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Abstract

Subway and bus networks work as an integrated multiplex transportation system and
play an indispensable role in modern big cities. Even though a variety of works have
investigated the coupling dynamics of multiplex transportation networks, empirical
data that validates the determinant coupling factors are still lacking. In this paper, we
employ smartcard data of 2.4 million subway and bus passengers in Shenzhen, China
to study the coupling dynamics of subway and bus networks. Surprisingly, the
coupling of subway and bus networks is not notably influenced by the time-varying
speed ratio of the two network layers but is jointly determined by the distribution of
travel demands and transportation facilities. Our findings highlight the important role
of real travel demand data in analyzing the coupling dynamics of multiplex
transportation networks. They also suggest that the speed ratio of different network
layers, which was regarded as a key factor in determining coupling strength, has a
negligible effect on travelers' route selections, and thus the coupling dynamics of
multiplex transportation networks.

Keywords: Multiplex networks; Coupling; Spatial networks; Data analysis

1 Introduction

Multiplex networks are ubiquitous in modern human societies. Representative types of
multiplex networks range from social networks [1] and biological networks [2] to power
grids [3] and transportation networks [4, 5]. In multiplex networks, network layers are
not isolated entities but interact with each other as an integrated system [6]. In recent
years, a variety of new and interesting properties of percolation processes [7—11], cascade
failures [8, 12], epidemic spreading [13—-20], and coupling dynamics [21-24] on multiplex
networks have been discovered. Coupling is a very important and interesting research
topic because it occurs on real networks in our daily life. In big cities, several layers of
transportation infrastructure work together to supply the continuously growing urban
mobility demand [25]. The coupling of different layers of transportation infrastructure
is generated by travelers using more than one mode of transportation to complete a trip.
The most common examples include the “Park and Ride” mode [26] that generates cou-
pling between road and subway networks and passenger transfer that generates coupling
between bus and subway networks.

Previous works discovered a variety of interacting features of multiplex transportation
networks. Morris and Barthélemy found that the shortest path length decreases as the
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coupling increases on a spatial network [21]. Gallotti and Barthélemy studied how the
riding, walking and waiting time of trips vary with distance [22]. Zhou et al. proposed a
layered network model for transportation systems [23]. The authors found the transition
point of cooperation between layered networks [23]. Strano et al. analyzed the coupling
property between street and subway networks in London and New York [24]. An optimal
operation speed is determined for London subway [24]. How operation speed of subway
influences passenger travel time and road traffic congestion was studied using CDR (Call
Details Records) data [27]. The results indicated that travel demand plays crucial quanti-
tative and qualitative roles [27]. How interconnections between network layers influence
traffic congestion [28] and how speed ratio influences network capacity and travel time
[29] were also investigated.

Despite the rapid developments in coupling dynamics of multiplex transportation net-
works, most existing works are based on simulated networks or simulated travel demands.
This may lead to findings inconsistent with empirical evidence. First, the actual topology
of a transportation network is usually much more complicated than the topology of a sim-
ulated network. Second, the obtained coupling results usually deviate from real situations
when using uniformly (randomly) generated travel demands [27]. Third, mobile phone
data [30, 31] cannot be used to capture the transfers between different network layers ei-
ther. Finally, the inconvenience of transfers and individual preferences cannot be evaluated
and incorporated in building the models. In summary, previous works had to make strong
assumptions on travelers’ routes and mode-selection behavior due to the lack of data.

The recent emerging General Transit Feed Specification (GTES) service provides both
static and real-time transit data, which include transit route data, schedule data, real-time
bus position data, etc. Geographic transit service data formatted in GTFS have been widely
used in transportation analysis and applications [32]. Wong used GTFS data to analyze
transit headways for single transport agency and multiple transport agencies [33]. Hadas
employed GTES data and geographic information data of transportation networks to an-
alyze the connectivity indicators (network coverage, operation speed, intersection cover-
age, stop transfer potential and route overlap) of public transportation systems [34]. Tao
studied the spatial-temporal travel behavior of bus passengers using GTFS data [35]. Lee
et al. used GTES data to investigate the symmetry of boarding and alighting in time and
space [36]. Huang et al. combined GTFS data and taxi GPS data to identify and anticipate
large crowd gatherings [37].

