
Pappalardo et al. EPJ Data Science  (2018) 7:30 
https://doi.org/10.1140/epjds/s13688-018-0159-3

R E G U L A R A R T I C L E Open Access

Blockchain inefficiency in the Bitcoin
peers network
Giuseppe Pappalardo1*, Tiziana Di Matteo2,3,4, Guido Caldarelli1,5,6,7 and Tomaso Aste2,3

*Correspondence:
giuseppe.pappalardo@imtlucca.it
1IMT Alti Studi Lucca, Lucca, Italy
Full list of author information is
available at the end of the article

Abstract
We investigate Bitcoin network observing transactions broadcasted into the network
during a week from 04/05/2016 and then monitoring their inclusion into the
blockchain during the following seven months.We unveil that 42% of the transactions
are still not included in the Blockchain after 1 h from their appearance and 20% of the
transactions are still not included in the Blockchain after 30 days, therefore revealing a
great inefficiency in the Bitcoin system. However, we observe that most of these
“forgotten” transactions have low values and in terms of transferred value the system
is less inefficient with 93% of the transactions value being included into the
Blockchain within 3 h and 98.8% within a day. The fact that a sizeable fraction of
transactions is not processed timely casts serious doubts on the usability of the
Bitcoin Blockchain for reliable time-stamping purposes. It also calls for a debate about
the right systems of incentives which a peer-to-peer unintermediated system should
introduce to promote efficient transaction recording
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1 Introduction
Behind Bitcoin [1], the most popular cryptographic currency, there are users distributed
all over the world who, in a voluntary way or for profit, participate in a network where
transactions are announced, verified and eventually inserted into blocks of a massively
replicated ledger known as Blockchain [2]. The Blockchain is a distributed database which
keeps track of all transactions made by using the Bitcoin currency. Transactions involve
one or more input Bitcoin addresses which are sending some funds to one or more “output”
addresses. Despite the success of this new approach, which has seen Bitcoin becoming
the most important cryptocurrency with capitalisation exceeding sixty billions US dollars
(September 2017), the system is far from being optimal.

In the Bitcoin network the recording of transactions inside blocks and their validation is
performed by special nodes called “miners”. They compete to find a brute-force solution of
a cryptographic task consisting in finding a hash number (associated with the block con-
tent and with the previous block hash) which is smaller than a given target number. This is
the so-called “proof of work”, a mechanism through which the system reaches a commu-
nity consensus over the order and validity of transactions based on majority of computa-
tional power [1]. The proof of work is one of the most important elements introduced by
Bitcoin, it indeed solves several issues related to trust and machine synchronisation that
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are otherwise hard to manage in a distributed system operating between untrustful peers.
[1–5]. Miners are incentivised by a reward consisting in a Bitcoin credit (newly issued)
given to the first who finds and successfully broadcasts the valid hash.

In this paper, we measure how efficiently transactions are recorded into the blockchain
by observing the Bitcoin network during the interval between May and December 2016.
In that period, there were around 6000 peers participating to the Bitcoin network. Blocks
contained typically between 1 and 1.7 thousand transactions, counting for about 100–170
transactions per minute. These transactions mobilised a capital of about 152 Bitcoins per
minute (about 91,787 USD/minute at September 2016 exchange rate). During the period
from 04/05/2016 to 11/05/2016, we have monitored the transactions announced in the
network by setting up a customised client that recursively established connections with
all reachable nodes. We then analysed the successive blocks in the Blockchain until to
December 2016 and we measured the interval of time needed to have the transactions
correctly recorded into valid blocks (thus becoming parts of the Blockchain).

As a result, we find that most of the transactions have been recorded in the Blockchain
just after a few blocks. In particular 58% of transaction have been recorded within one
hour. However we also observe that a rather large amount of transactions are left out for
a noticeably long time interval. Specifically 20% of transactions have not been inserted
into the blockchain after 30 days from their appearance. We argue that the blockchain
procedure, even if very effective, it is also prone to intrinsic inefficiencies. In particular,
while miners are incentivised to verify transactions by both remuneration for the proof of
work and transaction fees, neither they, nor other mechanisms ensure that all transactions
are actually recorded.

