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Abstract
Military populations present a small, unique community whose mental and physical
health impacts the security of the nation. Recent literature has explored social media’s
ability to enhance disease surveillance and characterize distinct communities with
encouraging results. We present a novel analysis of the relationships between
influenza-like illnesses (ILI) clinical data and affects (i.e., emotions and sentiments)
extracted from social media around military facilities. Our analyses examine (1)
differences in affects expressed by military and control populations, (2) affect changes
over time by users, (3) differences in affects expressed during high and low ILI
seasons, and (4) correlations and cross-correlations between ILI clinical visits and
affects from an unprecedented scale - 171M geo-tagged tweets across 31 global
geolocations. Key findings include: Military and control populations differ in the way
they express affects in social media over space and time. Control populations express
more positive and less negative sentiments and less sadness, fear, disgust, and anger
emotions than military. However, affects expressed in social media by both
populations within the same area correlate similarly with ILI visits to military health
facilities. We have identified potential responsible cofactors leading to location
variability, e.g., region or state locale, military service type and/or the ratio of military
to civilian populations. For most locations, ILI proportions positively correlate with
sadness and neutral sentiment, which are the affects most often expressed during
high ILI season. The ILI proportions negatively correlate with fear, disgust, surprise, and
positive sentiment. These results are similar to the low ILI season where anger, surprise,
and positive sentiment are highest. Finally, cross-correlation analysis shows that most
affects lead ILI clinical visits, i.e. are predictive of ILI data, with affect-ILI leading
intervals dependent on geolocation and affect type. Overall, information gained in
this study exemplifies a usage of social media data to understand the correlation
between psychological behavior and health in the military population and the
potential for use of social media affects for prediction of ILI cases.

Keywords: social media analytics; machine learning; natural language processing;
emotion detection; sentiment analysis; biosurveillance; influenza

1 Introduction
Social media is an open source, real-time outlet for sharing with others thoughts, actions
or feelings. Researchers have taken advantage of this data source as a complement to tradi-
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tional disease surveillance in effort to increase the speed of detecting disease outbreaks or
other health issues within populations []. In addition to using social media for actionable
surveillance, the way the information is expressed (i.e., through specific language charac-
teristics) can provide insight into how illness affects individuals emotionally and how they
are coping with disease.

Influenza-like illness (ILI) is one of the most widely studied syndromes using social me-
dia, most likely because of its seasonal yearly occurrence in a high proportion of popu-
lations with easily identifiable symptoms. In addition, ILI is highly contagious (airborne)
and can present in a range of severity based on the causal agent, e.g., non-debilitating
common cold to a deadly influenza strain. The potential implications of this disease on
human health and health care systems are drastic. Normal seasonal influenza outbreaks
alone cause up to , deaths annually worldwide and , deaths a year in the
U.S. []. The Centers for Disease Control and Prevention (CDC) has five different types
of influenza surveillance, i.e., outpatient illness, virologic, mortality, hospitalization, and
geographic spread surveillance systems, and provide official summary reports  to  weeks
after patients are seen. This lag in notification is due to the required chains of data col-
lection, verification, and reporting when dealing with human health data. The time lag
is overcome with the use of open source social media data where people ‘report’ their
own health conditions yet the validity and credibility of the data is minimized. Regardless,
many studies have shown an increase in time to ILI outbreak detection using available on-
line data signals, such as search query logs (e.g., Google Flu Trends [–] and Yahoo []),
health related web page views (e.g., Wikipedia [, ]), self reported illness (e.g., crowd-
sourced reports (Flu Near You) [, ] and social media (Twitter) [–]), and combined
data sources [].

To date, studies using social media for ILI surveillance, including those mentioned
above, have relied on health-related text from the user, e.g., self-reporting of symptoms,
syndrome or actual illness, in their analyses. However, social media analytics can provide
insight into the user’s affects (defined as emotions and sentiments) based on the tweet
itself. Many studies in socio- and psycholinguistics show that a person’s affects influence
their health status, namely positive and negative affects correlating with good and bad
health, respectively [–]. Therefore, there is the potential that affects expressed in so-
cial media may be indirectly related to the health status of the user. Limited work has
been done in this area, namely in effort to predict emotions and mental illness for civil-
ian populations [, ] and correlating CDC-estimated vaccination rates and vaccination
sentiments identified through social media [].

In this paper, we focus on affect signals originating from Twitter social media surround-
ing military bases and compare them to the number of ILI visits recorded at military health
facilities in the same area. Military communities present a unique case study because they
are semi-closed populations of people who share common location, responsibilities, and
way of life. They actively use social media to stay connected with their unit at home or
with friends and family when deployed []. In addition, ILI has the ability to quickly
spread throughout the military population resulting in disruptions in military operations
and concern for national security [].

To the best of our knowledge, this is the first work that studies the relationships be-
tween affects expressed via social media and military ILI data. This study is also the largest
published study of the effect of influenza on military communities. Past studies targeting
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military population affects are limited to small-scale, designed experiments (e.g., investi-
gating emotions in military veterans via questionnaires [], measuring emotions in mil-
itary speech [], studying the relationship between occupational stress and mental ill-
ness in the military [], and evaluating the health-related quality of life of United States
(U.S.) military personnel [, ]). The largest study on mental-health risk among the U.S.
military, done jointly by the U.S. Army and the U.S. National Institute of Mental Health,
reports the rate of major depression is five times higher among military as civilians, inter-
mittent explosive disorder is six times higher, and Post-Traumatic Stress Disorder (PTSD)
is nearly  times higher []. By tracking emotion and sentiment changes over time across
locations expressed by military personnel and their families via social media may provide
a deeper insight and faster response time to changes in mental health for these commu-
nities.

Unlike the existing approaches on predicting the dynamics of influenza outbreaks from
social media, we focus on studying spatiotemporal variations in emotions and sentiments
expressed by military populations and correlate these affect signals with clinical diagnosis
data collected from  global military areas. Our main contributions include () identifying
how emotions and sentiments expressed on Twitter differ between military and civilian
populations over time and space, () identifying differences in affects expressed during
high and low ILI seasons for military and control populations, () qualitatively assessing
and quantitatively estimating correlations between ILI clinical visit data and affects ex-
pressed by military populations in social media over time, and () investigating whether
affects identified from user tweets lead or lag ILI clinical visit data, and thus, can be used
to build ILI predictive models.

