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Abstract
Community detection techniques are widely used to infer hidden structures within
interconnected systems. Despite demonstrating high accuracy on benchmarks, they
reproduce the external classification for many real-world systems with a significant
level of discrepancy. A widely accepted reason behind such outcome is the
unavoidable loss of non-topological information (such as node attributes)
encountered when the original complex system is converted to a network. In this
article we systematically show that the observed discrepancies may also be caused
by a different reason: the external classification itself. For this end we use scientific
publication data which (i) exhibit a well defined modular structure and (ii) hold an
expert-made classification of research articles. Having represented the articles and
the extracted scientific concepts both as a bipartite network and as its unipartite
projection, we applied modularity optimization to uncover the inner thematic
structure. The resulting clusters are shown to partly reflect the author-made
classification, although some significant discrepancies are observed. A detailed
analysis of these discrepancies shows that they may carry essential information about
the system, mainly related to the use of similar techniques and methods across
different (sub)disciplines, that is otherwise omitted when only the external
classification is considered.
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1 Introduction
A conflict between two members of a relatively small university organization that hap-
pened more than  years ago [] has attracted a lot of attention in the scientific commu-
nity so far []. A confrontation during the conflict resulted in a fission of the organization,
known as Zachary’s karate club, into two smaller groups, gathered around the president
and the instructor of the club, respectively. Predicting the sizes and compositions of the
resulting factions, given the structure of the social interaction network before the split,
attracted a lot of attention. This puzzle, supplemented by the known outcome, makes
this system among the best studied benchmarks to test community detection algorithms
[]. Having verified a high level performance on the aforementioned system and on other
benchmarks [], community detection algorithms have then been massively applied to un-
cover tightly connected modules within large real-world systems. This allowed scientists
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to identify, for instance, Flemish- and French-speaking communities in Belgium using mo-
bile phone communication networks [], detect functional regions in the human or animal
brain from neural connectivity [], observe the emergence of scientific disciplines [] and
investigate the evolution of science using citation patterns and article metadata [–].

A bird’s eye view on the identified clusters in real-world systems certifies their mean-
ingfulness. However, an in-depth quantitative validation of the community structure re-
quires its comparison with an external classification of the nodes, which is accessible only
for a limited number of large systems. Examples include crowd-sourced tag assignments
for software packages [], product categories for Amazon copurchasing networks [],
declared group membership for various online social networks [, ] and publication
venues for co-authorship networks in the computer science literature []. Surprisingly,
significant discrepancies have been identified between the extracted grouping of nodes
and their external classification for these systems [, ]. This message remains robust
independently of the system under investigation and the technique used to uncover its
community structure, and calls for a detailed inspection of such discrepancies in order to
understand the reasons behind them.

One of the possible reasons concerns the strong simplification that occurs during the
projection of the original complex system into a network. This projection may omit some
crucial information that cannot be encoded into the structural connection pattern [].
The missing information may correspond to age or gender of individuals in social net-
works [, ] or geographical position of the nodes within spatially embedded systems
[]. Following this direction, several algorithms [, ] have been developed in order to
handle specific nodes attributes, beside the usual connectivity patterns. Such approaches
have been shown to identify groups of nodes that more closely reproduce the external
classification in real-world systems [] than the techniques that rely on the connectivity
patterns only.

In this article we argue that, independently of the aforementioned issue, the supposedly
poor performance of community detection algorithms may be caused by the external clas-
sification itself and its misinterpretation. For instance, a system may possess several alter-
native classification schemes, such as thematic and methodological groupings in a system
of scientific publications or in academic co-authorship networks []. In such situation,
the discrepancies between the community detection results and a single accessible clas-
sification (e.g. based on thematic similarity) may carry, instead, meaningful information
(e.g. about methodological similarity), therefore providing an added value to the system
understanding.

In this article we explore this idea by performing a detailed analysis of a scientific publi-
cation record system. This system may be simplified to structural network representation,
where the nodes correspond to scientific articles, and the links represent the relationship
between them. There are various possibilities to map these relationships: direct citation
[], co-citation and bibliographic coupling [] or content related similarities [, ].
Here we focus on the latter, considering scientific terms or concepts that appear within
the articles. Performing community detection on the corresponding network, we compare
the results with an expert made classification of these articles, considering both similari-
ties and discrepancies between the two different partitions. Then we investigate the main
reasons causing the most notable deviations.
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This article is organized as follows. In the Data section we present the dataset used; in
Methods we introduce the methodology used to build the networks, extract the parti-
tions and compare them with the external classification. Finally, in Results and Con-

clusions we present our findings and discuss them.