1.1 Blockchain
In the Bitcoin network, transactions are made and immediately announced by broad-
casting them to the neighbouring network nodes that propagate the announce further.
Nodes also validate transactions which are gathered into blocks which are cryptographi-
cally sealed and inserted (every 10 minutes approximately) into the Blockchain after a vali-
dation from the community. Bitcoin network participants reach consensus on the order of
the transactions by voting by computation power majority (the proof of work). In theory
every network node could participate to this consensus mechanism, but, in the years, this
activity has become typical of a specialised part of the community called “miners”. Min-
ers get newly emitted Bitcoin in reward for this activity. A block contains the hash of the
last valid block and the record of the most recent transactions observed by the miner and
not included yet in the Blockchain. The miner will try to seal it cryptographically with a
hash produced from the block itself and a random part. If the hash number is by chances
smaller than a threshold imposed by the proof-of-work then it is considered “valid” and it
can start to be broadcasted to the network. When a node receives a new block, it should
verify if the block is valid. In order to do that, it checks whether the hash of the block
fulfils the proof-of-work requirements. After that, the node also verifies the digital signa-
tures and the formatting of each transaction inside the block. If the whole block and all
the transactions are verified, it accepts the new block as valid and starts propagating it
through the network (and if the node is a miner, also it will start to discover the next block
on top of it). Conversely, if the block is not valid, or at least one transaction inside the block
is invalid, the block will be discarded. The Blockchain is the chain of blocks built one on
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top of the other in chronological sequence uniquely associated with a sequence of hash
numbers. Miners get their gain mainly from the cryptographic sealing of new blocks with
a valid hash number; therefore, they have little incentives to make the system efficient by
carefully checking if all transactions are included in the blocks.

1.2 Bitcoin communication protocol
All Bitcoin clients are connected to each other in a peer to peer network. This means
that there are no central servers or authorities. Each node individually decides how to
contribute to the network by choosing which service to provide. For example, by relaying
transactions, by storing a copy of the Blockchain or by using their own computational
power for mining. A node wanting to join to the network for the first time needs to connect
to some special peers called “seeds”. Such seeds provide their list of peers. This list does
not depend on geographic location of clients; all the clients included are chosen randomly
and the list can contain up to one thousand nodes. After retrieving the peers’ lists, a node
chooses amongst them until it reaches its default max number of connections (usually
from 8 to 126 established connections, but the number of connections may vary according
to the configuration of the Bitcoin client used and according to the network setting of the
client itself ). Each node, once connected to the network, can send and receive messages
(such as blocks, transactions and new peers joined on the network) from all the other
connected nodes. All these messages have to follow the rules (that may have different
customisation) settled up by the Bitcoin Protocol [6], which consists of a set of messages
used by clients to enable communication among peers.

2 Related work
In the last few years there has been some interest in the study of transaction and block
propagation dynamics in the Bitcoin network with two notable contributions from Decker
[7] and Miller [8]. There are also online services, such as Blockchain.info [9] which allows
users to explore blocks and transaction s. Furthermore, the platform Bitnodes [10] pro-
vides snapshots of all reachable peers in the network and some statistics related to the
type of the client (i.e. protocol version used, last block stored, and ip-geolocalisation).
Since all the data are provided as a list of online clients, it is impossible to reconstruct how
the peers are connected to each other or how information propagates among them. The
approach used to discover peers in the Bitcoin network is to send recursively “getaddr”
message to each reachable node in order to get back part of their known nodes list. In
2015 it has been published a Bitcoin network investigation called Coinscope [8] which
used this approach in order to discover clients. This is done by introducing an algorithm,
named “AddressProbe” which is able to track how peers are connected. At that time, be-
fore the release of Bitcoin Core 0.10.1 [11], it was still possible to discover the connections
because each client kept updated the timestamp of a peer in a “mempool” after every ex-
change of data. Every time a client replied back to a peers list, it also sent their updated
timestamps. The mechanism for updating the timestamp was the following: if a node ex-
changed some messages with a peer, it kept its own timestamp on the updated database.
If instead a node discovered some new nodes through another peer, it applied a two hours
penalties on the timestamp before storing the address into its own peer database. Through
this mechanism it was possible to guess the connections of a peer just retrieving several
time the known peers list and sorting all the records in chronological order [12]. How-
ever, it has been shown [11, 12] that reconstructing peers network could be used to attack
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Bitcoin Core clients. To avoid the possibility of such attacks, the software was modified
in order to avoid the updating of the timestamp of a connected client when they send or
receive data. After last update on the client we noticed that, for an active connection, the
timestamp is updated only when the connection drops or after 24 hours (in the case the
connection is still alive). All the other cases are still as described in [8]. Finally, data propa-
gation rate in the Bitcoin network was studied by Decker et al. in [7] where, by establishing
connections with each node, they measured the time that blocks or transactions take to
propagate into the network.

