond to actual subnetworks, we can encode additional
information in the 1- and 2-dimensional barcodes by coloring the bars according to the
standard deviation of the weights in the cycles they represent. We adhere to the elder
rule and use the oldest generators to represent homology classes, that is, we compute
the standard deviation of all the edge weights present in the oldest linear combination of
simplices that surround a topological feature. This allows differentiation between cycles
of the same dimension according to the variation in the edge weights, and is most useful
for distinguishing cycles that are born at a later stage in the filtration as illustrated in an
example in the following section. The introduction of this coloring scheme supplements
the information encoded within barcodes, and could potentially be combined with other
tools, such as persistence landscapes [36, 37], homological scaffolds [38], and persistent
entropy [39, 40], that enrich the information extrapolated from barcodes.
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Figure 6 Another toy example. A toy example of a weighted directed network

3.6 Another toy example
In this example, we will use the same techniques introduced in the beginning of this chap-
ter. The difference from the previous example is that we are going to use the transformed
values to filter the weights in the directed network so that along the filtration, edges having
large weights are born first as described in Sect. 3.4.

Consider the weighted directed network given in Fig. 6. Several slices of the filtration are
superimposed on the persistence barcode shown in Fig. 7. The three persistent and per-
petual bars in the 0-dimensional barcode (bottom) detects the three connected compo-
nents in the directed network. Each bar in this barcode represents a vertex in the network,
and is colored according to the component it eventually belongs to. In general, the con-
nected components are formed in a manner similar to how clusters are formed via single
linkage hierarchical clustering: a vertex is connected to a component at threshold ε if the
maximum weight of the edges connecting the vertex to any vertex in the component is at
least ε. Hence, just as the single linkage dendrogram, the 0-dimensional barcode records
the number of connected components in the underlying undirected graph formed at any
threshold level.

The 1-dimensional barcode (middle of Fig. 7) detects the four 1-cycles in Figs. 8(a) to
8(d). Let us examine the information each bar provides. The early birth and small standard
deviation of the first persistent and perpetual bar shows that the cycle it represents has
large and almost equal edge weights. Its persistence and perpetuity suggest that this cycle
is an actual 1-dimensional feature of the entire directed network. The second bar starts
relatively early, suggesting that the corresponding cycle has relatively large weights. The
increased but small standard deviation reveals that the edge weights are slightly spread,
and its small persistence reveals that this cycle gets killed off shortly after birth. The third
bar born midway through the diagram reveals that the smallest edge weight in the cycle it
represents is half of the largest edge weight in the directed network. The extremely high
standard deviation of this bar shows that the edge weights in the cycle are considerably
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Figure 7 Barcodes for the toy example. Colored persistence barcodes for the toy network in Fig. 6
superimposed with several slices in the filtration. For this example, the original edge weights are used as
labels (instead of the transformed values) for threshold levels. The colored 0-dimensional barcode (bottom)
reflects which connected component each vertex eventually belongs to. The colored 1 and 2-dimensional
barcodes (middle and top respectively) distinguish the 1-cyles and 2-cycles by three criteria: persistence,
perpetuity, and weights variation

spread, and the relatively high persistence shows that this pattern survives for a while be-
fore getting trivialized. The last bar being born late reveals that the edge weight completing
the cycle is very small. Its small standard deviation suggests that the other edge weights in
the cycle are also small. Its perpetuity reveals that this cycle is also a 1-dimensional feature
of the directed network.

The 2-dimensional barcode detects the two spheres in Figs. 8(e) and 8(f ). The first per-
sistent bar being born before the halfway mark in the diagram shows that all edges in the
2-cycle have weights bigger than half of the largest weight in the network. Although not
extremely spread, the large range of values covered by its assigned color suggests that the
weight distribution in the 2-cycle is somewhat spread. The death of the bar signifies that
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Figure 8 Cycles in the toy example. Figures (a)–(d) show the 1-cyles for the toy example. The nodes are
colored red if the sum of the weights of all outgoing edges is larger than that of incoming edges, and blue
otherwise. Deeper colors represent larger numbers. The shape of a node indicates whether it is a source or
sink (circle) or not (square). The edges follow a coloring spectrum of red for the smallest edge weight in the
network to blue for the largest. Figures (e)–(f) show the two 2-cycles in the toy example. The directed
triangles are colored according to the weight of the edge that completes the triangle

this 2-cycle is eventually trivialized. The perpetual black bar shows that a 2-cycle with
highly variable edge weights is a 2-dimensional feature of the entire directed network.

