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B\:eﬂrir:;tgtn%fsogd Network, Very low birth weight (VLBW) infants require specialized care in neonatal intensive
Spediatrics, University of Vermont, care units. In the United States (U.S)), such infants frequently are transferred between
E“‘rl“‘f‘gtof“r UEA omation: hospitals. Although these neonatal transfer networks are important, both
asaillastt)\(e) aiutth:;,'qndzfn?sgz':t:;e economically and for infant morbidity and mortality, the national level pattern of

neonatal transfers is largely unknown. Using data from Vermont Oxford Network on
44,753 births, 2122 hospitals, and 9722 interhospital infant transfers from 2015, we
performed the largest analysis to date on the interhospital transfer network for VLBW
infants in the U.S. We find that transfers are organized around regional communities,
but that despite being largely within state boundaries, most communities often
contain at least two hospitals in different states. To classify the structural variation in
transfer pattern amongst these communities, we applied a spectral measure for
regionalization and found an association between a community’'s degree of
regionalization and their infant transfer rate, which was not utilized in detecting
communities. We also demonstrate that the established measures of network
centrality and hierarchy, e.g., the community-wide entropy in PageRank or
betweenness centrality and number of distinct “layers,” within a community, correlate
weakly with our regionalization index and were not significantly associated with
metrics on infant transfer rate. Our results suggest that the regionalization index
captures novel information about the structural properties of VLBW infant transfer
networks, have the practical implication of characterizing neonatal care in the U.S,,
and may apply more broadly to the role of centralizing forces in organizing complex
adaptive systems.

Keywords: Neonatology; Network Science; Hospital Transfer Networks; Healthcare
Policy

1 Introduction
Although very low birth weight (VLBW) infants, i.e. babies weighing less than 1500 grams
at birth, accounted for only 1.4% of all births in the United States (U.S.) in 2015, they ac-
counted for 52% of all infant deaths [1]. These extremely fragile infants require specialized
care in a neonatal intensive care unit (NICU).

The creation of regional systems for perinatal care, first proposed in 1975 [2], envisioned
three levels of care including NICUs. The complexity of a patient’s needs was meant to
determine the hospital where the mother or infant received care. The goal was to improve
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outcomes for high-risk pregnant women and VLBW infants by ensuring access to high-
quality, economically-efficient care for all mothers and their newborns [2].

In the ensuing 40 years, however, systems of perinatal care developed based on financial
incentives, geography, patient preferences, and hospitals’ interests in establishing NICUs
to attract young families [3, 4]. This growth has led to the deregionalization of care, the
proliferation of smaller maternity centers and NICUs, and the uneven distribution of peri-
natal resources unrelated to regional requirements [5—8]. Regionalization models, regula-
tions, and measures of risk-appropriate care for high risk infants vary widely among states
[4, 9-13].

One effect of deregionalization—coupled with the unavoidable fact that emergency de-
liveries happen, sometimes far from home—is that VLBW infants are not always born at
a hospital capable of providing the appropriate level of care for their entire stay, and re-
quire transport to a different facility. There is substantial evidence suggesting that birth
at a hospital with an appropriate NICU and care at a NICU with an adequate volume of
VLBW infants are associated with improved survival [9, 14—19].

Recently, the American Academy of Pediatrics and the American College of Obstetrics
and Gynecology developed new functional classifications of facilities that provide hospital
care for pregnant women and newborn infants and recommend regionalized systems of
perinatal care based on these classifications [9, 20, 21]. In the American Academy of Pedi-
atrics guidelines, the highest level (IIl or [V) NICUs can care for VLBW infants throughout
their entire birth hospitalization. Mothers should be transferred to such hospitals prior to
birth, or VLBW infants born at a hospital with a lower level NICU should be transferred
to a hospital capable of providing the appropriate level of care. Understanding how hospi-
tals work together in regionalized networks to care for infants is an important part of that
effort [22, 23].