In this paper, we follow this methodology to identify the appearance of blocks and trans-
actions in the network and we measure the propagation dynamics in the network and the
time they take to be included inside the Blockchain.

3 Methods
To monitor the Bitcoin network we set up a customised client able to recursively establish
a connection with every reachable node, and the ones in the peers list. To accomplish this
goal, our client implemented only a reduced set of messages of the whole protocol:

• getaddr, addr—The “getaddr” messages is used to request a list of known peers from a
node. The node issues an “addr” message as response. This message can contain up to
one thousand known nodes. “addr” messages are also sent automatically to each
connected node when the client establish a connection with a new node.

• inv—The “Inventory” message is sent by a client when it discovers new blocks or
transactions in order to spread them on the network. In the same “inv” message it is
possible to have both blocks and transactions.

We used “addr” messages in order to connect to all reachable peers (as well as to the new
discovered ones once they join the network). Once connected, we stored all the inventory
messages received in the form: timestamp, address, hashcode. Here timestamp is a 64 bit
integer representing the time and date when the “inv” message was received. address in-
dicates the ip address of the nodes (which can belong to ipv4, ipv6 or tor networks) and
hashcode is the hashing string corresponding to a block or to a transaction. We estab-
lished one connection to each peer without making any “getdata” request in order to limit
the load on the network. This approach has the drawback that each peer can close the
connection at any time without sending any alert. When this happened, we immediately
tried to establish a new connection (the information shared with the other peers when
connections are down is lost).

Data exchanged by peers consists of coordinating signals (i.e. announcing new blocks or
transactions) and data messages (blocks, addresses and transactions). Data was collected
by joining the network as a normal node and trying to establish a connection within each
peer address discovered and waiting for “inv” messages for both, blocks and transactions.
The client for collecting the data was coded in Go programming language [13].

4 Data
We monitored the Bitcoin network activity during the period from Wed, 04 May 2016
01:20:45 GMT to Wed, 11 May 2016 18:44:58 GMT. During this period, we observed over
twelve thousands unique peers (12,424) of which 8969 belonging to ipv4 network, 3332
belonging to ipv6 network and 124 belonging to Tor network, with a number client con-
nected at the same time ranging between 5 to 7000. This amount of peers is consistent
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with the amount reported by Bitnodes [10]. Surprisingly, we received from the peers more
than 126 thousands different blocks some of them valid but “old”, where the oldest of them
were included into the Blockchain more than 3 years earlier. Instead, the number of blocks
mined during the listening period is of 1209 valid blocks (from block height 410,119 to
411,327). Overall we collected 592 GB of data with the most part regarding transactions
“inv” messages (589 GB) while the remaining related to blocks “inv” messages. As regards
the 12,424 different nodes that have been observed, we received blocks and transactions
together only from 11,537 nodes, we received blocks from all of them, while the number of
nodes with transactions information is larger and accounts to 12,168 nodes. We classified
blocks and transactions as follows:

• Blocks
Mined During Listening Block (MDLB)—This set identifies all the blocks included
on the Blockchain during the listening period and propagated by the peers before
the next block was discovered. There are 1209 blocks discovered by 530 source
nodes and spread through 11,179 destination nodes. The maximum number of
blocks discovered by a single node during the listening time is 86. These are the
only blocks analysed.
Echo Block (EB)—This set identifies all the blocks already included in the
Blockchain and propagated in delay. We have 406,457 echo blocks, propagated
from 6938 nodes.
Fork Block (FB)—This set identifies all the blocks not included in the Blockchain
even if they had a valid hash. There are 34 fork blocks of this kind.
Invalid Block (IB)—This set identifies all the blocks not included in the Blockchain,
but propagated by the peers despite having a hash above the proof-of-work
threshold (not valid). There were 51,103 Invalid blocks transmitted by 23 nodes.