2 Data
In this section, we present ILI-related clinical visit data for military personnel and their
families across  geolocations. We describe data collection, sampling, and annotation
procedures of social media from both military and civilian populations.

2.1 ILI-related clinical visit data
The ILI clinical data consists of the number of visits to a Defense Medical Information
System (DMIS) Identifier (ID) location for symptoms identified as influenza-like illness
(ILI) based on the International Statistical Classification of Disease and Health Related
Problems (ICD) codes documented in the electronic patient record (Table ). The DMIS
ID facility types identified as reporting ILI symptoms in patients are hospitals, clinics, ad-
ministration, and dental offices. The patients who visit these facilities include active duty,
reserve, and retired members along with their dependents and cadets, recruits and appli-
cants for active duty from the army, navy, marine corps, coast guard, air force, National
Oceanic and Atmospheric Administration, and other public health service. This military
health data was collected from  specific locations ( U.S. and  international). Each
location comprised all DMSID IDs within a -mile radius around military bases (mean 
IDs, range - IDs). The total number of health-related visits to these facilities between
 and  was summarized (Table ) and the percent of ILI visits to total visits was
used in the subsequent analyses (mean .%, range .-.%).
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Table 1 The ICD-9 codes used to describe ILI symptoms and their descriptions

ICD9 Code Description for ILI Symptoms

79.99 Viral infection, NOS
382.9 Unspecified otitis media
460 Acute nasopharyngitis (common cold)
461.9 Acute sinusitis unspecified
465.8 Acute upper respiratory infections of other multiple sites
465.9 Acute upper respiratory infections of unspecified sites
466 Acute bronchitis
486 Pneumonia organism unspecified
487 Influenza with pneumonia
487.1 Influenza with other respiratory manifestations
487.8 Influenza with other manifestations
488 Influenza due to identified agent
490 Bronchitis, NOS
780.6 Fever
786.2 Cough

NOS = Not otherwise specified.

Table 2 The geolocation’s facility types, mean ILI-visits, and mean all-visits for 2011-2014

ID Facility Types* 2011-2014 Mean ILI-visits 2011-2014 Mean All-visits

Total H C O Yearly Weekly SD Yearly Weekly SD

l0 11 3 8 1 76K 1,446 251 2.1M 39,641 4,017
l3 13 2 11 0 119K 2,289 610 3.6M 68,985 6,833
l4 7 1 6 2 75K 1,455 450 2.5M 48,047 4,539
l10 1 1 0 0 34K 657 210 1.4M 26,246 2,321
l11 13 2 11 1 78K 1,503 443 2.7M 51,401 5,246
l12 7 2 5 0 61K 1,169 432 1.7M 33,198 3,995
l13 13 3 10 0 90K 1,724 513 3.0M 57,772 6,004
l14 8 4 4 2 138K 2,644 809 4.6M 88,628 8,623
l15 10 1 9 0 94K 1,807 641 3.0M 58,327 6,142
l16 5 2 3 0 34K 643 186 926K 17,726 2,117
l19 3 1 2 1 33K 640 205 862K 16,494 2,294
l20 4 1 3 1 55K 1,050 159 1.2M 22,574 2,924
l21 6 2 4 0 67K 1,284 401 1.9M 36,280 4,190
l22 9 1 8 1 85K 1,622 505 2.4M 45,055 5,224
l23 10 1 9 1 107K 2,049 690 3.4M 64,988 6,801
l25 4 2 2 0 95K 1,824 435 2.9M 55,825 4,916
l27 12 2 10 1 214K 4,104 1,323 6.5M 124,905 11,165
l28 2 1 1 0 48K 925 268 1.4M 27,401 2,857
l29 5 1 4 1 70K 1,331 381 1.8M 35,230 3,533
l30 5 3 2 0 37K 709 217 1.3M 25,472 3,216
l31 7 1 6 1 62K 1,185 304 1.7M 32,833 3,828
l32 4 1 3 1 54K 1,031 294 1.6M 30,666 3,364
l33 5 1 4 0 45K 866 247 1.5M 27,824 2,881
l34 5 2 3 0 59K 1,123 310 1.7M 33,391 3,368
l37 2 0 2 1 27K 525 128 649K 12,429 1,433
i2 5 - - - 19K 356 63 196K 3,754 817
i3 11 - - - 16K 302 56 532K 10,185 1,207
i17 11 - - - 7K 127 52 572K 10,967 1,525
i20 19 - - - 17K 329 117 259K 4,956 750
i25 7 - - - 9K 170 54 182K 3,478 390
i27 4 - - - 10K 195 45 383K 7,327 1,063

H - Hospital, C - Clinic, and O - Other (i.e., Administrative and Dental facilities). The average number of total counts per year
and the weekly mean with standard deviation (SD) are given for each location. l are locations within the U.S. and i denotes
international locations.
*Facility types are only available for U.S. locations.
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2.2 Social media data
We used social media data to study military populations across different geolocations in
the U.S. and internationally. The Twitter data, acquired from a social media vendor and
through the public Application Program Interface, was anonymized for usernames, user
IDs, and tweet IDs based on a rigorous procedure, i.e., state-of-art encryption algorithm.
To ensure privacy of all users in our sampled datasets, our analysis was based only on
completely anonymized data and our findings are reported on an aggregate rather than
individual level. This study was approved by our institutional review board.

.. Global Military Twitter Dataset (aka Global Military Dataset)
Geo-tagged social media data has been previously used to identify specific populations
and demographic groups in social networks, e.g., geographical communities and urban
areas [], users with specific demographics [] and personality [], and new mothers
[].

To study communications generated by military populations in social media, we col-
lected geo-tagged tweets within a -mile radius of  military locations in the U.S. (l)
and six international locations (i) following standard practices on extracting geolocation
coordinates from user meta-data []. The tweets were collected from over  weeks
between November  through December . Our large Twitter sample includes 
million tweets produced within a -mile radius across  military locations. We report
tweet distribution for each military location, i.e. point of interest, in Figure .