Using a set of data similar to GTFES data, we studied the coupling dynamics of the mul-
tiplex transportation network in Shenzhen, China. The geographic information systems
(GIS) data of subway and bus networks, and the transit route data were used to obtain
accurate topology of the multiplex transportation network. Smartcard data of bus and
subway passengers were analyzed to estimate dynamical passenger travel demands. The
GPS data of buses were used to estimate the road traffic condition. Real transfers between
subway and bus networks can be captured using the real large-scale data. In the present
study, we focus on one important question: What are the major determining factors for
the coupling strength of subway and bus networks?

2 Data
In this section, we briefly introduce the datasets used. More details about the used data
are provided in the Additional file 1.
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The GIS data of subway and bus networks provide geographic locations of each bus
stop and each subway station in Shenzhen, China (Fig. S6). In the studied multiplex public
transportation network, the number of bus stops (9114 in total) is much larger than the
number of subway stations (132 in total).

Bus transit route data and subway transit route data provide the stop information of
all buses and the station information of all subway lines. The data also provide the basic
attributes (length, running time) of the subway sections.

The GIS data of traffic zones in Shenzhen were provided by Shenzhen Transportation
Authority. In this dataset, the geographic area of Shenzhen is partitioned into 996 traf-
fic zones, within which 844 zones contain at least one bus stop or one subway station
(Fig. 1(a)).

Smartcard data recorded the trips of more than 2.4 million smartcard users on 915 bus
lines and 6 subway lines in Shenzhen (Figs. S1-S4). Each smartcard has a unique ID num-
ber. During the 1-week data collection period (August 8—15, 2016), 48 million transaction
records were generated. The time and station that a passenger enters or exits the subway
were recorded, whereas only the information of the bus boarded and the boarding time
were recorded for bus passengers. The time that a bus arrived at each bus stop was in-
ferred by matching the GPS coordinates of the bus to the stops along the bus route. This
generates the timetable of the bus. Consequently, the boarding time of each bus passen-
ger was compared with the timetable to identify the bus stop where each passenger got on
board. Given that bus passengers do not tap cards when getting off a bus, the destination
information is not available. In the following section, we use a four-step method to infer

the destination of each bus trip.
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Figure 1 lllustration of a multiplex transportation network. (@) Multiplex public transportation network of
Shenzhen. Bus stops (light green dots), subway stations (red squares), transfer zones (orange polygons),
ordinary zones (grey polygons), and four inter-links (dashed lines) between the two network layers are
illustrated. (b) Path depicted in blue represents a unimodal subway trip. Path depicted in green represents a
multimode trip using both bus and subway transportation. (c)-(e) SDNs of one destination zone during 7:00
a.m.=8:00 a.m,, 1:00 p.m.-2:00 p.m., and 7:00 p.m.—8:00 p.m.
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3 Methods

3.1 Estimating the destination of a bus trip

We propose a four-step method to estimate the destinations of the bus trips. The method
is elaborated as follows:

Step 1: Two assumptions proposed by Barry et al. [38] are used: (1) a passenger will start
a new trip near the destination of the current trip. Therefore, the bus stop which is closest
to (and within 2 km of) the boarding stop or station of the next trip is inferred as the
destination stop of the current bus trip. Here, 2 km is selected as the maximum radius to
search candidate stops, because previous works [38—41] suggest that the maximum radius
of individual walking activities is 1-2 km. (2) at the end of a day, a passenger will return to
the origin of his/her first trip of the day. Therefore, the bus stop which is closest to (and
within 2 km of) the boarding stop or station of the first trip of a day is inferred as the
destination stop of the last trip of the day.

Step 2: If a passenger only has one bus trip during a day, the bus stop which is closest to
(and within 2 km of) the origin of the first trip in the next day is inferred as the destination
[39]. If for a passenger the destination of the last bus trip cannot be found within 2 km of
the origin of the first trip of the day, the bus stop which is closest to (and within 2 km of)
the origin of the first trip in the next day is inferred as the destination [39].

Step 3: If the destination of a bus trip cannot be identified in Step 1 and 2, the historical
smartcard records of the bus passenger [39] are used. Bus trips that share the same route,
same boarding stop, and similar boarding time with the unidentified bus trip are analyzed.
The similar historical bus trip that has the most similar boarding time to the unidentified
trip is identified. And the destination of the historical bus trip is inferred as the destination
of the unidentified bus trip.