4 Patterns and shapes in Asian net migration and remittance networks
The barcodes in Fig. 9 show the persistence of the homological cycles of dimensions
n = 0, 1, 2 for the 2015 Asian net migration (9(a)) and remittance (9(b)) networks. The bars
in the 0-dimensional barcode represent the Asian countries arranged as in order given in
Table 1 starting from the bottom. For the net migration network (bottom of Fig. 9(a)),
the single perpetual bar indicates that every country in Asia had an unequal exchange of
migrants with at least one other Asian country in 2015. For the net remittance network,
the two persistent and perpetual bars represent the distinct perpetual connected compo-
nents in the network. The bottom perpetual bar represents the connectedness of 49 out
of the 50 states in the Asian remittance network, while the other perpetual bar represents
State of Palestine whose remittance data is missing. In both the migration and remittance
networks, the relatively long bars in the 0-dimensional barcode suggest, in accordance
with the reparametrization described in equation (6), that the net migration and remit-
tances between countries in Asia are mostly small relative to the largest net migrant flow
(3,487,351 people from IN to AE) and remittance (15,558.59 million USD from HK to CN).

The distinct 1- and 2-cycle generators for the Asian migration network appear in
Figs. 10–11 and Figs. 12–13 respectively arranged beginning from the generator that cor-
responds to the lowest bar in the appropriate barcode. The edges of 1-cycles are colored
according to weight. These 1-cycles reveal patterns that highlight both intra- and inter-
regional migrant movement, and the role that each country plays in these groups. For
example, while IN tends to be a dominant source of migrants within cycles, and SA a
dominant sink, they do become transitory countries in Figs. 10.16 and 11.39 respectively.
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Figure 9 Persistence Barcodes. (a) 0-, 1-, and 2-dimensional barcodes (bottom, middle, and top respectively)
of the Asian net migration network. (b) 0-, 1-, and 2-dimensional barcodes of the Asian net remittance
network. The colors in the 0-dimensional barcodes represent eventual component membership, while colors
in the 1- and 2-dimensional barcodes reflect the standard deviation of the edge weights in the cycle

Similarly, while MY tends to be a transitory country in most cycles, it does become a sink
in several instances.

The 2-cycles illuminate more complex migrant and remittance movements and the ef-
fect of a unified 3-country flow in a local setting. Each face (directed 2-clique depicting a
3-country unit) in a 2-cycle is colored according to the threshold at which the 2-simplex is
born, and graded towards the sink of this directed clique, representing the lower bound for
the flow from the source to the sink. Both coloring schemes for the 1- and 2-cycles follow
the appropriate color spectrum in Fig. 1. It is worth noting that regional circuits tend have
the same sinks (Figs. 12.M4-M7 for the migrant network), and sources (Figs. 14.R4-R5,
R9-R12, R13-R17, Figs. 14.R23–15.R24, and Figs. 14.R29-R32 for the remittance network)
foreshadowing the position of these countries in a regional level.

The two most persistent 1-cycles are both of Type 2 and appear in Figs. 16(a) and 16(b).
The coloring of the corresponding bars in the 1-dimensional barcode (middle of Fig. 9(a))
reveals medium to high variability in the net migrant flow from the source countries PS
and SY (Fig. 16(a)), and IN and PH (Fig. 16(b)) to respective sink countries JO and LB,
and AE and SA. In particular, the extremely high cycle weights variability for the most
persistent 1-cycle (Fig. 16(b)) reflect the significantly higher flow of migrants to AE and
SA from IN than from PH. It is worth noting that while PS and SY, and IN and PH play
the role of sources in these persistent cycles, none of them are in fact true sources when
viewed as nodes in the entire directed network. This shows that homology can find these
important cycles illustrating persistent complex flow patterns which would not have been
found via standard graph theory techniques. The same can be said of the sinks JO and LB,
and AE and SA in these persistent Type 2 1-cycles.