In this study, we perform a network analysis on a U.S. national-level population of VLBW
infants using data from Vermont Oxford Network. Our approach first identifies groups of
highly connected hospitals, i.e. communities of hospitals, as measured by VLBW infant
transfers. We then quantify the degree to which these communities are different in terms
of regionalization by defining a regionalization index as the entropy in singular values of
a normalized adjacency matrix. An important feature of our method is that it retains in-
formation about the frequency and direction of VLBW infant transfers, which advances
our understanding of VLBW infant transfer networks and our capacity to study weighted,
directed networks. By characterizing network regionalization, we find that the degree of
regionalization within communities varies across the U.S. and that this variation is associ-
ated with key information on infant care. Our results further highlight the growing utility
of applying network science approaches to hospital care networks.

2 Related work

Although the application of network science methodologies to large, empirical patient
transfer networks has only recently been possible, similar approaches have been previously
applied to NICUs in California [24] and adult intensive care units nationally [25].

A rich literature on detecting the presence of hierarchical and/or centralization struc-
ture in networks exists, which could be extended to study regionalization. For example,
methods exist to perform hierarchical decomposition and link prediction in complex net-
works [26], for identifying interactions between groups in multilayers networks [27], de-
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termining the flow-hierarchy of a network (defined as the fraction of edges in the commu-
nity that are not in the cycle graph [28]), and detecting overlapping communities in hier-
archical networks [29]. Additionally, fluctuations or variation in measures such as PageR-
ank and betweenness centrality (both terms we define in the methods section) are often
applied to measure hierarchy and centralization in networks [30—32]. Lastly, the role of
hierarchical structure has also been studied in the context of gene interaction [33], brain
[34] and hydrological [35] networks. Our measure of regionalization closely maps on to
established, network-science metrics for describing both the centralization and degree of
hierarchical structure in networks.

3 Materials and methods

3.1 Data source: Vermont Oxford Network

Vermont Oxford Network is a voluntary collaboration of health care professionals around
the world dedicated to improving the quality, safety, and value of care for newborn infants
and their families [36]. More than 700 NICUs in the U.S. participate in the Vermont Ox-
ford Network database. Vermont Oxford Network members submit standardized data for
infants with a birth weight of 401 to 1500 grams or a gestational age of 22 weeks 0 days to
29 weeks 6 days who are born in the member hospital or admitted within 28 days of birth
without first having been discharged home.

For this study, we included 9722 infants who were born from January 1, 2015, to De-
cember 31, 2015, submitted by 702 hospitals in the United States. The additional 1420
hospitals included in our analysis were not members of VON, but transfered an infant to
and/or received an infant from VON member hospitals. All hospitals that contributed fi-
nalized data for the study period were included. Local staff collected data using uniform
definitions that did not change during the study period [37]. All data underwent auto-
mated checks for quality and completeness at the time of submission. The University of
Vermont and Northeastern University Committees on Human Research considered use
of the Vermont Oxford Network Research Repository not human subjects research for
this study. Consent for the Research Repository was waived by the University of Vermont
Committee on Human Research and the Northeastern University Institutional Review
Board. All data were de-identified.

Members submitted the exact name, city, and state of sending or receiving hospitals for
infants who were transferred into or out of their hospitals. The number of transfers in this
report includes all transfers to a VON member hospital within 28 days of birth, or from
a VON member hospital on or before first birthday and prior to being discharged home.
Infants transferred between two VON members within 28 days are counted at the receiv-
ing hospital. Multiple eligible transfers of a single infant are counted separately. Transfers
are not included if the sending or receiving hospital is not recorded. For a complete list of
participating facilities, please see Additional file 1.

3.2 Network methods

Here we provide additional details on the network methods used in our analysis.
Community detection and modularity. The network is first partitioned into groups, i.e.

communities, such that there were relatively more edges connecting the hospitals within

the same group than there were with other groups. We apply a well practiced method for

partitioning the networks into groups, which is known as modularity-maximization [38].
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Mathematically, modularity M(s) : Z; — R is a fitness function
M(s) . > )8(si»5)) 1)
8)=— aij — Pij)O\Si» Sj
m j ~ Pij j

of the partition s € Zj of all # nodes into g groups, i.e., partition where each node belongs
to group {s; € 1,...,q}, where m is the number edges, a; is the number of transfers from
j to i, and 8(s;, ;) is 1 if 5; = s; or O otherwise. Here, pj; is the probability under the null
distribution that there is an edge between i and j. The intuition behind modularity max-
imization is that we are comparing the fraction of edges within the same group from the
resulting partition of the network to the average fraction of edges within same group in an
ensemble of randomly generated networks, i.e., when the null model distribution results
from the values p;;.

