Skip to main content

Table 3 Comparison of the clustering results for the users with degree \(k >100\) based on the k-mean and \(H/T\) break algorithm for the SVEIN and SVCN. N and f represents the total number and the percentage of users. \(n_{k}\) stands for the cumulative number of users in the k-th layer. \(\langle r \rangle \) is the average scale ratio

From: Comparative analysis of layered structures in empirical investor networks and cellphone communication networks

 Nf\(n_{1}\)\(n_{2}\)\(n_{3}\)\(n_{4}\)\(n_{5}\)\(n_{6}\)r
Panel A: Clustering results of SVEIN 
k-means         
c = 211427.9%27.8121.7    3.84
c = 317643.0%10.945.8141.7   3.04
c = 411929.1%5.420.857.5151.4  2.64
H/T break         
c = 45411.3%2.911.037.1133.1  3.45
c = 527356.9%1.65.315.042.8133.0 3.00
c = 615331.9%1.23.27.518.551.3156.02.88
Panel B: Clustering results of SVCN 
k-means         
c = 416,91841.1%3.012.842.8132.0  3.22
c = 515,20936.9%2.17.320.454.2141.4 2.66
c = 6904922.0%1.65.112.528.966.5154.02.33
H/T break         
c = 333085.7%5.027.1126.7   4.71
c = 429,12550.2%2.18.733.4133.9  3.97
c = 525,53944.1%1.23.811.739.5147.6 3.61
Zhou  51550150  3.00