.. U.S. military and non-military Twitter timeline dataset (aka Comparison Dataset)
To identify if differences exist between affects expressed in tweets from military and non-
military (i.e., control) populations, we identified Twitter users from each population. Two
military and one control user sample datasets were identified from one state in the West
Coast (p, p), South East (p, p), and South Central U.S. (p, p). The most recent
methods in the literature that identify specific users in social media rely on searching

Figure 1 Twitter dataset statistics across 31 military
locations. The number of tweets collected within a 25-mile radius
of military installations for 31 geolocations.
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Table 3 The distribution of military TM, control TC , and total T tweets per Twitter point of
interest

Point TM TC T

p12 381,178 335,578 716,756
p15 467,509 424,701 892,210
p23 607,461 605,201 1,212,662
p22 578,843 550,761 1,129,604
p10 378,837 402,298 781,135
p3 1,615,887 1,739,865 3,355,752

Total 4,029,715 4,058,404 8,088,119

We reuse Twitter point indices from military location indices used in a large military Twitter dataset (at least a portion of
tweets extracted from military user timelines was sampled around known military locations e.g., l12 ).

certain keywords in user profile metadata [, –]. Our method for sampling sub-
populations of users combined geolocation with the more common keywords extraction
from user biography fields. The military users were identified from tweets within a -
mile radius of military facilities with high military to civilian population ratios and from
military-specific keywords, e.g., military, corporal, army brat, etc., present in their user
profile data. Conversely, the control population users were sampled from a geolocation at
least  miles away from any military facility in the same state and did not contain any
military-specific keywords from our lexicon in their profile. Note: there is a possibility
that our control sample includes military users if they never stated their membership in
their profile descriptions and resided more than  miles away from any military facility at
the point of user classification. Once the users were identified as control or military, user
timelines containing the most recent , tweets were collected, regardless of the user’s
location. The resulting dataset of military and control timelines spans over  weeks be-
tween Jan  and Dec  and contains eight million tweets from the six initial user
identification sites (Table ). A more detailed explanation on sampling and annotation
processes of military vs. control populations is discussed by [].

3 Methods
3.1 Sentiment and emotion classification models
To predict sentiments and emotions arising from tweets, we used machine learning and
natural language processing techniques to build supervised classification models [] ex-
tending recently developed approaches for affect prediction in social media [–]. We
relied on all tweets produced by military and control populations in specific geolocations
to go beyond influenza-related keywords and tweets previously used to predict ILI [],
and capture other linguistic predictors e.g., discourse about the weather, personal well-
being, travel, indoor and outdoor activities etc. We trained sentiment models on tweets
annotated with three opinion classes downloaded from seven publicly available sentiment
datasets []. The training data for sentiment classification includes TS = , tweets in
total (% positive, % negative, and % neutral) from multiple domains e.g., health,
debates, politics etc. To evaluate the predictive power of our sentiment model on tweets
from the general domain, we tested our model on the official SemEval- test set []
of , tweets and report the F = . for -way classification. We found that our sen-
timent model is comparable with the state-of-the-art systems for sentiment classification
on Twitter [, ].
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We trained our emotion models on tweets annotated with basic emotion hashtags that
correspond to six Ekman’s emotion classes - joy, sadness, disgust, surprise, anger, and fear
[, ]. Despite the limitation that existing approaches do not disambiguate sarcastic
hashtags e.g., It’s Monday #joy vs. It’s Friday #joy, they still demonstrate that a hashtag is
a reasonable representation of real feelings []. Similar to Gonzalez-Ibanez (), we
collected tweets with the hashtags at the end of the tweet, excluded non-English tweets
and tweets with less than three tokens []. Moreover, we extended our emotion-hashtag
dataset with emotion synonyms collected from WordNet-Affect [] and Roget’s The-
saurus [] to lower the rate of false positives that might be present in the data due to the
sarcasm factor. Overall, we collected TE = , tweets annotated with anger (.%), joy
(.%), fear (.%), sadness (.%), disgust (.%), and surprise (.%).

For emotion and sentiment classification, we trained tweet-level log-linear models with
L regularization (aka logistic regression) �s (as defined in Eq. ()) and �e (as defined in
Eq. ()) using scikit-learn toolkit [] that rely on lexical ngram features extracted from
tweets tk ∈ T annotated with three opinion si ∈ s and six emotion ej ∈ e categories. In
addition to lexical features, we extracted a set of syntactic and stylistic markers from tweets
including emoticons, elongated words, capitalization, repeated punctuation, and number
of hashtags and took into account clause-level negation [].

�s = argmaxsi Pr(S = si | t), ()

�e = argmaxej Pr(E = ej | t). ()

We evaluated our emotion model prediction quality using -fold cross validation on our
emotion dataset of TE = , tweets and report weighted F = . for -way classifica-
tion. We found that our emotion model significantly outperforms the existing approaches
for emotion classification [, –].

3.2 Evaluation metrics
.. ILI and affect proportions
To study the relationships between clinical ILI visit data and affects derived from tweets,
we define ILI proportions per location l ∈ L with each location aggregated over multiple
DMISIDs and per week w ∈ W .

Weekly location-specific ILI visit proportions:

Iw,l =
# of weekly ILI visits per location l

weekly total visits per location l
. ()

After applying our emotion and sentiment classification models, every tweet in our dataset
was annotated with its predicted affects. We aggregated affect annotations over time and
geolocations to obtain weekly location-specific sentiment and emotion proportions as
shown below.

Weekly location-specific sentiment proportions over three sentiment classes {positive,
negative, neutral} ∈ s,

∑
i si = :

Ssi
w,l =

# of weekly tweets labeled with sentiment si per location l
# of weekly tweets per location l

. ()
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Weekly location-specific emotion proportions over six Ekman’s emotion classes {joy,
sadness, fear, disgust, surprise, anger} ∈ e,

∑
j ej = :

Eej
w,l =

# of weekly tweets labeled with emotion ej per location l
# of weekly tweets per location l

. ()

We aggregated weekly clinical visit data Iw,l , sentiment Ssi
w,l , and emotion Eej

w,l proportions
by geolocation to construct the ILI and affect proportion time series. We then applied cor-
relation [] and cross-correlation analysis [] over ILI and affect location-specific time-
series to study () what emotions and sentiments have positive vs. negative correlations
with clinical ILI visit data, and () whether affects are predictive of clinical ILI visit data,
respectively.

