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Abstract
Billions of users of mobile phones, social media platforms, and other technologies
generate an increasingly large volume of data that has the potential to be leveraged
towards solving public health challenges. These and other big data resources tend to
be most successful in epidemiological applications when utilized within an
appropriate conceptual framework. Here, we demonstrate the importance of
assumptions about host mobility in a framework for dynamic modeling of infectious
disease spread among districts within a large urban area. Our analysis focused on
spatial and temporal variation in the transmission of dengue virus (DENV) during a
series of large seasonal epidemics in Lahore, Pakistan during 2011–2014. Similar to
many directly transmitted diseases, DENV transmission occurs primarily where people
spend time during daytime hours, given that DENV is transmitted by a day-biting
mosquito. We inferred spatiotemporal variation in DENV transmission under five
different assumptions about mobility patterns among ten districts of Lahore: no
movement among districts, movement following patterns of geo-located tweets,
movement proportional to district population size, and movement following the
commonly used gravity and radiation models. Overall, we found that inferences
about spatiotemporal variation in DENV transmission were highly sensitive to this
range of assumptions about intra-urban human mobility patterns, although the three
assumptions that allowed for a modest degree of intra-urban mobility all performed
similarly in key respects. Differing inferences about transmission patterns based on
our analysis are significant from an epidemiological perspective, as they have
different implications for where control efforts should be targeted and whether
conditions for transmission became more or less favorable over time.
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1 Introduction
The spread and transmission dynamics of human infectious diseases are shaped exten-
sively by human behavior [18]. Pathogen transmission depends on human contact patterns
and tends to accelerate in highly connected areas with high population size and frequent
travel [23]. Relevant population interactions between areas can be the result of daily com-
muting to the commercial center of a city and back [32, 50], visiting relatives or friends
[27], religious or cultural activities [15], or many other reasons. Generally, urban travel
is characterized by extensive daily activity, as work activities do not typically take place
at the same places where people live [19]. Dynamic human movement patterns in cities
can be inferred using a variety of data sources such as census data, mobile phone data,
or social media data [28]. Passive data collection from social media platforms now offer
timely, high resolution estimates of spatiotemporal patterns of human mobility [4, 5, 28,
32]. All of these movement types have the potential to shape infectious disease transmis-
sion dynamics, potentially in different ways depending on the mode of transmission (e.g.,
by direct contact or through a mosquito vector).

Specifically in the context of urban transmission, the importance of spatial heterogeneity
in drivers of transmission is well-documented [40, 47, 54]. Some districts of a city may have
considerably higher likelihood of infection as a result of, for example, higher mosquito
densities (e.g., malaria [53], dengue [56]), yet each district contributes to transmission in
any other district, not just within its own boundaries, due largely to human travel [11, 31,
34]. Such considerations can become highly relevant when human mobility is high, as ob-
served in large urban areas [12] and can critically inform how resources to control and
eliminate disease should be allocated [9, 11]. Understanding this interaction between hu-
man mobility, spatial variation in drivers of transmission, and control measures is impor-
tant to know where control measures will be most impactful, as dengue [48], chikungunya
[14, 49], yellow fever [21, 22], and Zika [30] continue to cause large urban outbreaks to
control their spread and limit the burden caused by these viruses. An important feature
that they have in common is that they are all transmitted by the Aedes mosquitoes, which
are active during daytime hours when human mobility is high [54].

In this study, we examined a series of seasonal dengue epidemics in an urban setting
that occurred between 2011 and 2014 in Lahore, Pakistan; no major epidemic had been
recorded before that date [24]. Dengue virus (DENV) is a flavivirus transmitted between
humans primarily by the Aedes aegypti mosquito [51]. Dengue burden is enormous and
it has increased substantially in recent decades [6]. The distribution of Ae. aegypti is now
larger than it has ever known to be [25], and the viruses it transmits have been expanding
too as a result [29, 33], leading to expanding ranges or changes in the epidemiology of
Zika, chikungunya, and yellow fever.