An alternative interpretation of the values pj; is that they represent the parameters asso-
ciated with the well-known configuration model. The configuration model is a procedure
for generating random instances of a network by swapping edges and holding the degree
(number of neighbors) constant. In such randomly generated networks, two nodes i and
j will be connected with probability proportional to their degree, e.g., if these nodes have
degree d; and d; respectively, they will be connected with probability

pij = d,d,/Zm

However, note that we do not have to perform this randomization to compute p;; since we
can directly calculate d; and m.

Hierarchical layers. We applied Blondel and Guillaume et al’s approach to modularity
maximization to find communities [39]. One immediate application of their approach is
that it naturally outputs the number of “layers” present in each community. In other words,
for each community, to determine the number of “layers,” we simply count the number of
times the Guillaume et al. algorithm identified a local maxima and thus collapsed all nodes
into a single hierarchical layer. Critically, this approach does not require pre-specifying the
number of communities, nor does it require optimizing a set of tuning parameters.

Regionalization index. We define regionalization yx (G) in a network as the entropy

x(G) =) riloghs (2)

in the normalized singular values A of an adjacency matrix. What we mean by normalized
singular values is that sum of all singular values is 1. Note that this entropy is minimum for
star-graphs, i.e., x(G) = 0, and is maximized or x(G) = log(N) for cycle graphs, see Fig. 1
for an example calculation.

PageRank centrality. PageRank centrality was originally developed by Page et al. [40] as
scalable algorithm to rank web pages based on the network structure of links to and from
the web pages. Its centrality score for node i is proportional to how often a random walker
is at i, given it could either randomly, with probability y, go to nodes that it points to,
or with probability (1 — y) it could hop to any node in the graph with equal probability.
In our calculation, y = 0.85. The entropy in PageRank then relates to the uncertainty of
a random walker undertaking such a walk in the network. In our study, we calculate the



Shrestha et al. EPJ Data Science (2018) 7:27

Page 5 of 14
Normalized singular values: A; Area under the curve: Regionalization
1.0 Y‘ —%- star 0.35 4
\‘ tree
084 |\ -»- line 0301 Pm——=pom—m = Voo
’ \ -e- cycle D R et SEEEE SRR }
\ 0.25 \
0.6 1 \ = —%- star: 0 \
! $ 020 tree: 1.3337 \
\ 2 -»- line: 1.7918 \
0.4 \ I 0157 _e- cycle: 1.9459 \
\ \
y 0.10 \
024 N oo L \
t——--1'-——-t—-—-‘—-——':——-:.\-\———o 0.05 \
\ Y \
0.0 e e S > 0.00] *=———h———— k- ——— e —— == -
0 1 2 3 4 5 6 0 1 2 3 4 5 6
i
Figure 1 An example computation of the regionalization index ( (G)) across a set simple, stylized graphs. On
the left, we show the normalized list plot of singular values of a star (blue-star), tree (orange-cross), line
(green-triangle) and cycle (red-circle) graph with seven nodes each. On the right, we show the entropy list

plot for each graph, i.e, the normalized singular values, and x (G) is exactly the area under this curve
(corresponding to values as listed in the caption)

PageRank entropy within a community, so random walkers would be restricted to moves,
which keep them in the same community.

Betweenness centrality. Whereas PageRank centrality is based on a random walker fol-
lowing random paths through the network, betweenness centrality is computed from de-
terministic walks between all pairs of nodes. More specifically, the betweenness centrality

b; of node i is the fraction of shortest paths between all pair of nodes in the network that
pass through node i. In other words, the betweenness of node i, i.e. b;, is the probability
that the shortest path between a randomly selected origin node j and destination node k

will “pass through” node i. Again, the entropy in betweenness then relates to uncertainty
in a random walker undertaking such a walk in the network. Similar to the PageRank en-

tropy, we calculate the betweenness entropy within a community.

Flow hierarchy. Flow hierarchy ¢ of a network, is computed exactly as defined in [28],
but very briefly is the fraction of edges, which are not in a cycle.
Reciprocity. Reciprocity is the fraction of edges that are of cycle of length two. Note that

reciprocity is related to the flow hierarchy because the fraction, 6, of edges that are in
cycles of length greater than two can be computedas 6 =1-¢ —«.