To study the relationships between ILI and affects expressed in social media, we used
Pearson correlation to measure of the degree of linear dependence between two variables
e.g., location-specific sentiment proportions Ssi

w,l (simplified as S below) and ILI clinical
visit proportions Iw,l (simplified as I below):

ρS,I =
cov(I, S)

σSσI
=

E[(S – μS)(I – μI)]
σSσI

, ()

where μI and σI are the mean and standard deviation for I ; and similarly for S; E indicates
the expected value.

To study the predictive power of emotions and sentiments originating from tweets pro-
duced by military populations in social media, we used cross-correlation analysis to mea-
sure similarity between two series e.g., location-specific emotion proportions Eej

w,l (shown
as E) and clinical ILI visit data Iw,l (shown as I) as a function of the lag of one relative to
the other:

ρI,E(w) =
E[(Iw – μI)(Ew+ – μE)]

σIσE
, ()

where μI and σI are the mean and standard deviation of the process (Iw); and similarly for
(Ew); E indicates the expected value.

.. U.S. military and non-military affect time-series
Similar to Eq. () and (), we constructed military-specific vs. non-military-specific ILI
and affect time-series from the  million tweets annotated in the Comparison dataset.
We then performed a Mann-Whitney U test [] to investigate whether emotions and
sentiments expressed by military vs. control populations during the same time frame are
statistically different.

Moreover, to further study the affect differences between military and control popula-
tions, we estimated emotion and sentiment military-to-control ratios for every sentiment
si and emotion ej class over time across six points of interests. The military-to-control
emotion ratio and sentiment ratio are defined similarly. As an example, we present the
emotion ratio:

R(w, p, ej) =
# of weekly military tweets labeled with emotion ej per point p
# of weekly control tweets labeled with emotion ej per point p

. ()
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.. Emotion and sentiment analysis in low vs. high ILI season
To further evaluate the emotions and sentiments expressed in social media during high
and low ILI periods, we identified the top  weeks for location-specific highest and low-
est ILI visit proportion numbers Iw,l . Then, we extracted the corresponding emotion and
sentiment proportions over the same period Ew,l and Sw,l . We observe that over a period
between  and  the highest ILI proportions were reported during winter months,
as expected for temperate regions [].

To estimate whether affects expressed in social media are statistically significantly dif-
ferent between high and low ILI periods, we apply a Mann-Whitney U test to (a)  military
vs. control affect distributions and (b)  location-specific affect distributions.

4 Results
We begin this section with our novel findings on sentiment and emotion differences in
social media data between military and non-military populations (i.e, the Comparison
Dataset). First, we present the general differences identified in sentiments and emotions
of the two populations. Second, we discuss the differences between the populations during
weeks with high and low ILI visits for a subset of  weeks. Next, we present a detailed
analysis of the Global Military Dataset. We first focus on the relationships between Twitter
point-specific affect and ILI clinical visit time-series evaluated using correlation [] and
cross-correlation analysis []. Then, we discuss the affect differences within the Global
Military Dataset between  weeks with high and  weeks with low ILI visits. Finally, we
evaluate the predictive power of affects for nowcasting ILI dynamics using the state-of-
the-art machine learning models for  locations in the Global Military Dataset.

4.1 The variations in affects between military and non-military populations
.. Differences in emotions and sentiments expressed in the comparison dataset
We observed that emotions and sentiments identified in tweets vary significantly over
time for military and control populations (i.e., Comparison Dataset). Figure  presents

Figure 2 Emotion and sentiment military-to-control ratios over time. Sentiment ratios are estimated for
three opinion types: positive, negative, and neutral and emotion ratios are estimated for six Ekman’s emotions:
joy, sadness, fear, surprise, anger, and disgust over the period from 01/2009 to 12/2014 for an example Twitter
set p12. The set of military and control users is the same over time.
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military-to-control sentiment and emotion ratios (defined in Eq. ()) over time for an ex-
ample Twitter set of interest p. Ratios R(w, p, ej) > , show when military population
expresses more of a certain affect vs. R(w, p, ej) ≤ , which show when control popula-
tion expresses the same or more of a specific emotion or sentiment. Overall, the estimated
military-to-control ratios over time from the six Twitter sets containing military and con-
trol tweet annotations (as shown in Table ) can be summarized as follows. On average,
over  weeks (from / to /) across six Twitter points, the military popula-
tion expresses:

• More negative (% of all weeks military expressed more negative opinions compared
to the control) and less positive (% of all weeks military expressed more positive
opinions compared to the control) sentiments compared to the control population.

• More anger (%) and disgust (%) than the control population, but less joy (%).
High variance (more spikes) in military-to-control ratios was observed between 

and  across all affects in Figure . This time period represents the lowest number of
tweets produced from military and control populations as shown in Figure . Here, a small
change in affects extrapolated from tweets can have a large affect on the ratio calculated.
Thus, our emotion and sentiment proportion estimates are less confident during these
years compared to between  and . Another reason for the high variance seen is
that the timeline of tweets collected from a user most likely contain tweets originating
from various locations. This highlights the role of location as an important cofactor in
affects expressed by military and control populations.

Nevertheless, our findings on military personnel expressing more negative emotions and
sentiments compared to control population across several regions concurs with the re-
cent report on well-being and mental-health risk among the U.S. military. The large-scale
study found that the risk of depression, intermittent explosive disorder, and PTSD is much
higher in military than civilian populations in the U.S. [].

In Figure  we demonstrated that military and control populations express different sen-
timents and emotions in their communications in six separate datasets over time. In or-
der to find whether these differences are statistically significant, we performed a Mann-
Whitney U test (Table ). We found that for the majority of affect types mean differences
are statistically significant except for:

• fear (p, p, p, p, p) and sadness (p, p, p, p),
• surprise (p, p), anger (p, p), and disgust (p, p),
• joy and neutral sentiment (p).
Overall, we observed that military populations express significantly different emotions

and opinions in social media compared to civilian populations at the same time except for
two emotions - sadness and fear. According to the Mann Whitney U Test, differences in
sadness and fear over time across the majority of areas on interest for military and control
populations are not statistically significant.

To provide more insight into our findings on tweet-based aggregate analysis of affects
over time, we perform user-based analysis that ignores the temporal component. For that,
we aggregate affects expressed by each user between - and contrast the means
for each effect type across military and control users. Our results in Table  demonstrate
that similar to aggregated tweet-based analysis, military and control users significantly
differ in the way they express emotions and sentiments in their tweets (except for sadness
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Figure 3 Military and control tweets per from 01/2009 to 12/2014 across six geolocations. Weekly
number of tweets vary across locations and over time e.g., between 2009-2011 the number of weekly tweets
is significantly lower than between 2011-2014.

emotion and positive sentiment). For the majority of this study, we focus on the population
tweet-level analysis of affects over time to understand how they relate to ILI incidence.