To enhance our understanding of urban transmission dynamics of infectious diseases
and to evaluate the importance of assumptions of the spatial configuration of cities, we
here use human mobility models and estimates derived from the social network platform
Twitter to compare inferences about spatiotemporal variation in transmission patterns
and determine how sensitive these inferences are to different assumptions about patterns
of intra-urban human mobility. Little sensitivity of these inferences would suggest that
analyses could proceed with business as usual assumptions, whereas strong sensitivity
would point to a need for more careful consideration of human mobility data within anal-
yses of infectious disease dynamics, even at the granularity of intra-urban scales.
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2 Material & methods
Epidemiological data: We obtained individual dengue case data from Lahore, Pakistan,
and aggregated to the town level (an administrative subdivision of the city, n = 10) on a
weekly basis from January 1, 2011 to December 31, 2014. We refer to the number of dengue
cases reported in town i in week t as Ii,t . Data were provided by the Health Department,
Pakistan, and were processed from their original line list form. In total, 35,348 confirmed
and suspected cases were recorded in Lahore. Roughly 18,020 of those occurred during
the 2011 epidemic alone. Details of the geo-positioning procedure are described in detail
in Kraemer et al. [26].

Human mobility data and models: To quantify human mobility patterns, we used openly
available data from Twitter through its API. Our database consists of tweets made in La-
hore from January 1, 2011 through June 30, 2015. Specifically, the tweets were gathered by
querying the free streaming API for a bounding box of [–180, 180] longitude and [–90, 90]
latitude, so all tweets with geographic coordinates match. The results are limited by Twit-
ter to 1% of total tweet volume. We then filtered the database to only include tweets sent
within the city of Lahore, Pakistan. The penetration of Twitter users with geo-located
information amounts to about 1% of the total population in the study period, similar to
previous estimates [28]. Other information included the user’s unique ID. We associated
each user with a town of residence according to which town they sent most tweets from
during night hours defined as 9pm–7am.

To use the tweets to summarize mobility patterns of residents of the 10 different towns,
we computed a single matrix H that contained the proportion of tweets made in town j by
residents of town i, where i and j refer to the row and column of H , respectively. Thus, the
rows of H sum to 1, and the columns of H sum to values somewhat less than or greater
than 1. Due to the somewhat limited number of tweets available from users in a given town
during a given time period and because there was no obvious seasonality in the data, we
did not make use of temporally disaggregated Twitter data in our transmission model.

In addition to the H matrix based on tweets, we constructed four alternative H matrices
that span a wide range of assumptions about human mobility commonly used in infectious
disease modeling. At one extreme, we constructed an H matrix following the ideal free as-
sumption that movements between all locations occur proportional to population size. At
the opposite extreme, we constructed an H matrix consistent with an assumption of no
movement between towns. Just as the H matrix based on tweets represents an interme-
diate assumption between these two extremes, we formulated two additional H matrices
based on commonly used models of human mobility; the gravity model [60] and the ra-
diation model [50]. We applied these models to data about the distance between town
centroids and town population sizes. This produced values of fluxes between i and j but
did not produce an estimate of the magnitude of time spent in i by residents of i. To work
around this gap in the predictions of these models, we used the diagonal of the tweet-
based H matrix as the diagonal for these two H matrices. For the off-diagonal elements,
we normalized the fluxes out of i predicted by the gravity and radiation models and multi-
plied those terms by 1 – Hi,i. Numerical values of all five H matrices are provided in Tables
S1–S5 (Additional file 1).

Mobility-based transformation of incidence data: Our analysis is premised on the dis-
tinction between the location where an individual resides and the locations where she or
he spends time. DENV is transmitted by the urban-adapted mosquito Ae. aegypti, which
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engages in the majority of its blood feeding activity during daytime hours [1]. Because this
means that transmission is expected to occur mainly where people spend time during the
day rather than where they reside [55], we transformed the ten residence-based incidence
time series Ii,t to ten mobility-based incidence time series Ĩi,t . The latter contains the in-
cidence of cases acquired in town i in week t under a given assumption about mobility
patterns defined by H and is calculated according to Ĩi,t =

∑
j Hj,iIj,t . We examined a to-

tal of five different interpretations of Ĩi,t corresponding to the five different assumptions
about human mobility patterns quantified by five different H matrices, as described in the
previous section.

Transmission model: We used a spatial TSIR framework to model the dynamics of Ĩi,t in
the ten towns of Lahore during 2011–2014. Consistent with the assumptions about mo-
bility used to define Ĩi,t , we defined the effective population size of town i during daytime
hours as Ñi =