• Transactions
Blockchain Transactions (BT)—They consist of valid transactions, included in the
Blockchain, observed and propagated through the network before the block in
which they were eventually included is discovered. We received 1,744,899
Blockchain transactions, from which 1,725,508 were included in a block during the
listening time and 19,391 after the listening time. We have discarded transactions
observed for the first time during the mining of the first and of the last block.
Similarly, we have discarded also those received after they were included into a
block. These transactions are noise probably originated by nodes that do not verify
the validity of new transactions. There is a large number of such old transactions
echoed in the system. They must be discarded since they have no relevance for the
analysis we are performing. Also we did not analyse transactions with a set
locktime (about five thousands). The final subset for our analysis is therefore given
by 64,994 transactions generated by 2518 nodes.
Echo Transaction (ET)—Valid Transaction, already included in a block but still
propagated in delay. We have received 12,425 echo transactions that were not
analysed.
Invalid Transaction (IT)—Transaction not valid for some reasons. We received
62,889 Invalid transactions that were not analysed.
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Figure 1 Transactions per block. This figure compares the number of Transactions observed during block
mining (in blue) and the number of transactions included in the Blockchain during the same block mining
time (in red)

5 Results and discussion
We investigated both the transaction dynamics and the block dynamics on the Bitcoin
network. In Fig. 1 we compare the number of transactions observed during the listening
period and the number of transactions included in the blocks during the same period.
From this figure we can see that there are different dynamics. Let us now quantify the
interplay between these two dynamics. Specifically we first look separately at the statistical
properties of the blocks and transactions dynamics. We then look at the statistics of the
process of inclusion of transaction records into valid blocks.

5.1 Block dynamics
Firstly we measured the time needed to mine the valid block hashes (MDLB). We find that
the minimum time is about 2 minutes, while the maximum time is 77 minutes; the mean
time for discovering a block is about 9 minutes and for the 50% percentile the time is about
6 minutes. Tables 1 and 2 report respectively the protocols and the Bitcoin client used by
the nodes of the network.

When a valid block hash is discovered by a miner it is broadcasted to the whole network
for validation by the other miners that consequently start the process of mining the next
block on top of this one. This propagation of the block hash through the network nodes
takes some time. In Fig. 2 we report, for each block, the number of nodes reached vs. the
time lapse since the block was first observed in the Bitcoin network. Each trace of the plot
terminates when a new valid block is discovered, for this reason the curves have different
durations (around 10 min on average). We observe that different blocks reach a different
number of nodes which depends on the propagation dynamics, on the number of nodes
present during the propagation and on the number of active connections established by
our client during the block propagation time. We observe that the typical propagation
consists in a fast initial increase during the first second of propagation when about 10%
of nodes are reached. In this initial phase, the average propagation law (black line in the
plot) is consistent with an exponential growth for the number of nodes N(t) which is what
is expected for a diffusion process over a random network [14]. However, this fast propa-
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Table 1 Bitcoin Protocol version used by nodes

Protocol Number of clients

70012 6655
70002 3013
N/A 771
7000 1153
70013 88
70010 78
80001 71
70011 68
80000 24
99999 4
50400 2
70014 2
60000 1
70003 1
60002 1
80002 1