.. Affect differences in high and low ILI seasons between military and non-military
populations

Figure  presents mean differences for emotions and opinions extracted from military and
control populations during high vs. low ILI seasons. We only report statistically signifi-
cant differences. Moreover, since we perform multiple statistical tests, some will have p-
values ≤ . purely by chance, even if all null hypotheses are really true. Thus, to control
the false discovery rate we use Benjamini-Hochberg procedure []. Our key significant
observations are outlined below.

• Military population, regardless if ILI was high or low, expressed more anger and
disgust emotions, and negative sentiment than control population.

• Control population expresses more joy emotion and positive sentiment compared to
military population.
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Table 4 Differences in emotion and sentiment proportions between military (m-) and control
(c-) populations

Affect p12 p15 p23 p22 p3 p10

c-positive ↑ 0.399 0.392 0.404 0.406 0.397 0.410
m-positive 0.384 0.385 0.393 0.397 0.389 0.375
c-negative 0.306 0.321 0.323 0.319 0.315 0.298
m-negative ↑ 0.334 0.345 0.334 0.334 0.330 0.352
c-neutral ↑ 0.296 0.287 0.275 0.289 0.292
m-neutral 0.282 0.270 0.269 0.281 0.273
c-anger 0.015 0.017 0.015 0.014
m-anger∗ 0.017 0.019 0.018 0.017
c-fear 0.090
m-fear∗ 0.096
c-disgust 0.091 0.091 0.092 0.092
m-disgust ↑ 0.092 0.093 0.098 0.098
c-sadness 0.118 0.121
m-sadness ↑ 0.128 0.128
c-surprise 0.088 0.092 0.091 0.088
m-surprise∗ 0.092 0.088 0.094 0.086
c-joy ↑ 0.588 0.592 0.588 0.591 0.594
m-joy 0.577 0.578 0.583 0.577 0.582

We only report affect proportion means that are statistically significantly different evaluated using Mann-Whitney U Test
(p-value ≤ 0.05) (non-significant differences are blank). We mark affects expressed more ↑ by military or control populations
across six datasets; affects marked with ∗ vary across sets. We control false positive (FP) discovery rate by applying
Benjamini-Hochberg correction with critical value for a FP discovery rate of 0.1.

Table 5 Differences in emotion and sentiment proportions expressed by military and control
users between 2011-2014 aggregated over 6 points of interest

Affect Control Users Military Users

Mean St. Dev. Mean St. Dev.

anger 0.014 0.006 0.016↑ 0.007
disgust 0.092 0.029 0.096↑ 0.028
fear 0.090 0.024 0.093↑ 0.024
joy 0.594↑ 0.053 0.587 0.050
surprise 0.096↑ 0.023 0.094 0.026
negative 0.313 0.060 0.328↑ 0.062
neutral 0.411↑ 0.068 0.394 0.067

We only report affect proportion means averaged over military and control users that are statistically significantly different
(non-significant differences for sadness emotion and positive sentiment are not reported). We mark affects expressed more↑
by military or control users. We control false positive (FP) discovery rate by applying Benjamini-Hochberg correction with
critical value for a FP discovery rate of 0.1.

• We have not observed statistically significant differences between military and control
populations for fear and surprise emotions in low ILI periods, and neutral sentiment
during high ILI periods.

• Both military and control populations express more anger (p, p) and negative (p)
sentiment during low ILI season; more joy (p) and positive (p) sentiment during
high ILI period; military population expresses more disgust during low ILI period (p).

We present a detailed analysis of inter-affect correlations for six points of interests on the
West Coast (p, p), South East (p, p), or South Central U.S. (p, p) in Figures -
in Additional file .
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Figure 4 Mean affects during high vs. low ILI seasons across six Twitter sets. We only report differences
that are statistically significant from the Mann-Whitney U test (p-value ≤ 0.05); To control false positive
discovery rate we apply Benjamini-Hochberg correction: * represent Benjamini-Hochberg critical value with a
false discovery rate of 0.2; and the rest of points - critical value with a false discovery rate of 0.1.

Figure 5 ILI-Affect correlations across 31 military locations. Positive (blue) and negative (red) correlations
between ILI visits and tweet affect time series by location. Locations (columns) and affects (rows) grouped by
similarity using the Euclidean distance measure are shown as dendrograms.

4.2 The relationships between ILI and affects across global military populations
.. Correlations between ILI and affect time-series across military locations
In the previous section, we showed that ILI-Affect correlations are different with some
general trends observed. To investigate these differences, we present ILI-Affect corre-
lations across  military geolocations from our Global Military Dataset (Figure ). We
performed correlation and cross-correlation analysis by subsampling ILI and affect data
during influenza seasons (September through May) for several years between November
 and December .

Figure  demonstrates that across the majority of geolocations ILI positively correlates
with sadness (except i, i, l and l) and neutral sentiment (except i), and negatively
correlates with disgust (except i), fear (except l, i, l, l), and surprise (except i, l, l)
emotions, and positive sentiment (except l, l, l). We found that the direction of ILI-
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Affect correlations vary by locations for joy ( positive and  negative), anger ( positive
and  negative), negative ( positive and  negative).

Moreover, the dendrogram that groups military locations (columns) and affects (rows)
by similarity using the Euclidean distance measure shows that:

• Sadness and neutral sentiment positively correlate with ILI visits.
• Disgust, fear, surprise emotions and positive sentiment negatively correlate with ILI

visits.
The strongest identified affect time series correlations to ILI visits are:
• Positive: joy (i), negative sentiment (l, i, i), neutral sentiment (l, l, l, i),

sadness (i, l), anger (l), disgust (i), fear (l, l), surprise (l, l), and positive
sentiment (l, l).

• Negative: joy (l), negative sentiment (i), neutral (i), sadness (i, i), anger (l, l),
disgust (l, l), fear (i, l, l), surprise (i), and positive sentiment (i, l, l, l).