∑
j Hj,iNj. We are not aware of any significant DENV transmission activity

in Lahore prior to 2011, so we assumed that the effective number of susceptible individ-
uals in town i during daytime hours was S̃i,1 = Ñi during the first week of January, 2011.
Thenceforth, the susceptible population was depleted as new cases arose according to
S̃i,t = S̃i,t–1 – Ĩi,t/ρ , where ρ is the probability that a person infected with DENV reported
to the Health Department. Although there is a great deal of variability in ρ due to varia-
tion in rates of symptomatic disease and health-seeking behavior in different populations,
we adopted a value of ρ = 0.18 based on a recent meta-analysis [10]. This parameter ac-
counts for the fact that many DENV infections are mild or asymptomatic, which is im-
portant when tracking the susceptible population due to the fact that individuals exposed
to DENV become immune thereafter regardless of the extent to which they experience
symptoms. One complication that we did not account for due to a lack of data is that
there are four distinct DENV serotypes, with long-lasting immunity being specific only to
the serotype(s) to which one has been exposed. There is, however, a short-term period of
cross-immunity that is protective against all serotypes following exposure to only a sin-
gle serotype, with the duration of this period (maximum-likelihood estimate: 1.88 y, 95%
confidence interval: 0.88–4.31 y [43]) being similar to the timescale of our data set as a
whole.

Following the standard form of TSIR models, we assumed that new cases among people
spending time in town i were acquired on week t according to

Ĩi,t = βi(t)
Ĩ ′

i,t

Ñi
S̃′

i,t , (1)

where βi(t) is the transmission coefficient in town i at time t. The prime notation for Ĩ ′
i,t

and S̃′
i,t denotes the numbers of infected and susceptible people in the “generation” prior

to t. The obligatory role of a mosquito in the transmission of DENV from one person to
another is associated with a relatively long generation interval compared to directly trans-
mitted pathogens. Whereas most TSIR models treat consecutive time steps as distinct
generations, we obviated the need to temporally aggregate the data to such a large extent
by calculating

Ĩ ′
i,t =

5∑

n=1

ωnĨi,t–n, (2)
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where

ωn =
1

F(35)

(
1
7

∫ 7n

7(n–1)
F(τ + 7) – F(τ ) dτ

)

(3)

is the probability that a case in week t is attributable to a case that occurred in week
t – n as defined by a generation interval with distribution function F [38]. We adopted
a distribution function estimated by Siraj et al. [52] at a temperature of 30°C (the aver-
age daily temperature in Lahore during 2011–2014), which resulted in values of ωn of
4.8 × 10–4, 0.168, 0.440, 0.267, and 0.125 for n = 1, . . . , 5, respectively. S̃′

i,t was calculated
similarly.

Model fitting: A primary advantage of the TSIR framework is that it allows for a model
to be fitted to incidence data using regression techniques, which are easier to implement
than alternative approaches to fitting dynamic models to time series data. To do so, we
took the natural log of Eq. (1) and rearranged to obtain the regression equation

ln(Ĩi,t) – ln
(
S̃′

i,t
)

+ ln(Ñi) = ln
(
βi(t)

)
+ ln

(
Ĩ ′

i,t
)

+ εt , (4)

where

ln
(
βi(t)

)
= ssecular,i(t) + sseasonal,i

(
t – 52�t/52�) (5)

and each εt is an independent and identically distributed normal random variable. We
posed ln(βi(t)) as a shape-constrained additive model (SCAM) and estimated parameters
describing its two components using the scam function in the scam package [41] in R
[42]. To prevent data points near the beginning and end of the time series from leading
to unreasonably large values of βi(t) when extrapolating beyond those data points, we
constrained ssecular,i to be a concave function. We modeled sseasonal,i as a cyclic cubic spline
to ensure that its values at the beginning and end of the year were equal up to their second
derivative. Under all mobility assumptions other than ideal free, we estimated separate
town-specific functions for each of the two components of ln(βi(t)). Under the ideal free
mobility assumption, we estimated only a single ln(β(t)) that applied to all towns due to
the fact that the mobility-transformed data were strictly proportional to each other under
this assumption.

3 Results
Human mobility data: Tweet-derived movement estimates showed relatively low move-
ment outside the town of residence, with the mean proportion of time spent within one’s
town of residence being 91.2% (range: 84.0–96.8%). The town from which the largest pro-
portion of non-resident tweets was made was Gulberg Town (1.7%), and the fewest were
made in Wagha Town (0.16%). Although there was substantial day-to-day variation in
Twitter activity across towns (Fig. 1), the extent to which that variation was driven by
a set of deterministic factors or sampling noise was not apparent. Based on the limited
sample of tweets available and their incomplete coverage over the study period, we used
the time-averaged proportion of tweets by residents of each town made in every other
town in the epidemiological analysis.
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Figure 1 Relative proportion of tweets made in the town indicated in the panel label by residents of every
other town. Different colors represent different home location of residents