Step 4: If the destination of a bus trip cannot be identified in Step 1, 2 and 3 (approxi-
mately 9% of all bus trips), the most frequent alighting bus stop after the boarding stop is
selected as the destination of the bus trip.

Using the proposed method, destinations are identified for 97% of the bus trips. Once
the destination of a bus trip is estimated, we infer the alighting time of the bus passenger
according to the arrival time of the bus at the bus stop.

3.2 Identifying transfers in the multiplex transportation network

The methods to identify transfers can be classified into two types [40—-48]. One method
uses the time interval between the starting times of two consecutive trips as the criterion
to determine if two consecutive trips belong to a whole trip. The other method uses the
time interval between the end time of the first trip and the starting time of the following
second trip as the criterion. The advantage of the first method is that the estimation of the
time interval is accurate because the boarding time of a bus or subway passenger is always
recorded. However, this method may not work well when the travel time of the first trip
is too short or too long. The second method avoids the drawback of the first method,
however, the second method depends on accurate estimation of the destinations of bus
trips. Here, we combine the two methods to identify transfers:

Step 1: If the time interval between the end of the first trip and the start of the second
trip is within 30 min, a transfer is identified between the two consecutive trips; otherwise,
the two trips are identified as separate trips.

Step 2: If the destination information of the first trip is not available, another criterion is

applied. If the time interval between the starting times of two consecutive trips is within
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60 min, a transfer is identified between the two consecutive trips; otherwise, the two trips
are identified as separate trips.

In the present study, only multimode trips with transfers between subway network and
bus network are used to estimate the coupling strength between subway network and bus

network.

3.3 Generating time-varying single-destination networks

Each observational day is split into 17 1-hour time windows from 6:00 a.m. to 10:00 p.m.
that cover the main service period of public transportation in Shenzhen. Passenger trips
are grouped into a time window according to the time (1-hour time window) when the
trip started. Single-destination network (SDN) of each time window is generated based
on the trips started during the time window (Figs. 1(c)—(e)). In an SDN, nodes represent
traffic zones, and an origin zone is connected to the unique destination zone if at least one
qualified trip is observed between the two zones during the time window. Qualified trips
include:

(a) Multimode trips that use both bus and subway services.

(b) Bus trips with alternative multimode routes connecting the origin and destination

zones.

(c) Subway trips with alternative multimode routes connecting the origin and

destination zones.

These criteria ensure that all unimodal trips have alternative multimode routes to the
destination zone. In the following analysis, only qualified trips are used. For each SDN,
there are several origin zones and one destination zone. For each destination zone, there
are 17 SDNs generated during a day.

In the present study, traffic zones containing at least one bus stop and one subway sta-
tion are defined as transfer zones (124 in total), and the other traffic zones are defined
as ordinary zones (Fig. 1(b)). Here, we only analyzed the SDNs with destinations located
at transfer zones (Fig. S5). This is because both bus-to-subway trips and subway-to-bus
trips exist in these SDNs. While for the SDNs with destinations located at ordinary zones,
only bus-to-subway trips or subway-to-bus trips can be observed. The transfer zones are
popular destinations, roughly 70% of the trips are captured by the 124 SDN.

4 Results
For each SDN i of a time window ¢, we measure the coupling strength 1;(t) between the
subway network and the bus network as

.(#)coupled
= "0

1)
where 7;(£)°"'*d and #,(t) denote the number of multimode trips and the total number of
trips in i. Given that SDNs may have different scales of coupling strengths, we normalize
the coupling strength A;(¢) of each SDN when analyzing the temporal patterns of A;(¢):
norm )‘i(t) - )\;’nin
AP = 2)

~ 4 max min’
)\'i - )\'i

where A" and A™" denote the maximum and minimum values of A;(¢) in the day.
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Using the smartcard data and the bus GPS data, we estimate the time-varying operation
speeds of subway network and bus network for each SDN. We find that the operation
speed of subway is stable during the whole day, whereas the operation speeds of buses are
influenced by road traffic conditions (Fig. S7). Here, the speed ratio of an SDN i during
time window ¢ is defined as the average trip speed on the subway network over the average
trip speed on the bus network. The average speed of a trip is calculated using the trip

distance divided by the travel time:

1
vi(t) = N > v 3)
1
1_}f,(t) = ﬁb Z ka: (4')
A0
Bi(t) = 0’ (5)

where v} is the speed of subway trip j and Vf . the speed of bus trip &, V}(t) and Vf-’(t) are the
average speed on the subway layer and bus layer of SDN i during time window ¢. When
comparing S;(t) of different SDNs, we normalize the speed ratio using the maximum-—

minimum normalization method:

Ao - B

—, 6
IBimax _ ﬂimm ( )

IBinorm(t) _

where ™ and ™" denote the maximum and minimum values of B;(¢) in the day.

4.1 Preliminary observation on three (case studies) SDNs

Three SDNs with destination zones located at a commercial zone (SDN 1), a transporta-
tion hub zone (SDN 2), and a residential zone (SDN 3) are analyzed (Fig. 2). The coupling
strengths A7°"™(£) of the SDN 1 and SDN 2 reached the maximum in the morning rush
hours (6:00 a.m.—7:00 a.m.), whereas the coupling strength of SDN 3 reached the max-
imum in the evening rush hours (5:00 p.m.—7:00 p.m.) (Figs. 2(a)—(c)). The speed ratio
BI°™(t) is larger in the morning and evening rush hours for all three SDNs, because the
operation speeds of buses are lower in peak hours. The speed ratio 5/°"™(¢) was consid-
ered as the key factor influencing the mode-selection behavior of travelers and, thus, the
coupling strength of layered networks [21, 24, 29]. However, our empirical results indicate
that passengers did not react to speed ratio changes (Figs. 2(d)—(f)). No strong correlation
is found between coupling strength A’°"™(£) and speed ratio 5]°"™(¢) for all three SDNs
(Figs. 3(a), (d), (2))-

One intuition is that as trip distance increases, a passenger is more likely to use both bus
network and subway network. Therefore, the correlation between average trip distance
and coupling strength is analyzed. Here, average trip distance is defined as the average
Euclidean distance from each origin to the single destination of an SDN, weighted by the

number of trips from each origin:

aw= Y. “da, %
0€0;(t)



Zheng et al. EPJ Data Science (2018) 7:23 Page 7 of 16

(a) Commercial (Zone 980) (b) Transportation (Zone 995) (©) Residential(Zone 903)
1.0 1.0 1.0
0.8 0.8 0.8
0.6 0.6 0.6
g
5%
04 0.4 0.4
0.2 0.2 0.2
0.0 0.0 0.0
6 8 10 12 14 16 18 20 22 6 8 10 12 14 16 18 20 22 6 8 10 12 14 16 18 20 22
() Time (Hour) © Time (Hour) ® Time (Hour)
1.0 1.0 1.0
08 0.8 0.8
g 0.6 0.6 0.6
QOA 04 04
0.2 0.2 0.2
0.0 0.0 0.0
6 8 10 12 14 16 18 20 22 6 8 10 12 14 16 18 20 22 6 8 10 12 14 16 18 20 22
Time (Hour) Time (Hour) Time (Hour)
Figure 2 Temporal features of coupling strength A°"™(t) and speed ratio B°"™(t). SDNs with destinations at
a commercial zone (SDN 1) (panel (a), (d)), a transportation hub zone (SDN 2) (panel (b), (e)) and a residential
zone (SDN 3) (panel (c), (f))

where O;(t) represents the set of origins of SDN i during time window ¢, n,,(t) represents
the number of trips from origin o, and d,; represents the Euclidean distance between o
and the destination zone. We normalize the average trip distance using the maximum-—

minimum normalization method:

di(t) - dr

~ max min ’
di - di

;"™ () (8)

where d™* and d™" denote the maximum and minimum values of d;(¢) in the day. We
observe good positive correlations between coupling strength A1°"™(¢) and average trip
distance d}°™(t) for SDN 1 and SDN 3 (Figs. 3(b), (h)). However, the correlation between
A" (¢) and d]°"™ () is weak for the SDN 2 (Fig. 3(e)). Possible explanations are: there are
abundant direct public transportation service to the transportation hub, and the trans-
portation hub serves more as the destination rather than the transfer place for passengers
(44,931 trips vs. 5262 trips on Monday).