.. Cross-correlations between ILI and affect time-series across military locations
Previous research has shown that the discourse in social media is predictive of influenza
outbreaks [, ]. In this section, we evaluate whether sentiments and emotions extracted
from Twitter communication has the potential to predict influenza dynamics across mil-
itary geolocations. We apply cross-correlation analysis to assess the predictive power of
affects on ILI proportions in our Global Military Dataset. This analysis enable us to iden-
tify which affects are seen before ILI (i.e., lead) and those that appear after ILI visits (i.e.,
lag). We report lead and lag intervals in weeks for every affects across  military geolo-
cations in Figure .

We observed specific emotions and sentiments reliably lead ILI data and, therefore, are
candidates for predicting ILI proportions (shown as blue and green in Figure  across
geolocations) in lagged regression models for ILI disease forecasting. On the other hand,
the affects that lag ILI data may be useful for nowcasting disease. Our key novel findings
are the following:

• Disgust emotion and all types of sentiment lead ILI proportions for most geolocations
between  and  weeks.

Figure 6 The lead and lag intervals in weeks for ILI-Affect cross-correlations across 31 military
locations. Cells of different colors represent lagging (+) vs. leading (–) intervals between 0 and 4 (or more)
weeks for statistically significant cross-correlation results (p-value ≤ 0.05, 95% confidence interval). Locations
(columns) and affects (rows) are reordered by similarity using the Euclidean distance measure and are shown
as a dendrogram.
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Table 6 Percent of locations that contain the affect as a potential predictive factor of ILI

Affect West Coast South East South Central International

Anger 20% 53% 25% 33%
Disgust 20% 92% 100% 67%
Fear 40% 69% 75% 50%
Joy 60% 100% 75% 17%
Sadness 80% 38% 50% 83%
Surprise 40% 62% 100% 67%
Negative 20% 69% 100% 50%
Neutral 80% 77% 100% 67%
Positive 0% 85% 75% 33%

These numbers were aggregated from cross-correlation analyses results visualized in Figure 6. Percentages in bold indicate
those affects where equal to or greater than 50% of the locations in that region have the affect leading the ILI visit counts.

• Anger, surprise, fear, sadness, and joy emotions lead or lag ILI proportions, depending
on geolocations, between  and  weeks.

By combining the  locations by U.S. region and separating them from the international
locations, we are able to clearly visualize the resulting similarities in leading affects to ILI
visit cross-correlation based on geolocation (Table ). The U.S. is split into three regions,
the south east (n = ), south central (n = ) and west coast (n = ), and international (n =
) as one location. Note: two single U.S. locations were unable to be grouped into a region
based on geolocation. The differences in affects across locations are exemplified here as
many regions have a high percent (-) of predictive status for specific affects that
other locations have a low percent (-). The affects with consistent high percentages
are neutral in all locations and joy in the U.S. and consistent low percentages across all
locations is anger.

.. Measuring affect differences in high vs. low ILI seasons across  locations
Figure  reports the highest mean numbers during high and low seasons for every emo-
tion and sentiment type across  locations (i.e., the Global Military Dataset). Our key
significant findings in terms of sentiment and emotion means are listed below.

• Neutral sentiment and sadness emotion are higher during high ILI periods.
• Positive sentiment, anger and surprise are higher during low ILI periods.
• Negative sentiment and disgust, joy and fear emotion means vary across locations

during high and low ILI periods.

.. Predicting ILI dynamics from affects
We ran preliminary experiments on using affects (emotion and sentiment proportions) to
predict location-specific ILI dynamics with machine learning models. We relied on regres-
sion models previously used with social media features for ILI dynamics prediction - Ad-
aBoost (DecisionTree regressor), RandomForest, and Linear regressors [] implemented
in scikit-learn []. We report results for nowcasting - predicting current week % ILI in
Table . We evaluate the predictive power of affects using several metrics (i.e., Pearson
correlation (CORR), Root Mean Squared Error (RMSE), and Maximum Absolute Percent
Error (MAPE)) between predicted and true ILI values as defined in []. We train our
models on - years and predict for year .

We found that Random Forest and Linear regressors yield higher performance (higher
Pearson correlation and lower MAPE and RMSE) compared to AdaBoost models. We
show how performance varies across locations. For % of locations Linear regressor
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Figure 7 Emotion and sentiment differences in high vs. low ILI seasons across 31 military locations.
We report the highest mean numbers (either the mean during high or low season) when the differences
between high vs. low affect distributions are statistically significant with (p-value ≤ 0.05) for 31 locations. To
control false positive discovery rate we apply Benjamini-Hochberg correction: ∗represent
Benjamini-Hochberg critical value with a false discovery rate of 0.2; and the rest of points - critical value for a
false discovery rate of 0.1.

demonstrates the highest performance, for % of locations Random Forest is the best,
and the AdaBoost is the best for % of locations.

Our preliminary experiments demonstrate that affects are predictive (depending on lo-
cation) but not sufficient to accurately predict ILI dynamics (as shown in Figure ), es-
pecially if one wants to make forecasts several weeks in advance. However, if there is no
historical ILI data available, affects could serve as predictors of ILI dynamics (Pearson
correlation for locations i, L, L, L, L, and L is between .-.). We think
that affects combined with other features extracted from tweets can boost model perfor-
mance. Moreover, recently emerged deep neural networks for sequence prediction, e.g.,
Long Short-Term Memory models, can potentially boost predictions when learned jointly
on text and affect signals. Future work may also include experimenting models that rely
on affect and language features for forecasting ILI dynamics several weeks in advance.