Mobility-based transformation of incidence data: Applying the five mobility matrices to
dengue incidence time series stratified by town of residence, we obtained notably differ-
ent time series of the towns in which the cases were acquired. Under the assumption of
no movement outside one’s town of residence, the residence-based and mobility-based
time series were identical. Under the assumption that mobility follows Twitter, gravity,
or radiation movement patterns, the mobility-based time series was mostly similar to the
residence-based time series (Fig. 2), although redistribution from high-incidence towns
to low-incidence towns was visually apparent (Fig. 3). This redistribution was attributable
to the partially homogenizing effect of inter-town mobility. Under the assumption that
mobility follows an ideal-free distribution, the mobility-based time series was stratified
proportional to town population size (Fig. 2), resulting in time series that followed identi-
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Figure 2 Time series stratified by towns in which cases were assumed to be acquired (colors) under five
different assumptions about mobility among towns (rows)

cal dynamics (Fig. 3). Whereas the distribution of incidence across towns was temporally
constant under the ideal-free assumption, there was substantially more temporal varia-
tion in the distribution of incidence across towns under the Twitter, gravity, radiation,
and no-movement assumptions (Fig. 2).

Model fitting: Best-fit models to all five mobility-based time series explained a relatively
high proportion of variation in incidence, with the coefficient of determination, R2, rang-
ing 0.519–0.685 (Fig. 4). In general, the time series data was explained similarly well by
each of the models that performed a mobility transformation; i.e., Twitter (R2 = 0.678),
ideal free (R2 = 0.662), gravity (R2 = 0.685), and radiation (R2 = 0.662). The data was ex-
plained less well by the model that assumed no movement (R2 = 0.519). Rather than an
indication of the inadequacy of the no movement assumption, we interpreted this lower
R2 value as a consequence of the fact that Ĩi,t in Eq. (1) is integer-valued under the no
movement assumption and continuous under the other mobility assumptions. Because
our model’s generation-interval adjustment in Eq. (2) results in Ĩ ′

i,t being continuous, the
mobility assumptions associated with continuous values of Ĩi,t have an inherent advan-
tage in fitting the data, especially for Ĩ ′

i,t < 1 (Fig. 4). As a result, comparison of R2 values
calculated in reference to the mobility-based time series to which the models were fitted
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Figure 3 Time series stratified by towns in which cases were assumed to be acquired (rows) under five
different assumptions about mobility among towns (line type)

indicates no clear distinction among the mobility assumptions and their appropriateness
for modeling the mobility-based time series.

Another way that we examined model fit was based on how well each best-fit model
matched the original time series once a model’s one-step ahead predictions of Ĩi,t were
transformed back to predictions of Ij,t using the H matrix under which a given model was
fitted. Under the no movement assumption, Ĩi,t and Ij,t were, by definition, the same. These
predictions were generally consistent with the data, although there were instances in Gul-
berg Town, Shalimar Town, and Wagha Town in which model predictions far exceeded the
data during certain time periods (Fig. 5). This was likely due to the seasonal component of
βi(t) being influenced too heavily by years with larger outbreaks. Under the Twitter, grav-
ity, and radiation assumptions, predictions of Ij,t were often similar to or nearly as good as
predictions based on the model fitted under the no movement assumption (Fig. 5). These
models performed less well in the towns with the lowest incidence—i.e., Aziz Bhatti Town
and Wagha Town—due to those models’ predictions of a greater degree of imported inci-
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Figure 4 Relationships between predicted (x-axis) and observed (y-axis) log incidence based on models
fitted to five different mobility-based incidence time series (panels). The coefficient of determination, R2,
associated with each best-fit model is indicated in each panel. Values of observed incidence vary across
panels due to the effect of different assumptions about mobility used to transform the residence-based time
series to mobility-based time series. For example, log incidence under the assumption of no movement never
falls below 0, because there were no fractional cases observed in the raw data. Fractional incidence did occur
in the other two time series due to each person’s incidence of disease being partitioned across the towns
proportional to assumed mobility patterns. Under the ideal free assumption, the diagonal sets of points are a
result of incidence on a given day varying across towns only in proportion to their different population sizes

dence from towns with high transmission than actually occurred (Fig. 5). In terms of ability
to predict Ij,t , the model fitted under the ideal free assumption performed the worst by far.
In the towns with the greatest incidence per capita, this model predicted either too few
cases overall (Samanabad Town) or incidence patterns that were not as peaked as was ob-
served locally (Ravi Town) (Fig. 5). In all other towns, the model fitted under the ideal free
assumption overpredicted incidence, sometimes by several hundred cases in a single week
(e.g., Iqbal Town, Nishtar Town) (Fig. 5).