Another experience in our daily life is that trips originating from suburban areas may
have a higher possibility of using both subway and bus transportation. This is because no
subway service is available in suburban areas, and travelers may first use bus transporta-
tion to reach a subway station. Therefore, we define the origin composition index p, the

fraction of trips from ordinary zones:

n; ( t) ordinary

Pl ==
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Figure 3 Pearson Correlation Coefficient (PCC) between coupling strength and three indexes. PCC between
coupling strength and speed ratio (left column), PCC between coupling strength and average trip distance
(middle column), and PCC between coupling strength and fraction of travelers from ordinary zones (right
column) for SDNs with destinations at (a)—(c) a commercial zone, (d)-(f) a transportation hub zone and (g)-(i)
a residential zone. Normalized parameters are denoted AR, gnorm gnorm and phorm gjye fines denote the
regression functions

where 7;(£)°"4"Y and #;(t) denote the number of trips originating from ordinary zones
and the total number of trips of SDN i in time window ¢. We normalize p;(¢) using the

maximum-minimum normalization method:

pi(t) - p™"
PO = (10)
1 i

max
i

positive correlations are observed between A!°"™(t) and p°™(t) for SDN 1 and SDN 2
(Figs. 3(c), (f)). However, a negative correlation is observed for SDN 3 (Fig. 3(i)). Possible

where p™** and p™" denote the maximum and minimum values of p;(¢) in the day. Strong

reason could be that the trip distance is relatively short (the average trip distance is 8 km
during a day). Even when a large fraction of passengers come from ordinary zones, they
can use direct public transportation service or the travel time cannot be obviously reduced

when transferring to the faster subway network.

4.2 Statistical analysis on all 124 SDNs
The results of the three case studies indicate that no single index can determine the cou-
pling strength of all SDNs. In addition, different land use features may influence the route

Page 8 of 16
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Figure 4 Temporal patterns of (a) coupling strength (A"°'™), (b) speed ratio (B"°'™), (c) average trip
distance (d"°™), and (d) fraction of trips from ordinary zones (p"°™™). The {...) symbol denotes the average
of the index on all studied SDNs. Error bars represent the variance of the index values

and mode selection behavior of travelers. In the present study, without confident and ac-
curate land use information, we focus on the general trend rather than the case feature of
the determining factor of the coupling strength.

We first find that average coupling strength (A]°"™(¢)) is high in morning rush hours and
decreases afterwards for both weekdays and weekends (Fig. 4(a)). This can be explained
by that most studied SDNs attract early morning commuters who must use multimode
transport to ensure punctuality. Compared with weekday results, (A[°"™(¢)) is lower in
morning, but larger for other time windows on weekends. This can be explained by that
there are less commuters but more afternoon activities on weekends.

The average speed ratios on weekdays and Saturday have similar temporal patterns. The
speed ratio did not have a peak on Sunday evening (Fig. 4(b)). The coupling strength did
not increase with the speed ratio during evening rush hours (Figs. 4(a), (b)). No prominent
correlation is found between the coupling strength and the speed ratio on the studied 124
SDNss (Fig. 5(a)). The average trip distances on the studied SDNs show similar patterns for
all weekdays and weekends (Fig. 4(c)). We observed a moderate positive correlation be-
tween coupling strength (A]°"™(¢)) and average trip distance (d7°"™(¢)) (Fig. 5(b)). The ori-
gin composition index (p]°™(¢)) decreases slightly faster than (A]°"™(t)) after the morn-
ing rush hours (Fig. 4(d)). A strong positive correlation is observed between (A1°"™(t)) and
(p°r™(t)) (Fig. 5(c)). This finding suggests that (p°"™(¢)) could be a dominant factor deter-

Page9of 16
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Figure 5 Pearson Correlation Coefficient (PCC) between coupling strength and (a) speed ratio, (b) average
trip distance, and (c) fraction of travelers from ordinary zones. The average value of each index across all
studied SDNs and time windows is calculated. The blue line in (c) denotes the linear regression function
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Figure 6 Temporal features of index values. The red line denotes the average index value and the light gray
line denotes the index value of each SDN. (a), (c) Coupling strength A™°"™; (b), (f) Speed ratio B"°™; (c), (g)
Average trip distance d™°'™; (d), (h) Fraction of trips from ordinary zones p"°rm

mining the coupling strength, though negative correlations between A1°"™(£) and p°"™ ()
may exist in a few SDNs (Fig. 3(i), Figs. 7(c), (f)).