2 Data
We investigate a collection of scientific manuscripts submitted to e-print repository
arXiv [] during the years  and . During the submission process, the authors
were requested to classify the manuscript according to the arXiv classification scheme
by assigning at least one category to it. In our analysis we are focussed only on the arti-
cles that have been assigned to a single category, restricting ourself to the field of physics.
Moreover, the collections of manuscripts submitted during the years  and  are
considered separately, eliminating the possible issues related to the temporal evolution
of research disciplines. The resulting datasets consist of , articles submitted dur-
ing  and , articles submitted during , and will be referred below (together
with the extracted contents) as the arxivPhys2013 and arxivPhys2014 datasets,
respectively. The numbers of articles belonging to each category are shown in Table .

Each article is represented by a set of scientific concepts that characterize its content,
i.e. specific words or combinations of them. The concepts have been identified within the
full text by the ScienceWISE.info platform (SW). SW is a web service connected to the
main online repositories such as arXiv, whose peculiarity is a bottom-up approach in
the management of scientific concepts []. The initially created scientific ontology was
followed by a continuous editing by the users, for instance by adding new concepts, defini-
tions and relationships. This crowd-sourced procedure leads to the most comprehensive
vocabulary of scientific concepts in the domain of physics. Such vocabulary takes care
of synonyms that refer to the same concepts and it includes physics concepts explicitely
labeled as generic like mass or energy, or more specific ones like community de-

tection. Both are the results of crowd-sourcing by the registered expert-users.

Table 1 Distribution of articles among categories

Category ns
2013 nm

2013 ns
2014 nm

2014

nucl-th 648 1,628 766 1,210
nucl-ex 315 924 324 736
hep-ph 2,625 3,935 3,116 2,885
hep-ex 602 1,726 706 1,225
hep-lat 356 695 419 417
hep-th 1,787 3,717 2,316 2,960
gr-qc 1,118 2,782 1,527 2,204
astro-ph 10,984 3,023 11,445 2,437
physics 4,452 6,479 5,711 4,880
cond-mat 10,549 4,609 11,397 3,538
nlin 392 327 522 905
quant-ph 2,558 3,240 3,187 2,471
math-ph 0 3,789 412 2,668

The number of manuscript submitted during the year y that have been assigned to a given category only (nsy ) or to the
category and at least one another (nmy ). List of categories: theoretical and experimental nuclear physics (nucl-th and
nucl-ex, respectively), four branches of high energy physics (hep-ph: phenomenology, hep-ex: experiment, hep-lat:
lattice and hep-th: theory), general relativity and quantum cosmology (gr-qc), astrophysics (astro-ph), physics
(physics), condensed matter physics (cond-mat), nonlinear science (nlin), quantum physics (quant-ph) and
mathematical physics (math-ph).
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The number k of concepts significantly vary among the manuscripts, reaching up to
kmax ∼  for review articles. The average number of identified concepts 〈k〉 per ar-
ticle, together with some other characteristics of the datasets arxivPhys2013 and
arxivPhys2014, are shown in Table . The datasets supporting the conclusions of this
article are included within Additional file .

3 Methods
The dataset may be represented as a network, whose nodes correspond to articles. Two
nodes i and j are connected by a link if the corresponding articles share at least a single
common concept. The resulting networks are extremely dense, covering almost % of all
possible network connections; this number may be reduced to % if the generic concepts
are ignored (see Table ). Below, to save the computational resources, we will ignore the
generic concepts in our analysis. The weight of the link between two nodes is designed
to reflect the level of content similarity between two articles, i.e. the overlap between the
respective lists of concepts. Different concepts, however, may contribute differently to the
similarity among two articles. Indeed, sharing a widely used concept should affect the sim-
ilarity between two articles differently than sharing a specific one, suggesting that specific
concepts should have a higher impact on the similarity. Each concept c in the dataset is
therefore weighted according to its occurrence, which may be accounted for by the so-
called idf(c) factor []:

idf(c) = log
N

N(c)
. ()

Here N is the total number of articles and N(c) is the number of articles that contain
concept c. As mentioned above, among the V concepts identified by SW, we will consider
only the specific ones, discarding the Vgen generic concepts. The content of each article
can be therefore expressed by means of a (V – Vgen)-dimensional concept vector �vi. The
element vic of the concept vector of the article i has non-zero value equal to idf(c) only if
the concept c appears within the article i and equals zero otherwise.

The similarity between the contents of two articles i and j, and the link weight wij be-
tween the corresponding nodes, may then be estimated by the cosine similarity between
the two concept vectors �vi and �vj as follows:

wij =
�vi · �vj

|�vi||�vj| . ()

The resulting network will be referred below as the idf representation of the data.