4 Results

Using data from 9722 VLBW infant transfers among 2122 hospitals in the U.S., we con-
structed a weighted, directed network. From this network, we identified groups, or com-
munities, of hospitals that transferred VLBW infants more frequently among themselves

than with other communities, see Fig. 2. More specifically, we followed the established
procedure of maximizing the number of within-community transfers relative to between-
community transfers, i.e. modularity maximization. Given that the VLBW infant transfer
network is directed and weighted by the number of infant transfers between hospitals, we
applied Blondel and Guillaume et al.’s approach to modularity maximization to search for
high modularity partitions of the network [39].
Briefly, their approach is a bottom-up, multilevel clustering algorithm where each node
is moved to other communities iteratively in order to maximize the local contribution to
the modularity function. When the algorithm reaches a local maximum, all nodes within
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Figure 2 The 2122 hospitals were assigned to 50 statistically determined communities, i.e. a group of
hospitals that transfers many more infants amongst each other than with hospitals outside of the
‘community” Communities are represented by a minimum spanning polygon around 90% of the infant
transfers. The borders have been obscured to protect the privacy of the health care facilities

Table 1 Hospital and community characteristics with the interquartile range (IQR), i.e. the interval
between the 25th and 75th percentiles

Overall By community By hospital
Median (IQR) Median (IQR)
Infants (total) 44,753 787 (400-1325) 51 (25-95)
Infants transfered 9722 178 (80-272) 11 (6-19)
Hospitals 2122 40 (22-63) -
Level lll or IV hospitals 27% 25% (17-33%) -
States covered (inc D.C) 51 2(1-4) -

the community are mapped onto a single node while tracking the weights of associated
edges, and the process of searching for better modularity scores continues to the next
“level” As a result, the algorithm naturally identifies both the communities and the num-
ber of hierarchical layers in each community. However, as we outline below, the number of
“layers” detected via this method provided an overly coarse description of the VLBW in-
fant transfer networks, which was largely redundant with established centrality measures,
e.g., PageRank and betweenness centralities.

Using this community detection algorithm, we identified 53 communities within the
U.S. interhospital transfer network for neonates. To protect patient privacy, we excluded
networks with < 3infant transfers and we manually split a community, which included
hospitals in Georgia and Connecticut. As a result, we used 50 distinct communities in our
analysis. Figure 2 shows the geographic distribution of these communities. Out of 9722
transfers, there were only 222 transfers (or 2.3%) between hospitals in different commu-
nities. The communities varied in the number of hospitals, number of infants, and per-
centage of infants in the community who were transferred, see Table 1. Thirty-two of 50
communities had hospitals in more than one state; nevertheless, less than 8% of transfers
occurred between hospitals in different states. This feature—where few transfers occur
between states, but most communities contain at least one hospital in different states—
arises because the average number of transfers from an individual hospital is quite low
(median 11 (6-19 IQR), see Table 1) relative to the >700 (or approx. 8%) of inter-state
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Figure 3 The distribution of regionalization indices across the 50 U.S. VLBW infant transfer network
communities. A score of 0 is associated with the most centralized networks, as represented by the empirical
network in the top-left of the plot, while a score of 3.5 represents the most regionalized empirical network
identified in our study, as represented by the network in the top-right. The mean observed regionalization
index observed across the VLBW infant transfer network communities was 1.99, which closely matches the

empirical networkath=19

transfers. Nevertheless, developing a fuller understanding of the mechanisms behind our

observation that inter-state transfers are rare remains an important area of future research.

4.1 Structural variation within VLBW communities

To measure structural variation across these 50 communities, we employ a continuous in-

dex for the degree of network regionalization. More formally, for a graph G, defined by a

normalized adjacency matrix A whose elements A;; are the fraction of transfers from hos-

pital j to hospital i, we define regionalization x(G) — R* as the entropy in the normalized

singular values of A. Note then that the entropy is minimum for star-graph, i.e., x (G) =0,

and maximum or x(G) = log(N) for cycle graphs separating star-like graphs from cycle

graphs. We provide more details on the computation of this metric—along with its per-

formance on stylized networks—in the methods section.