Of the 61 distinct 1-cycle generators throughout the Asian net migration network evo-
lution, only 1 is a circuit (Fig. 11.55) detecting the circular flow of migrant surplus along
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Figure 10 Cyclic patterns of Asian migration. 1-cycle generators for the 2015 Asian net migration network.
Nodes are colored red if, relative to countries in the cycle, more migrants are moving out than coming in, and
blue otherwise. Darker shades represent larger numbers. Square nodes represent transitory countries while
circles denote sources and sinks

Kazakhstan → Kyrgyztan → Tajikistan → Kazakhstan. Within this circle of migrant
movement, Kazakhstan receives a net migrant flow (inflow minus outflow) of 8746 people,
while Kyrgyztan and Tajikistan both lose migrants by 3256 people and 5486 people respec-
tively. In addition, only four 1-cycles of Type 1 are detected, having respective sources and
sinks IN and SA (Fig. 11.32), ID and SA (Fig. 11.37), SY and JO (Fig. 11.39), and MM and
BN (Fig. 11.45). The rest of the detected 1-cycles are of Type 2 having developing states as
sources and high income states as sinks. Moreover, while algebraically trivial circuits and
Type 1 1-cycles abound as meridians in many 2-cycles, the grading shows that migrant
flows are directed towards an external (high income) sink node. In addition, all 1-cycles
are born late in the filtration, and the mean standard deviation of 1-cycle edge weights is
very high at 81,6704 people. All these suggest a familiar scene: that migrant movement
within Asia is characterized by highly unbalanced exodus of migrants from developing to



Ignacio and Darcy EPJ Data Science             (2019) 8:1 Page 16 of 25

Figure 11 Cyclic patterns of Asian migration continued. 1-cycle generators for the 2015 Asian net migration
network. See Fig. 10 for details

high income states. That all bars in the 1-dimensional barcode die at the end of the filtra-
tion reflects that there is in fact very small migration flow across states within the 1-cycles
other than the flow described by the 1-cycle itself.

There are two perpetual 2-cycles in the Asian net migration network, shown in
Figs. 16(c) and 16(d). These two spheres reveal the complex flow dynamics among the
countries included in the 2-cycles. In particular, Fig. 16(c) shows that in this group of
countries, AF and CN are sources of migrant flows while IL and MN are attractors. On
the other hand, Fig. 16(d) reveals that there is movement of migrants from CN to LK via
a transitory circuit that runs along BD → BT → NP → BD. As there is also one perpet-
ual connected component, and no perpetual 1-cycle, we see that the overall topology of
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Figure 12 Spherical patterns within the Asian migration and Remittance networks. 2-cycle generators for the
2015 Asian net migration (M1-M37) and remittance (R1-R42) networks

the entire Asian migration network is characterized by two spheres (Fig. 16(c) and 16(d))
joined at a source node (CN).

For the Asian net remittance network, the distinct 1- and 2-cycle generators are shown
in Figs. 17–18 and Figs. 13–15 respectively. The two most persistent 1-cycles are also both
of Type 2 as shown in Fig. 19. The most persistent 1-cycle (Fig. 19(a)) being born signif-
icantly earlier than the rest with relatively low cycle standard deviation suggests that the
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Figure 13 Spherical patterns within the Asian migration and Remittance networks continued. 2-cycle
generators for the 2015 Asian net migration (M1-M37) and remittance (R1-R42) networks

flows of net remittances among the countries in the cycle are relatively uniform and are
all significantly larger than other flows in the network.

There is only one 1-cycle generator of Type 1 (cycle 59 in Fig. 18) having source SA
and sink JO, and the rest are of Type 2 with sources mostly high income states, and sinks
developing states. Similar observations as those in the migration network suggest that
highly unbalanced flows of remittances from high income to developing countries abound
in Asia. An interesting observation is that the second most persistent 1-cycle (Fig. 19(b))
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Figure 14 Spherical patterns within the Asian migration and Remittance networks continued. 2-cycle
generators for the 2015 Asian net migration (M1-M37) and remittance (R1-R42) networks

in the net remittance barcode is a copy of the most persistent 1-cycle for the net migration
network with all arrows reversed.