Table 2 Bitcoin Client Software used by 20 or more nodes

Bitcoin Software and version Number of clients

Classic:0.12.0 2969
Satoshi:0.12.1 1790
Satoshi:0.12.0 1691
Satoshi:0.11.2 1323
N/A 771
Satoshi:0.11.0 368
Satoshi:0.10.2 233
Satoshi:0.11.1 226
Classic:0.11.2 184
Satoshi:0.12.99 144
Satoshi:0.11.2(bitcore) 142
Satoshi:0.9.3 122
Satoshi:0.10.0 116
BTCC:0.12.1 93
Satoshi:0.8.6 72
Satoshi:0.9.1 71
BitcoinUnlimited:0.12.0(EB16; AD4) 70
Satoshi:0.10.1 67
Satoshi:0.9.2.1 56
Satoshi:0.8.5 42
Bitcoin XT:0.11.0D 29
Bitcoin XT:0.11.0 26
Bitcoin XT:0.11.0E(Linux; x86_64)/&22’, 22
Satoshi:0.8.1 20

gation is followed by a second phase that reaches about 60% of nodes within the first 10 s
with a propagation that could be (too short interval for a good fitting) a power law of the
kind N(t) ∝ t1.1. Then propagation it slows further down approaching saturation with the
rest of the nodes reached after several minutes.

We observe that blocks first announced by some nodes propagate consistently faster
(or slower) than others. We also observe that, at the extremes, blocks first propagated by
the fastest node reach 50% of the peers in 2.3 s whereas blocks first propagated by the
slowest node reach 50% of the peers in more than 1800 s. Client type is another factor
in the propagation process; however, the limited statistics does not allow us to determine
more precisely this effect.
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Figure 2 Blocks propagation. Number of nodes reached by a new valid block before a following block is
discovered (left). The colours are associated with the size of the block: the size increases passing from blue to
red. The black line is the average of all the observations and the two dashed green lines are respectively the
10% (lower) and 90% (upper) percentiles. The right plot the same of the left one but in log–log scale

Figure 3 Unique Transaction per hour. Number of Transactions per hour received during the listening time.
The blue line represent the transactions included in the Blockchain during or after the listening time (BT). The
red line represent the invalid transactions (IT)

5.2 Transaction dynamics
We recorded the transaction id received from clients together with the client address,
and the time. Figure 3 shows the received transactions rate per hour for IT set (in red)
and BT plus ET set (in blue). We observe a fluctuating number of BT+ET transactions
between 7000 and 14,000 per hour, whereas the IT have sporadic peaks that can reach
2000 but for most of the observation window do not contribute significantly to the total
number of observations. During the listening time we received 1,820,212 Transactions;
1,722,696 of them were included in the Blockchain in the period until Sat, 09 Jul 2016
10:52:38 GMT. The Blockchain contains other 1266 transactions that have been produced
during the monitoring period but were not observed by us in the network. An amount of
1208 of them corresponds to the zero-th transaction of each block (which is not broad-
casted), whereas we could not observe the remaining 58 ones.
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Figure 4 Transaction stand-by time. Distribution of time intervals between the first time a transaction is
observed in the network and the time when it is included into a valid block. The left plot reports time in
seconds and the right plot reports time in number of blocks (approx 10 min each). The red line are best fits
with exponential decay law

Figure 5 Known transactions included by time.
Fraction of transactions included in the Blockchain
after a given amount of time (seconds, x-axis) from
first observation in the network. The two vertical
lines mark 1 h and 30 days

5.3 Inclusion of transactions into blocks
Let us now quantify which is the fraction of transactions that are recorded in the blocks
mined after their first observation in the network. Specifically, we computed the interval
of time between the first time a transaction is seen in the network, as received by our
client, and the time when it is included in the Blockchain. Figure 4 shows the distribution
of such intervals of time measured in seconds (left) and in number of blocks (right). We
observe a decreasing behaviour: 24% of transactions are included in the first block mined
after their first observation in the network, 13% are recorded in the successive block and
9% in the following one. The inclusion rate is consistent with a exponential decay ∼ e(–t/�),
the best-fitting curve is reported in the figure with the red line. The coefficient � is the
characteristic time and it was measured to be respectively 2800 s and 4.1 blocks. It results
that for the initial decay phase (the first 20 blocks) the exponential behaviour is well fol-
lowed with R2 = 0.98 and R2 = 0.96 respectively. However, we also observe from Fig. 4 that
for longer times the empirical time distribution does no longer follow precisely an expo-
nential decay; instead, it tends to have proportion of transactions that takes longer than
expected to be included in the blockchain. These slower tails can be seen by looking at the
cumulative distribution, which is reported in log–log scale in Fig. 5. We observe that 58%
of the transactions are included in the Blockchain after 1 h from the first time they were
seen but, remarkably, 20% of the transactions are still not included after 30 days, revealing
therefore a great inefficiency in the system.
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Figure 6 Average value included by time. Fraction
of transferred value included in the Blockchain after
a given amount of time (seconds, x-axis) from first
observation in the network