From a network science perspective, the regionalization index provides both a measure

of how fast a random walker moving through the graph mixes to its stationary distribution

and how fast groups of nodes (as indicated from the component of singular vectors) mix

to the leading singular value. This approach of including the whole spectrum of the graph

resonates with analogous spectral methods used to detect synchronization time scales in

hierarchical networks [41]. However, VLBW infant transfer networks are weighted, di-

rected, asymmetric, and have adjacency matrices with complex eigenvalues. To simplify
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Figure 4 The association between the regionalization index and the community-level. (A) PageRank entropy,
(B) betweenness centrality entropy, (C) flow hierarchy, (D) reciprocity, and (E) number of hierarchical layers.
The regionalization index was positively associated with the community-level entropy of PageRank (R? = 0.85;
p < 0.001) and betweenness centrality (R? = 0.76; p < 0.001); however, regionalization was negatively
associated with flow hierarchy (R? =0.10; p < 0.014), not linearly correlated with reciprocity (R? =0.05;
p =0.07), and only weakly associated with the number of hierarchical layers (the mean regionalization index
was significantly lower in communities with only a single hierarchical layer; ANOVA: degrees of freedom = 5;
F value = 7.245; p < 0.001; Tukey HSD test, with a correction for multiple comparisons, was used post-doc to
determine which group means were different)

Table 2 Network Metrics by Community. (Network measures are defined in the methods)

Regionalization x (G) Hierarchical layers PageRank Betweenness Reciprocity (&) Flow Hierarchy (n)

Median 222 2 277 1.34 0.19 0.77
Mean 1.99 2.28 2.62 1.29 0.20 0.75
IQR (1.48-2.63) (1-3) (2.05-3.27) (0.86-1.74)  (0.11-0.25) (0.60-0.88)
Min./Max. (0-3.50) (1-6) (0.65-3.77) (0.00-2.66)  (0.00-0.63) (0.31-1.00)

the analysis, while still preserving aspects of the relevant structure, we applied a straight-
forward transformation, A7 A, to construct a symmetric matrix where all of the eigenval-
ues are real. These eigenvalues are also the square of the singular values of A and thus
preserve the relevant structure of the original graph.

After calculating the regionalization index, x(G), across all 50 VLBW infant transfer
communities, we find that on average networks have a regionalization index of 1.99, rang-
ing from exactly 0 to 3.5, see Fig. 3. Interestingly, five communities had regionalization
scores of exactly 0, meaning that they are perfect star graphs, or hub-and-spoke networks.
In these communities, there was a single level III or IV hospital that received infants from

multiple, lower-level hospitals.
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The VLBW transfer communities also varied across established network science hier-
archy metrics [30-32], as measured by the community-level entropy in PageRank and be-
tweenness Centrality, the flow hierarchy, and the number of hierarchical layers, Table 2
and Fig. 4. Using the proportion of variation explained in an ordinary least-squares regres-
sion, R? as our measure of association, the regionalization index was positively associated
with the community-level entropy of PageRank (R? = 0.85; p < 0.001) and betweenness
centrality (R? = 0.76; p < 0.001); however, regionalization was negatively associated with
flow hierarchy (R? = 0.10; p < 0.014), not linearly correlated with reciprocity (R? = 0.05;
p =0.07), and only weakly associated with the number of hierarchical layers (the mean re-
gionalization index was significantly lower in communities with only a single hierarchical
layer; ANOVA: degrees of freedom = 5; F value = 7.245; p < 0.001; Tukey honest signif-
icant difference (HSD) test with a correction for multiple comparisons was used post-
hoc to determine which group means were different). However, as can be seen in Fig. 4,
the relationship between these metrics, especially reciprocity and the regionalization in-
dex, cannot be fully described with a linear model. Lastly, the average PageRank centrality
(along with other measures of centrality) was higher among level IV NICUs, as compared
to lower-level facilities (ANOVA: degrees of freedom = 3; F = 106.1; p < 107%; witha Tukey
HSD post-hoc test to determine that level 4 NICUs were driving the difference in means).
However, we leave a richer exploration of differences between the level of care a hospital
can provide and transfer network metrics for future research.