Using Monday and Saturday as examples, temporal distributions of all indexes for each
SDN are analyzed (Fig. 6). Pearson Correlation Coefficient (PCC) between A!*™(t) and
B (t), PCC between A*™(t) and d}°"™(¢), and PCC between A]°"™(£) and p]°"™(¢) are
measured (Fig. 7). The speed ratio index and the origin composition index of all SDNs fol-
low similar trends. While several SDNs show different trends for the coupling index and
the distance index (Fig. 6). As shown in Fig. 7, origin composition index p]°™(¢t) shows
strong positive correlation with coupling strength AM°"™(¢) for most SDNs, while fewer
SDNs are found to have such strong correlation between distance index 4}°"™(t) and cou-
pling index A7°"™(¢). The speed index B/'*"™(¢), which was considered a key factor in cou-
pling dynamic studies, has no prominent correlation with coupling index A7°"™(¢) for the
majority of SDNs.

The PCC values were also illustrated in space using the destination zone of each SDN
(Fig. 8). No prominent spatial pattern is found for the correlation between speed ratio
index B/°"™(t) and coupling index A]°"™(¢) (Figs. 8(a), (b)). Passengers seem to have a ran-
dom reaction with the time-varying travel speed on different SDNs. Interestingly, the des-
tination zones of SDNs with strong positive correlations between distance index 4}°"™(¢)
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Figure 7 Distribution of PCCs between coupling strength and each index for all studied SDNs on Monday
and Saturday. Coupling strength A™™ vs. (a), (d) speed ratio B"°"™; (b), (€) average trip distance d"*™; (c), (f)
the fraction of travelers from ordinary zones p°r™
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Figure 8 Spatial distribution of destination zones of SDNs with different levels of correlations between (a), (b)
)Lnorm and ﬂnorm/ (C), (d) )Lnorm and dnorm’ (e): (f) )Lnorm and pnorm

and coupling index A°"™(¢) are located in the central urban area. The destination zones
of SDNs with weak or negative correlations between &}°"™(¢) and A]°"™(¢) are located in
the periphery area (Figs. 8(c), (d)). The peripheral destination zones attract long-distance
travelers with less use of multimode transport, which is probably caused by that these
zones attract many long-distance travelers from the city center with wide accessibility to
public transportation. The destination zones of SDNs with strong positive correlations
between p}°"™(f) and A}°"(¢) are widely distributed across the investigated area. A few
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Figure 9 Fraction of multimode trips f(/) vs. trip 0.8
distance /. The blue dot represents the fraction of
travelers originating from ordinary zones using
multimode transport. The red dot represents the 0.6
fraction of travelers originating from transfer zones
using multimode transport

» From ordinary zones .
0.74 + From transfer zones
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0.2

0.11°

0.0
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exceptions with weak correlations between p°™(£) and A]°"™(¢) are also found. This im-

plies that though origin composition index p;°™(¢) is the dominant factor determining

the coupling strength, the coupling strength is also determined by other factors.

4.3 A new index showing higher correlations with coupling strength

For SDNs that have moderate or weak correlations between p°"™ (£) and A]°"™(¢), we sup-
pose that the distance index can be a secondary factor to influence the coupling. We re-
spectively analyze the fraction of multimode trips f (/) for travelers originating from trans-
fer zones and ordinary zones (Fig. 9). On one hand, multimode trips originating from
transfer zones account for less than 2% of the overall multimode trips, independent of trip
distance /. Hence, two modes of transportation are barely used in trips connecting two
zones with subway stations. This is consistent with our intuition. Subway usually has a
faster speed than buses. Even when a mixing use of subway and bus is faster than a uni-
modal subway trip, travelers are not likely to do so due to the inconvenience of transfers
[49, 50]. On the other hand, for trips originating from ordinary zones, multimode trips
are increasingly favored as the trip distance increases. The finding can be explained by the
decreasing availability of direct buses to destinations and the increasing attraction of re-
duced travel times provided by the subway. A transition point, however, is observed when
the trip distance exceeds 33 km. It is probably because multimode trips are replaced by
customized bus lines connecting major remote districts.