Transmission model inferences: Inferences of βi(t) under different mobility assumptions
varied widely. Variation in βi(t) across towns was maximized under the assumption of no
movement, with patterns ranging from nearly flat in Cantonment and Aziz Bhatti Town
to a single seasonal peak in Shalimar Town and Wagha Town to multiple annual peaks
of different heights across years in the other towns (Fig. 6, left). Under the no movement
assumption, confidence intervals for βi(t) were unreasonably high in Shalimar Town and
Wagha Town (Fig. 6, left). By design, inferences of βi(t) under the ideal free assumption
were identical across towns and displayed a pattern of two seasonal peaks, with the one
in the third quarter being larger (Fig. 6, right). This same general pattern was apparent
in the inferences of βi(t) under the Twitter mobility assumption, but there was clear vari-
ability across towns, with differences in the heights of the peaks, their timing, and other
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Figure 5 Predicted values of residence-based incidence in each town (rows) using the best-fit model under
each of five different assumptions about mobility (colors). Observed values of residence-based incidence in
each town are shown with black dots, and bands show 95% confidence intervals on model predictions

aspects of their shape (Fig. 6, center). Inferences of βi(t) under the gravity and radiation
mobility assumptions were similar to those under the Twitter assumption, with gravity
being extremely similar (Fig. 7, left) and radiation being similar in most towns but having
considerably larger peaks in Aziz Bhatti Town and Wagha Town (Fig. 7, right).

A general tendency for variation in βi(t) across towns under different assumptions about
mobility was reinforced by examining geometric means of βi(t) over time. Under the ideal
free mobility assumption, the geometric mean of βi(t) decreased every year (Fig. 8). In
contrast, the geometric mean of βi(t) was greater in 2014 than in 2011 in approximately
half the towns under the Twitter, gravity, and radiation mobility assumption, with differ-
ences across models in terms of which towns experienced those increases (Fig. 8). The
degree of inter-annual variation in the geometric mean of βi(t) was greatest under the no
movement assumption, moderate under the Twitter, gravity, and radiation assumptions,
and least under the ideal free assumption (Fig. 8). Under the Twitter, gravity, and radiation
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Figure 6 Temporal variation in βi(t) for different towns (rows) under three different mobility assumptions
(columns): no movement (left), Twitter (center), and ideal free (right). The black line shows the mean of the
best-fit model and blue bands show standard error around the mean. The dashed red line indicates where
βi(t) = 1

assumptions, the geometric mean of βi(t) across all years was highest in Data Gunj Bakhsh
Town, which was also highest in both absolute and per capita terms for both residence-
based and mobility-based incidence (Fig. 9). Otherwise, there was little correspondence
between the geometric mean of βi(t) and either absolute or per capita incidence of the
other nine towns under the Twitter, gravity, and radiation mobility assumptions. There
was also no clear correspondence between βi(t) and incidence under the no movement
assumption, and both the geometric mean of βi(t) and per capita incidence were equal
across towns under the ideal free assumption, as expected (Fig. 9).

4 Discussion
Urban areas exhibit spatial heterogeneity in numerous factors that are relevant to infec-
tious disease transmission, which can contribute to spatial variation in transmission [2]
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Figure 7 Temporal variation in βi(t) for different towns (rows) under three different mobility assumptions
(columns): gravity model (left), Twitter (center), and radiation model (right). The black line shows the mean of
the best-fit model and blue bands show standard error around the mean. The dashed red line indicates where
βi(t) = 1

and interact with temporal drivers of transmission [44]. Our work contributes to under-
standing of infectious disease dynamics in urban settings by highlighting the important
role that human mobility plays in relating observed patterns of disease incidence to in-
ferred patterns of disease transmission. On the one hand, our results show that assuming
that human mobility is well mixed at the scale of a city (ideal free assumption) fails to
capture underlying spatial heterogeneity in transmission and can lead to incorrect con-
clusions about secular trends in transmission across years. In some ways, this behavior
is not surprising, but a systematic review of the literature on mathematical modeling of
mosquito-borne disease transmission showed that this assumption is extremely prevalent
across this field [45]. On the other hand, assuming that different districts of a city are
isolated (no movement assumption) may lead to exaggerated and biologically unrealistic
inferences about transmission patterns. Whether it be Twitter or other data streams [3],
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Figure 8 Geometric means of βi(t) stratified by year (x-axis), town (rows), and mobility assumption (columns)

incorporating realistic patterns of human mobility among districts of a city may help strike
an appropriate balance between the tendencies of these two extreme assumptions. Regard-
less of whether such data streams provide a “correct” picture of mobility, it is encouraging
that our results showed that Twitter, gravity, and radiation assumptions all resulted in
similar epidemiological inferences.