Figure 7 Value vs time. Average value of the transaction (in Bitcoins) vs. waiting time in blocks numbers

A slightly different outcome is achieved if, instead of the number of transactions, we
measure the fraction of transferred value that is included in the Blockchain after a given
amount of time (Fig. 6). In this case, we note that the process is still rather slow but most of
the value is included in the Blockchain within 3 h (93%) and after 30 days only 0.1% of value
is left to be included. This apparent inconsistency with the previous results is caused by
the fact that the tail of the probability distribution for long waiting transactions is mostly
populated by transactions containing only very small amounts as indicated by Fig. 7.

Fees (computed as the difference between total value inserted in the transaction mi-
nus the total value paid) play a role on the time a transaction takes to be included in the
Blockchain but only for what concerns the facilitation of insertion of large transactions.
We can indeed observe from Fig. 8(a) that in average larger fees-per-byte (y axis: fee/size)
corresponds to faster inclusion times. However the spread is very large. If instead we look
at the fee vs. waiting time regardless to the size of the transaction we do not observe any
trend indicating that the fee facilitates speeds the transaction regardless the size. This is
reported in Fig. 9 where we observe that some transactions associated with high fees have
very long waiting times and, vice-versa, transactions with small fees are processed rather
rapidly. This might indicate that the decreasing trend reported in Fig. 8(a) is mostly driven
by the fact that smaller transactions tend to be included more quickly. Figure 8(b) shows
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Figure 8 Fee/size and 1/size vs time. (a) Fee/size vs time. Fee-per-byte paid for a transaction vs. time waited
before the transaction is registered in the blockchain. (b) 1/size vs time. Inverse of the size of a transaction vs.
time waited before the transaction is registered in the blockchain

Figure 9 Fee vs time. Fee paid for a transaction vs. time waited before the transaction is registered in the
blockchain

indeed that this is the case with an overall similar decreasing trend revealed in the plot of
1/size vs. waiting time.

6 Conclusions
By monitoring the Bitcoin network activity during a period of one week and by follow-
ing the dynamics of inclusions of transactions within the Blockchain during the following
three months we unveiled strong inefficiencies. The Bitcoin system fails in taking accu-
rate record of the transactions with some of them taking months before being recorded in
the Blockchain. This inefficiency is much larger in terms of transaction recording than in
terms of volumes exchanged. Indeed, we observe that 42% transactions are were not in-
cluded in the Blockchain after 1 h from their appearance and 20% of the transactions were
not included in the Blockchain after 30 days. However, we observe that most of these “for-
gotten” transactions have low values and in terms of transferred value the system is less
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inefficient with 93% of the transactions value being included into the Blockchain within
3 h. We note that this inaccurate recording did not seem to be caused by the fact that block
size that at the time of observation was limited to 1 MB and only few thousands transac-
tion can be included into a block. We indeed measured average block size 0.8 MB, with
only 3% of blocks exceeding 0.99 MB band and even with some blocks without transac-
tions [9]. As pointed out earlier, most affected transactions are those of small value, even
if we observed some large transactions that have being recorded with delays of over one
month. The fact that mostly small transactions are ‘forgotten’ keeps overall efficiency of
the Bitcoin value exchange system to acceptable levels. However, this poses serious ques-
tions on the possibility of using Bitcoin as a reliable time-stamping system where small
value transactions are used to register operations outside the Bitcoin system.

We conclude that such inefficiency in the Bitcoin system is most likely due to lack of suffi-
cient incentives for peers and miners to verify, propagate and record transactions. Indeed,
peer contribution to the Bitcoin network is mostly driven by mining rewards and efficient
record keeping is not incentivised enough. Transaction fees should incentivize miners to
process transactions timely and guarantee their recording onto the blockchain, however at
the time of observation fees did not seem to play a significant role in the recording delayes.
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