Table 2 Basic characteristics of the datasets

N V Vgen 〈k〉 Lin
idf Lidf Lin

bp Lbp

arxivPhys2013 36,386 12,200 347 37 5.9× 108 3.3× 108 2.1× 106 1.3× 106

arxivPhys2014 41,848 12,728 344 38 7.8× 108 4.5× 108 2.5× 106 1.6× 106

Total number of articles (N), total number of identified concepts (V) and the number of generic ones (Vgen ) among them;
〈k〉 gives the average number of non-generic concepts within arbitrary chosen article. The number of links in a unipartite
network provided that the generic concepts are included (Linidf ) or excluded (Lidf ) is two orders of magnitude larger than the
corresponding number of links in bipartite networks (Linbp and Lbp , respectively). This results in significant differences in

computational resources needed to perform community detection analysis.
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Alternatively to idf representation, the dataset may be mapped into a bipartite net-
work. Such network consists of the nodes of two types that correspond to manuscripts
and scientific concepts, respectively. The unweighted links in the simplest case reflect the
appearance of a concept within the article. This network will be referred below to as a bp
representation of the data, and the usage of the two alternative representation will serve
the robustness of our results. The number of links (Lidf , Lbp) of these networks are shown
in Table . As one may see, the number of links in bp representation is about two orders
of magnitude smaller than the number of links in the corresponding idf representation.
This have a significant consequences on the run-time and memory used to analyse the
networks.

Indeed, the run-time t of the employed algorithm [] scales about linearly with the num-
ber of links L of the considered network. Since empirically in the bipartite representation
Lbp ∼ O(N) while in the unipartite case Lidf ∼ O(N), this reflects in much different com-
putational resources required to perform the community detection. Moreover, here we
point out that the bipartite representation is the most natural and suitable characteriza-
tion of the dataset, since the null model behind such representation of the data is definitely
more correct. In fact, the bipartite null model is consistent with the constraints on both
the types of node (number of papers per concept and concepts per article). This feature
is instead lost when the system is projected into a unipartite network, since the previous
constraints are not matched any more. Furthermore, the bipartite representation and null
model already take into account the presence of more frequent concepts, sparing us the
use of any idf factor. In this context, we therefore propose the use of the bipartite rep-
resentation as a possible alternative to the more widespread idf (or tf-idf) unipartite
representation.

In order to find a unipartite network partition, we will maximize a modularity function
[]. To deal with bipartite networks, we adopt a co-clustering approach [] and Barber’s
generalization of modularity [].

In both cases, we assume that each article may belong to a single cluster only, hence
exploiting the notion of non-overlapping communities. Furthermore, the co-clustering
approach makes stronger restrictions on a bipartite partition, compared to a unipartite
one. Indeed, the resulting clusters of a bipartite partition consist of both articles and re-
lated concepts, and we assume that each concept belongs to a single cluster as well. Such
restriction may be relaxed, for instance by using alternative ways to generalize modularity
for bipartite network [] or by employing stochastic block model techniques []. How-
ever, we will consider co-clustering of bipartite networks since it allows us to straight-
forwardly employ the same greedy optimization algorithm [] for the networks of both
types.

The restriction towards a single algorithm is also caused by the result [] that (i) the
selected algorithm is among the ones that perform best on real-world networks and (ii) the
major influence on the accuracy is related to the dataset itself rather than the algorithm.
Due to the stochastic origin of this algorithm, it has been applied  times for unipartite
networks and , times for bipartite ones (due to significantly different number of links
and, therefore, the required computational resources). Among the detected partitions, for
each network we will select the single partition that corresponds to the highest value of
modularity; this partition will be referred below as the optimal partition for each network.
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4 Results
A partition of a bipartite network consists of clusters that contain both articles and sci-
entific terms (concepts), while clusters of a unipartite network partition consist of articles
only. To compare both unipartite and bipartite partitions with the external article classifi-
cation, we will be focussed only on the articles that fall into each cluster. Thus, by referring
below to a cluster of bipartite partition we mean the set of articles that belong to the spec-
ified cluster. In this perspective, the external classification of the articles is represented by
the arXiv standard split into different subject classes or categories (astro-ph, cond-
mat, etc.).

Then, given two partitions P and Q of the same network (for instance a detected network
partition and the arXiv classification), an initial comparison between them has been
performed using an information-based symmetrically normalized mutual information:

IN(P, Q) =
I(P, Q)

H(P) + H(Q)
. ()

Here I(P, Q) is the mutual information [] between two partitions P and Q, and H(P) is
the entropy of partition P. The normalized mutual information IN(P, Q) may vary between
 and . A value of  indicates that the two partitions have no information in common,
while a value of  corresponds to identical partitions. In Table  we show the level of sim-
ilarity between the resulting partitions and the arXiv classification ones. The reported
values of normalized mutual information indicate the existence of some common informa-
tion between automatically identified clusters of articles (both in the bipartite and unipar-
tite cases) and the author based classification. However, the values being quite far from
the possible maximum of  reflect evidence for some discrepancies between the parti-
tions. Below we perform a detailed analysis of these discrepancies and show the results for
the arxivPhys2013 dataset. Similar findings can be observed in the arxivPhys2014
case and they are shown in Additional file .