5 Discussion
5.1 Variations in affects between military and non-military populations
Military populations are often thought of as small, closed communities that face differ-
ent combinations of life stressors and challenges than the general public. In support of
this concept, we show that emotions and sentiments expressed by military populations
in their day-to-day social media discourse differ from surrounding non-military popula-
tions in the U.S. In general, military life consists of intense training and subsequent en-
gagement in national security tasks, which put the lives of the military personnel or those
that they work with in dangerous and/or chaotic situations. These trauma filled experi-
ences can affect their families directly or indirectly. Twitter is a type of social media where
communication is limited in length yet spread to a wide audience rapidly. With only 
characters allowed, a tweet contains the core essence of what the tweeter is trying to get
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Table 7 ILI prediction results (current week estimates for %ILI) for 2014 for 31 locations from
affect features using Linear, AdaBoost and Random Forest regressors

Linear AdaBoost RandomForest

CORR MAPE RMSE CORR MAPE RMSE CORR MAPE RMSE

L0 0.10 14.5 0.69 0.15 18.2 0.80 0.24 15.40 0.65
L3 0.21 32.0 1.32 0.25 18.4 0.96 0.39 17.90 0.87
L4 0.07 23.4 1.04 0.56 18.9 0.82 0.28 23.60 0.87
L10 0.19 26.9 0.84 –0.60 60.6 1.44 0.09 30.40 0.87
L11 0.22 24.6 1.08 0.13 25.8 1.02 0.18 27.70 0.92
L12 0.10 43.6 1.70 0.08 34.8 1.48 0.12 67.10 2.09
L13 0.28 23.0 1.11 0.28 22.7 1.20 0.21 22.70 1.13
L14 0.19 34.1 1.49 –0.15 37.8 1.20 0.41 28.90 0.92
L15 –0.01 37.7 1.26 –0.01 50.6 1.63 0.26 40.10 1.17
L16 –0.07 26.6 1.30 0.06 24.8 1.29 –0.19 30.50 1.37
L19 0.09 32.1 1.61 0.15 28.1 1.61 –0.28 35.00 1.78
L20 0.16 16.9 1.23 0.28 18.2 1.18 0.21 22.90 1.27
L21 0.06 29.1 1.55 0.25 32.7 1.41 0.03 50.30 1.80
L22 –0.16 29.8 1.62 –0.44 41.1 1.68 0.08 42.70 1.56
L23 0.06 28.3 1.14 –0.12 41.8 1.27 0.06 37.80 1.18
L25 0.24 18.9 0.88 –0.06 28.9 1.11 0.03 24.30 0.98
L27 0.23 32.2 1.57 0.20 22.7 1.24 0.21 23.20 1.20
L28 0.10 22.0 1.39 –0.01 24.0 1.31 –0.21 27.00 1.29
L29 –0.11 29.5 1.67 -0.07 37.0 1.48 –0.16 31.80 1.35
L30 0.16 28.7 1.37 0.11 23.0 1.33 0.23 38.00 1.28
L31 0.12 35.4 1.22 0.13 39.9 1.30 0.11 35.40 1.22
L32 –0.29 25.0 1.45 –0.48 33.7 1.51 0.13 26.00 1.22
L33 0.14 19.6 1.16 0.37 17.3 1.04 0.50 18.00 1.00
L34 0.18 19.8 0.99 –0.10 29.4 1.32 0.16 23.90 1.11
L37 0.09 22.7 1.67 0.29 20.2 1.34 0.49 18.70 1.34
i2 0.12 12.1 0.73 0.28 11.7 0.66 0.13 13.70 0.62
i3 0.33 19.2 0.78 –0.01 25.3 0.95 –0.08 40.20 1.42
i17 0.17 71.0 2.42 –0.09 57.8 1.84 0.15 52.70 1.74
i20 0.09 34.6 1.09 –0.14 38.4 1.21 –0.12 39.30 1.17
i25 0.58 35.1 1.54 –0.03 32.9 1.65 –0.08 33.10 1.50
i27 0.03 20.8 1.67 0.29 23.2 1.44 0.17 21.20 1.49

Models are trained exclusively on emotion and sentiment proportions extracted from tweets in 2012-2013. Models are
evaluated to predict %ILI in 2014. The highest CORR and the lowest MAPE and RMSE are highlighted in bold.

across, whether emotional or factual. Along these lines, tweets can provide insight into a
person’s emotional and sentimental state. This study shows that military populations tend
to contain more negative and less positive sentiments than control populations, in addition
to increased emotions of sadness, fear, disgust and anger. These findings of more negative
sentiments, including disgust and anger, by military and positive sentiments by the control
population even hold true when specifically looking at high and low times of ILI. These
results may be attributed to the hard facts of military life in general and the day-to-day
challenges that they face in order to ensure protection of the civilian populations.

5.2 Correlations between ILI and affect time-series across global military
locations

Studies in the literature have investigated the relationship between affects and health,
many of which show that positive affects correlate with good health [, ]. In this pa-
per, we examined the correlation between various affects identifiable in tweets and the
health status of the subpopulation, containing those tweeters, based on the number of ILI
visits to a health facility. We found that people within a -mile radius around military
bases express sentiment and emotion in tweets that correlate with ILI visits to medical
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Figure 8 True vs. predicted %ILI (current week estimates) as a function of time for 31 geolocations.
We plot true %ILI (ILI), predictions from sentiment and emotion features made using with AdaBoost (ABR),
Linear (LR) and RandomForest (RFR) regressors.

facilities in the same location. These correlations are mostly location and affect type de-
pendent, which may suggest that location-specific demographics and characteristics may
be influencing these differences. Different location specific aspects were investigated in-
cluding the percent of military population to civilians, the volume of tweets collected, the
ratio of ILI visits to tweet volume, and the service type of the bases within each location
boundaries. The best generalizations were identified when the U.S. locations were split
into southeastern, south central, and west coast. By doing this regionalization, correla-
tions between affects and ILI visits became more apparent.