Although our data set contains nearly 90% of the VLBW infants born in the US, i.e. it was
approximately 90% complete, we assessed the robustness of our methodology to missing
data by performing edge addition/deletion. Briefly, we randomly increased (or decreased)
the number of transfers between hospitals by either 1%, 5%, or 20%, proportional to the
prevalence of transfers in the original network and, in addition, added a small amount of
uniform noise to the edge weights. With these “simulated” networks, we both re-estimated
the community structure (although not for 20%) and, using the original community struc-
ture, estimated the entropy over the PageRanks and the regionalization index for each
community. For community detection, we found that—even with 5% addition/removal of
transfers—more than 90% of hospitals were grouped in the same community as in the
original network and that the error for both the PageRank entropies and regionalization
indexes was nearly zero (in this case even up to 20% addition/removal), see Fig. 5. In-
terestingly, the PageRank entropy was slightly more robust to edge addition, while the
regionalization index was slightly more robust to edge deletion (differences were statisti-
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Figure 6 The regionalization index and the Q
proportion not transfered are positively associated.
We performed an ordinary least-squares regression
between the regionalization index and the
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Table 3 Association between proportion not transfered and community-level network metrics. In the
regression models, we controlled for variation in the number of hospitals and the fraction of VON
member hospitals within each community

Metric Adjusted R p value
Regionalization Index 0.346 <0.001
PageRank Entropy 0.158 0.085
Betweenness Entropy 0.164 0.071
Flow hierarchy 0.129 0.228
Reciprocity 0.152 0.103

cally significant by ANOVA with a post-hoc Tukey HSD test and false discovery correction
to control for multiple comparisons). Our results—general robustness of community de-
tection and regionalization metrics to edge addition/removal, but a slight trade-off in the
robustness of our two primary measures of regionalization—highlight the importance of
considering multiple metrics when analyzing a data set and the utility of the Blondel and
Guillaume et al. procedure for community detection in hierarchical networks.

Lastly, we evaluated the relationship between the regionalization index and the propor-
tion of all infants born in a given community who were never transferred (proportion not
transfered). These non-transferring infants neither contributed information directly to the
community detection nor to the regionalization index. However, we found a positive as-
sociation between the overall percent of infants who did not transfer and the hierarchical
index for the community (adjusted R? = 0.346; p < 0.001), Fig. 6. This result was robust to
variation in the number of hospitals belonging to each community and to the fraction of
VON hospitals present in the community (we only had data on the proportion not trans-
fered for VON member hospitals). Importantly, although the association was also positive,
we failed to find statistically significant relationships between the proportion not transfered
and the other network methods, i.e. PageRank entropy, Betweeness entropy, flow hierar-
chy, reciprocity, and the number of hierarchical layers (ANOVA: degrees of freedom = 5;
F value = 1.795; p = 0.135), see Table 3. This result, that the regionalization index has a sig-
nificant relationship with the proportion not transfered, further highlights the additional

information about the network being captured by the regionalization index.
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5 Discussion

Using a U.S. national-level data set containing 9722 VLBW infant transfers among 2122
hospitals, we found a variety of different types of communities, varying from highly cen-
tralized to highly regionalized. That we found strongly regionalized networks is perhaps
not surprising given the financial incentives of the health care market, the differences in
state regulations governing NICU expansion, and geography [3, 4, 6, 10-13]. Our commu-
nities were largely organized around state boundaries, but 25% of communities overlapped
at least four states and 8% of all transfers occurred between hospitals in different states.
The interstate nature of transports highlights the importance of states working together
to coordinate policies in these regional NICU networks to improve efficiency and quality
of care.

To obtain these results on VLBW infant transfer network structure, we developed and
applied a network science measure able to distinguish networks based on their degree of
regionalization, which also accounts for the weighted, directed, and asymmetric nature
of VLBW transfers. We verified this metric using data from all infants in the detected
communities, finding the percent of infants not transferred was associated with greater
regionalization scores.

Our study differs from Kunz et al. [24], who characterized NICU referral networks in
California, and Iwashyna et al. [25], who described adult critical care transfer networks na-
tionally. Kunz et al. collapsed all transfers between hospitals into a single edge and made
the network symmetric by removing the directionality of transfers, then used the Fortu-
nato community detection algorithm [42] to identify communities. Iwashyna et al. used
PageRank [40] to calculate centrality. These methods, while valid, do not make use of all
of the information provided by a hierarchical network in which transfers are weighted,
directed, and asymmetric. Additionally, given our findings that many VLBW infant trans-
fer communities span multiple states, obtaining an accurate picture of network structure
necessitates national-level data. Therefore, our results likely provide the first picture of
national-level VLBW infant hospital transfer networks.