5 Summary and conclusion
In this note, we showed how persistent directed clique homology can be used to extract
embedded patterns in weighted directed networks that reveal complex and simultaneous
interactions among multiple vertices. Detection of these patterns affords a deeper probe
into the local and global topological features of directed network models. By adopting Palla
et al.’s [21] directed clique construction, we applied persistent homology to the associated
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Figure 15 Spherical patterns within the Asian migration and Remittance networks continued. 2-cycle
generators for the 2015 Asian net migration (M1-M37) and remittance (R1-R42) networks

directed clique complex of a weighted directed network using a filtration technique similar
to the weight rank clique filtration introduced by Petri et al. [17]. The definition of directed
cliques allowed us to simplify network flow structure by adopting an overall unidirectional
flow in vertex communities having complete local connections.

We used tools from algebraic topology to extract topological features from the simplicial
model in order to detect specific flow patterns woven in the network fabric. The goal of
homology is to understand the shape of a graph by identifying cycles. For 0-dimensional
homology, every vertex is a cycle. By modding out by boundaries, we recover weakly con-
nected components. At the 1-dimensional level, we detect circuits as well as Type 1 cycles
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Figure 16 Persistent cycles of migration. (a) The second most persistent 1-cycle in the Asian net migration
network. This 1-cycle corresponds to the lowest bar in the 1-dimensional barcode in Fig. 9(a). (b) The most
persistent 1-cycle in the Asian net migration network. (c) and (d) Perpetual 2-cycles in the Asian net migration
network

(with unique sink and unique source) and Type 2 cycles (with multiple sinks and sources).
Note that we observed many more Type 2 cycles than both circuits and Type 1 cycles in
both the migrant and remittance networks, illustrating more complex flow pattern than
what is generally found via traditional graph analysis. We also recovered higher dimen-
sional topological features such as sphere-like voids, illuminating the complex migrant
and remittance flow dynamics within groups of countries in a regional setting. The ad-
vantage of persistent homology over homology at a fixed threshold is that one can analyze
how the simplicial model changes as the threshold varies. Other contributions of this pa-
per include:

• Classifying 1-cycles as circuits (no sink nor source), Type 1 (with unique sink and
unique source), or Type 2 (with multiple sinks and sources). These different types of
1-cycles encode different flow patterns. The definition of the directed clique also
allows for the detection of the circuit with three vertices—a feature not commonly
detected in other TDA methods.

• Characterizing topological features of directed network by perpetuity. While
persistent homology on undirected networks tracks long-lived topological features
along a filtration, persistent directed clique homology in addition detects topological
features of the entire directed network by tracking cycle generators that never get
killed off.

• Distinguishing topological features of the same dimension by introducing coloring
schemes for the barcodes. For the 0-dimensional barcode, coloring the bars according
to eventual connected component membership encodes the clustering of the vertices
at the end of the filtration similar to the final clustering output of single linkage
hierarchical clustering. For dimensions of at least 1, coloring the bars according to
variation in the edge weights within the cycles captures information on similarity or
disparity among internal flows in the cycle. It is worth noting that persistence is
agnostic of such characteristic in detected cycles.

We obtained the colored barcodes after computing persistent homology from the di-
rected clique complexes of the Asian net migration and remittance networks. For the
Asian net migration network, connectivity is characterized by a single perpetual com-
ponent with most linkages forming at the end of the filtration. An analysis of the sixty-one
detected 1-cycles shows that most are of Type 2, including the two that are most persistent.
This reflects the abundance of highly unbalanced movements of migrants from groups of
low income countries to high income states. Moreover, thirty-seven 2-cycles are detected,
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Figure 17 Cyclic flow of remittances in Asia. 1-cycle generators for the 2015 Asian net remittance network

all of which are spheres and two are perpetual, encoding the complex migrant flow struc-
ture among multiple countries in Asia. On the other hand, sixty 1-cycles and forty-two
2-cycles are detected in the net remittance network. Most 1-cycles are also of Type 2, two
of which have significantly larger persistence, and all 2-cycles are spheres. We generate
figures for all detected 1-cycles (Figs. 10–11 and 17–18) and 2-cycles (Figs. 12–15) and
present them in the text.
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Figure 18 Cyclic flow of remittances in Asia. 1-cycle generators for the 2015 Asian net remittance network

Figure 19 Persistent remittance cycles. The two
most persistent 1-cycles in the Asian net remittance
network. (a) This Type 2 1-cycle corresponds to the
most persistent bar in the 1-dimensional barcode in
Fig. 9(b). (b) This Type 2 1-cycle corresponds to the
second most persistent bar in the 1-dimensional
barcode
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