Although neutral sentiment was positively correlated with ILI visits throughout the U.S.
(which means that populations are more neutral, in other words, express less opinionated
tweets), positive and negative sentiments correlated differently to ILI visits regionally. In
the Southeast, % of the military locations’ ILI visits were negatively correlated to nega-
tive sentiment. However, those locations that were positively correlated (% of SE mili-
tary) were all identified to be located with in a single state and military service type. The
latter positive correlation between ILI and negative sentiment was also observed in the
South Central and West Coast states with a high proportion of military to civilian popu-
lations. For positive sentiment, there were varying degrees of negative correlation to ILI
visits, e.g., % of locations in the southeast and % of locations in the south central U.S.
For the west coast, those locations with a higher percent of military to civilians showed
a similar negative correlation between ILI and positive sentiment. In contrast, a single
state with multiple locations and service types showed a positive correlation between pos-
itive sentiment and ILI visits. This degree of variability in correlations based on location
stresses the importance of understanding which characteristics may play a role in the sub-
populations reaction to health situations. As discussed by Gallo and Matthews (), the
differences in location’s affects may be attributed to the socioeconomic status of the areas
and the amount of stress that plays a role in the tweeter’s life [].
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The six emotions identified in tweets showed varying degrees of correlation with ILI vis-
its. The most straight forward was a positive correlation with sadness found in all regions
but with varying degrees of concurrence throughout each area, i.e. % of west coast loca-
tion groups, % of the southeast, and % of the south central region. There was a nega-
tive correlation to anger sentiment in % of west coast locations and % in south central
U.S. that contained the areas with the lowest percentage of military to civilian population.
Other emotions showed demographic-specific results. Disgust correlated positively with
military in the air force and negatively with those in the navy, specifically in the Southeast.
Fear and disgust were highest when ILI visits were highest in areas dense with military
personnel yet low when ILI was highest in areas with low density of military personnel.
Joy and surprise were very dependent on location, percent of military population, and ser-
vice type. For example, in the west coast locations, surprise was negatively correlated with
ILI in % of the locations and joy was positively correlated in % of the locations. In the
south central region, military percent played the biggest role with negative correlations
between ILI visits and both surprise and joy in areas with high military to civilian popula-
tions along with positive correlation to surprise in areas with less military than civilians.
Lastly, in the southeastern U.S., service type seems to play the most important role with
% of the locations negatively correlated with surprise and all army service areas posi-
tively correlated. In the same respect, all negatively correlated joy emotions to ILI visits
were observed in the army service in the same area.

In general for the locations studied here, there is a correlation between sentiments and
emotions identified in tweets and ILI visits to health facilities within the same areas. The
strongest correlations across all U.S. locations are a negative correlation to anger and sur-
prise, positive correlation to sadness, and a mixed bag for fear, disgust, and joy. For sen-
timents, there was an overwhelming positive correlation to neutral statements, negative
correlation to positive sentiments, and a mixed bag for negative sentiments correlating to
ILI visits based on which region was analyzed. Very similar results were identified when
we looked at affects most present during high vs. low ILI clinical visits across datasets, i.e.,
neutral sentiment and sadness were expressed most during high ILI times and positive sen-
timent, anger, and surprise are expressed during low periods. Interestingly, our findings
support the psychology research that identifies positive affects correlating to good health.
However, the converse isn’t naturally shown in our data. Instead, neutral sentiments, i.e.,
a decreased amount of strongly opinionated tweets, characterize the period of ill health,
namely ILI, for the population. This lack of positive affects when ILI visits are high can
be explained by Fredrickson’s paper, which emphasizes that positive emotions are not just
the absence of negative emotions [].

5.3 Cross-correlations between ILI and affect time-series across 31 military
locations

By regressing affects  to  weeks before the ILI visit counts, we were able to identify which
affects in tweets could be used to predict the number of ILI cases. The results were overall
variable but when broken down regionally, we were able to identify specific attributes that
may be responsible for these differences, e.g. location (i.e., country, region and/or state
level), military service type, and percent of military per location. Neutral sentiment and
joy emotion were the only affects that were consistent across all U.S. locations as strong
candidates for predictive models of ILI visits whereas anger was constantly unreliable.
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In the southeast, there were strong trends by state, whereas in the west coast and south
central areas, military service and the percent of the population being military played a role
in predictive affects. In general, the south eastern and south central regions affects lead
ILI visits more often than other studied locations and, therefore, may be a good starting
point for predictive investigation of ILI visits.

6 Limitations
We note that our analysis and methodology have several limitations.

First, our social media data collection approach for identifying military versus con-
trol populations does not guarantee that the control population is not military. Also, the
method used does not allow for any assumptions on the location of the Twitter user since
the time series of tweets were collected based on user and not location. Second, our social
media data collection approach does not allow us to claim that all tweets originating within
a -mile radius of military locations have been produced by military personnel or their
family members. Third, our affect classification models are capable of predicting affects
in tweets with only a certain level of accuracy, which would bring some noise, e.g., misla-
beled annotations, to our analysis. Fourth, using ILI location-specific weekly proportions
as our gold standard for influenza dynamics in military populations may not necessarily
be ideal. Finally, we only study correlations between affects and ILI clinical diagnosis data.
As such, we can not make any causal inference regarding these parameters.

Despite these limitations, due to the size of analyzed dataset, we believe our conclusions
regarding emotion and sentiment differences between military and control populations,
ILI-Affect correlations, and cross-correlations are accurate.

7 Conclusion
We performed a novel large-scale study of automatically inferred emotions and sentiments
emanating from  million tweets produced by military and non-military associated peo-
ple across  locations in the U.S. and  international locations.

Through studying military and non-military associated Twitter communications, we
found significant differences in their expressions of sentiments and emotions in social
media throughout time. In general in control population communications, positive affects
are expressed more and negative affects less than in military population communications
during a year. This underlying theme may be a result of the different lifestyle and respon-
sibilities endured between the military and civilian populations.

In addition, our analysis identified emotions and sentiments in tweets for a given loca-
tion that correlate with the amount of military ILI visits to medical facilities in the same
area regardless of whether or not the tweets are from military or non-military individu-
als. In general, positive affects in tweets correlate with less medical facility visits for ILI
symptoms and neutral affects are used during times of increased ILI visits.

We then showed that by combing locations into regions, trends in the direction of cor-
relation and the predictive usage of affects, become more apparent and easily identified.
In specific instances, we have identified additional characteristics within the regions that
help explain trends seen. These include similarities in emotions and sentiments expressed
by all locations in a specific state, military service type, and/or locations within a region
that have high or low ratios of military to civilian populations.

Our preliminary regression experiments on predicting ILI dynamics showed that af-
fects are predictive but not sufficient to accurately generate current week ILI estimates.
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We found that predictive power of sentiments and emotions vary significantly across lo-
cations. Nevertheless, we think that affects combined with other features extracted from
tweets, location-specific feature selection (e.g., our findings from cross-correlation analy-
sis), as well as deep neural network models for sequence prediction can boost prediction
accuracy, and even forecast ILI dynamics several weeks in advance.

Overall, the information gained in this study exemplifies a usage of social media data
to understand the correlation between psychological behavior and health in the military
population and the potential for use of social media affects for prediction of ILI cases.

Additional material

Additional file 1: Figures 9-14 demonstrate the inter-affect correlations presented in Figure 4 for six
Twitter points of interest with military and control split on the West Coast, South East and South
Central U.S. (pdf )
Additional file 2: Availability of data and materials. (zip)
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