There is a rich and growing body of literature on detecting hierarchical structure in
networks [43-45]. Our work advances from earlier studies on identifying the presence of
hierarchy in networks by defining a metric of regionalization structure, which provides a
fuller description of the network than many of the standard centrality measures. Briefly,
Corominas-Murtra [30] maps the definition of hierarchy to three dimensional points (Or-
derability O, Feedforwardness F and Treeness 7)), Luo & Magee [28] defines hierarchy as
the fraction of edges that are not a part of the cycle graph, and Czégel & Palla [46] measure
hierarchy as the normalized variance in the stationary distribution of a random walker on
a network [28, 30, 46]. Clearly, Czégel and Palla’s approach is closely related to ours and
will be nearly identical to the PageRank entropies we report for each community [46].
Most similar to our work is a methodology proposed for using eigenvalues to reveal the
time-scale of synchronizing dynamics in hierarchical networks [41]. Our approach is able
to detect regionalization structure for asymmetric, weighted, and directed graphs. Addi-
tionally, the regionalization index we derived provides novel structural information about
anetwork, as compared to established network science metrics. Critically, our regionaliza-
tion metric captured a relationship between network structure and the fraction of infants

who are born into a hospital community but never transfered, which was not captured
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by the established metrics used in our analysis, which suggests that the regionalization
metric contains novel information about network structure.

In 2015, VON members submitted data on nearly 90% of the VLBW infants born in the
US. Most VON members are Level III or IV hospitals; however, in this analysis, members
tracked the exact names of hospitals where infants originated or were sent, which included
non-VON members. Although non-VON members do not report data to VON, we did
know their levels of care. The only NICUs completely absent from our analysis were non-
VON members that never transferred infants or exclusively transferred infants to other
non-VON members. Since the VON data contains information on nearly all VLBW in-
fants, an interesting avenue of future research would be to compare the nearly complete
VON data to alternative, but less complete, data sets. Medicaid would provide informa-
tion on the entire U.S., and as we have shown, understanding how communities cross
state lines is vital. Additionally, many areas have systems of care where infants are born
at a hospital capable of providing the appropriate level of care, or where transfers are not
an option. We need to understand the systems of care in areas that do not have transfer
communities and compare infant outcomes between different types of systems. Insurance
markets inevitably play a large role, another area for future research.

One aspect of the VLBW transfer network that could interest the broad network science
community—and separates these networks from physical structures such as the power
grid or hydrological networks—is that transfers largely exist because infants were trans-
ferred up to a higher level of care, transfered laterally to a hospital with a similar level of
care but different services, or were transferred down to a lower level of care before dis-
charge home. As a result, from a complex systems perspective, the VLBW infant transfer
network is best considered an emergent property of bottom-up (e.g., hospital capacity) and
top-down (e.g., state-level policies on transport reimbursement) processes, but one that
may still be strongly constrained by geography. Therefore, an implication of our results is
that both top-down and bottom-up effects might have measurable impacts on emergent
network structure, a debate currently ongoing in both the ecological [47] and complex
adaptive systems [48] literature.

To advance our understanding of top-down vs. bottom-up processes in hospital transfer
networks more specifically, and complex systems more generally, an important extension
of this work is to analyze how the VLBW infant transfer network structure has changed
over time; in particular, whether changes in state-level policies on transport or changes in
reimbursement and financial incentives are associated with the types of changes in net-
work structure predicted by our results. However, one important policy implication of
the current research shows that VLBW transfers cross state borders while states policies/
regulations governing maternal and neonatal transport do not [11]. The associations be-
tween existing state laws and community structure remain an important part of future

research.

6 Conclusions

This study represents the first attempt to analyze the weighted, directed, and asymmetrical
nature of VLBW transfers in the U.S. We developed and applied a spectral hierarchy mea-
sure in networks, which we termed a regionalization index, and found that regionalization
correlated with empirically known information about infants in the detected communi-
ties. While there is still more to learn about perinatal care networks, our results contribute
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to what is known about the organization of neonatal care in the U.S. and may more broadly
apply to the role of hierarchical forces in organizing complex adaptive systems.

Additional material
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