The results of our analysis are a useful case study for any infectious disease, but they
have particular importance for dengue. First, dengue mitigation strategies tend to be spa-
tially reactive to reported incidence [59]. Other than the town with the highest per capita
incidence, we did not identify a strong correspondence between towns with the highest
incidence and those with the highest inferred transmission coefficients (similar to recent
findings for malaria [11]), which suggests that reactive control deployed to areas with the
highest incidence may not necessarily have as much impact on reducing transmission as
more optimized strategies might. Second, due to adverse outcomes associated with vacci-
nating individuals with no prior DENV exposure with the only currently licensed dengue
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Figure 9 Measures of transmission and incidence across towns (colors) under different mobility assumptions
(columns) aggregated over the entire 2011–2014 time period. The upper left y-axis was cut off to permit
viewing of the majority of values; the geometric mean of βi(t) for Shalimar town is 17.49

vaccine [20], it is recommended that this vaccine only be used in areas with high transmis-
sion intensity [17]. Although consideration is given to subnational variation in transmis-
sion intensity (see https://mrcdata.dide.ic.ac.uk/_dengue/dengue.php), our results indi-
cate that this issue may also warrant attention at intra-urban scales. Third, the increasing
trend in the transmission coefficient that we observed under the Twitter mobility assump-
tion serves as a reminder that a decreasing trend in incidence may not be indicative of a
decreasing trend in factors underlying transmission. Instead, it appears that incidence has
probably decreased due to an increase in herd immunity and that conditions remain ripe
for transmission, which could result in a large epidemic once a sufficient number of sus-
ceptibles build up from births and waning heterotypic immunity.

Although our Twitter mobility assumption may be an improvement over some of the
other assumptions that we examined, there are a number of other considerations about
intra-urban human mobility that are likely to affect DENV transmission. We have lim-
ited understanding of how representative Twitter patterns are compared to actual move-
ments of people and see them more as an approximation to relative movements between
towns. At the same time, Twitter data have the advantage of being widely accessible for
many urban areas worldwide, whereas alternative models for intra-urban human mobility

https://mrcdata.dide.ic.ac.uk/_dengue/dengue.php
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tend to have been developed around specific settings (e.g., [37]). In addition, there may be
interactions between disease symptoms, infectiousness, and mobility in DENV-infected
people [13, 39] that complicate the assumption that tweets by presumably healthy peo-
ple are a suitable approximation of mobility patterns of people involved in transmission
[58]. Higher order descriptions of movement may also be necessary to accurately capture
transmission dynamics, as social network structure has been shown to affect transmission
dynamics in urban environments [46, 54, 57]. There is also the perennial question of what
spatial scale is satisfactory for modeling infectious disease dynamics [36, 40]. Examina-
tions of intra-urban DENV transmission patterns in Bangkok, Thailand suggest that there
can be strong spatial heterogeneities of relevance to transmission dynamics at scales as
small as hundreds of meters [47, 49].

Overall, our results showed that the inferred degree of variation in a spatially and tem-
porally variable transmission coefficient was sensitive to five different assumptions about
intra-urban mobility that we considered. This approach extends previous applications of
the TSIR model that estimated either seasonally varying transmission coefficients accord-
ing to pre-defined functions (e.g., [16]) or completely independent values of the trans-
mission coefficient at each time step (e.g., [35]) by blending the same underlying concep-
tual approach with a powerful new regression technique [41] and applying it in a spatial
context. Although our analysis does not account for specifically which factors underlie
variation in the transmission coefficient that we uncovered, there are many well-known
candidates that could be incorporated into future analyses [7, 8, 25, 52]. Either way, we ex-
pect that our results about the sensitivity of transmission inferences to assumptions about
intra-urban mobility would still apply. More generally, we hope that this case study will
serve as a guiding example to the growing number of data scientists engaging in analyses
of infectious disease dynamics. The increasing availability of data from Twitter and other
Internet-based streams provide an exciting opportunity for extracting new understanding
from time series of infectious disease incidence, if used within an appropriate conceptual
framework.
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