Taken together, the use of multimode transport majorly exists within trips from ordinary
zones to transfer zones. Neither the trip distance nor the speed ratio has a large impact
on passengers’ routing behavior for trips originating from transfer zones. While for trav-
elers traveling from ordinary zones to transfer zones, the trip distance plays an important
role in determining whether to use a multimode transport. These findings motivate us to
incorporate the distance of trips originating from ordinary zones into the origin compo-
sition index p;(£). Hence, we propose a new index &;(¢), the trip distance weighted fraction
of passengers from ordinary zones. We use the regression function f(/) shown in Fig. 9 to

calculate the weight for the origin composition index p;(¢):

_ =0.000797(d§™(£))* + 0.05d9™(t) — 0.13
fmax ’
&i(t) = wi(t) x pi(2), (12)

Wi(t) (11)
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Figure 10 PCCs between coupling strength and average trip distance weighted fraction of travelers from
ordinary zones

Table 1 Average PCC values and R? values between measured indexes across studied SDNs

Avs. B Avs.d Avs.p Avs &
Monday pPCC 0.09 0.52 0.72 0.81
R? 0.09 049 064 0.71
Tuesday PCC 0.06 047 07 0.77
R? 0.1 045 061 068
Wednesday pCC 0.34 048 0.7 0.76
R? 0.2 047 0.62 0.64
Thursday pPCC 0.13 049 0.71 0.77
R? 0.11 047 06 067
Friday PCC 0.14 047 0.7 0.77
R? 0.1 047 06 0.68
Saturday PCC -0.04 04 063 0.72
R? 0.14 037 053 061
Sunday PCC -0.1 0.28 06 0.65
R? 0.17 029 048 052

where d?rd(t) is the average distance of trips from ordinary zones on SDN i and fmax the
local maximum value of f(/) show in Fig. 9. We normalize the weighted origin composition
index for each SDN using the maximum-minimum normalization method:

Si(t) - %-imin

smax _ gmin’
i i

£°(0) = (13)

where £™ and ™" denote the maximum and minimum values of &(¢) in the day. We
obtained higher correlations between the calibrated index &;(¢) and coupling strength A;(¢)
for most SDNs (Fig. 10). Table 1 summarizes the average PCC values between coupling
strength and the studied indexes and the R? values of linear fits between coupling strength
and the indexes. In general, the proposed index &;(¢t) improves the correlation between
coupling index X;(¢) and origin composition index &;(z).

5 Conclusions and discussion

In summary, we found that the coupling between the studied bus network and subway
network is mainly generated by the long-distance trips originating from ordinary zones.
Multimode trips are favored from an ordinary zone to a transfer zone when trip distances
are long. Counterintuitively, the coupling strength of the studied subway network and bus
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network is weakly correlated with the speed ratio of the two networks. This can be caused
by that passengers do not have a full view of global traffic states. This can be also caused
by that passengers select the routes according to personal favor or local traffic conditions.

The present study is limited by the lack of data in diverse cities of different sizes and
different transportation structures. However, we believe the results will have a lasting im-
pact in the research areas of multiplex networks and urban transportation. We expect our
work will attract the interest of researchers from related research communities. Similar
analyses can be done for other cities to generalize the findings and open new research
directions. For example, understanding the microcosmic route selection behavior of pas-
sengers can help understand why passengers use buses or multimode transport between
two transfer zones with subway connection; investigating the land use types of destination
zones can help further understand different temporal features of travel demand to specific
destination areas.

Nowadays, many operational practices, such as the synchronization of public transport
schedules, are implemented to improve the connections between transportation networks
and attract more people to public transportation. However, our results imply that the use
of multiplex transportation networks is not determined by the time-varying service con-
ditions but by the distribution of mobility demand and transportation facilities. In other
words, most passengers select two networks to complete their trips, because they have
no direct transportation services to their destinations. Therefore, the coupling strength
of two network layers will increase when the mobility demands of passengers from long-
distant ordinary zones increase. These mobility demands are actually caused by the lack
of necessary transportation facilities. Our finding highlights the need for a better under-
standing of passenger traffic demand, and more attention needs to be paid to the planning
of multiplex transportation networks rather than to the operational aspects of current

practices.
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