The first difference is observed in the numbers of detected clusters and of arXiv sub-
ject classes: while the number of categories in the arXiv classification scheme is ,a

the number of clusters in our partitions is only equal to  in the idf and to  in the bp
network representations, respectively.b Indeed, the articles of some different arXiv cate-
gories tend to belong to a single cluster. This may be clearly observed in Figure  that shows
the fraction of articles of each arXiv category belonging to each cluster in the resulting
partitions. This merger is especially visible for different high energy physics (hep) cate-
gories (hep-ph, hep-ex, hep-lat and hep-th): in the idf partition, almost % of
all these articles fell into a single cluster, independently of the sub-field. This result, despite
deviating from the arXiv classification scheme, is reasonable since we observe a union
of almost all papers about high energy physics, no matter if they deal with experimental
or theoretical issues.

Table 3 Similarity between network partitions and external classification

idf bp

arxivPhys2013 0.600± 0.025 0.563± 0.026
arxivPhys2014 0.553± 0.002 0.536± 0.023

Average value of the normalized mutual information IN (3) between a partition of each network representation and arXiv
classification of the articles and the corresponding standard deviations. Both bp and idf partitions demonstrate similar
value of closeness to arXiv classification.
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Figure 1 Inner composition of arxivPhysics2013 partitions. The color of each cell accounts for the
fraction of articles of a given category belonging to a cluster (each column sums to 1). The articles of the
same categories tend to incorporate into single clusters as justified by clearly visible block-diagonal structure
of both idf and bp partitions. Nevertheless, the split of some categories into distinct clusters may be
observed. For instance, the articles of nucl-th category are roughly equally split among hep- and
cond-mat-dominated categories. On the right, the most representative concepts for each cluster are shown.

Instead, in the bp partition the articles of the four hep categories are almost entirely
distributed among two clusters, focussed on experimental and theoretical issues, respec-
tively. The first of them joins % of all articles that belong to experimental categories
(hep-ph, hep-ex or hep-lat), while the second one contains % of all theoretical
(hep-th) articles. Thus, the presence of more clusters within the bipartite network par-
tition allows us to identify methodologically different clusters of articles within the hep
categories, in particular dividing theoretical papers from experimental ones.

Even though the split of hep articles into two groups may be simply explained by the
different approaches used to study the phenomena, a further result can be observed from
Figure : in the bipartite network partition, hep-th articles tend to form a single cluster
with the articles that belong to general relativity and quantum cosmology (category gr-
qc) rather than with the other high energy physics articles, thus appearing to be more
similar to gr-qc papers rather than to the other hep ones. Intuitively, indeed, we know
that both hep-th andgr-qc both focus mostly on general relativity, while the otherhep
categories focus on particle physics.c

Such relatedness between the articles of the two theoretical physics categories (hep-th
and gr-qc) may be verified independently by a category co-occurrence analysis. To show
this, we will use the complementary part of the investigated dataset. This set consists of all
articles that have been submitted to arXiv during the same  year, but for which the
authors have assigned at least two different categories. Thus, no article of this set overlaps
with the clusteredarxivPhys2013 collection. Irrespective of the details of the decision-
making process through which authors assign multiple categories, this multiplicity reflects
the author’s decision that the scope of the article can not be properly covered by a single
category of a given classification scheme. Whilst several categories may cover the scope of
a single research article, the co-occurrence of the same two categories in a significant frac-
tion of articles may reflect some hidden relationships between them. The corresponding
empirical co-occurrence matrix is shown in Figure  and indicates the fraction of arti-
cles of a given category that have been co-submitted to the other categories. The diagonal
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Figure 2 Co-occurrence matrix of arXiv
categories during year 2013. Built on the
complementary dataset to arxivPhys2013, this
matrix reflects the relationships between arXiv
categories and allows to justify the meaningfulness
of some remarkable discrepancies, like the merger of
hep-th and gr-qc articles. Each non-diagonal
element reflects the fraction of articles in which two
specified categories have co-occurred. The diagonal
cells represent the fractions of articles that have
been assigned a single category, i.e. they concerns
the articles of the arxivPhys2013 dataset.
A normalization procedure has been performed
such that each row of the matrix sums to 1. Thus, the
aforementioned fractions correspond to the
fractions of manuscripts that have been labeled with
a given category.

elements of this matrix indicate the fraction of articles of each category that have been as-
signed a single category by the author(s), i.e. the articles of the arxivPhys2013 dataset.
A normalization procedure has been performed such that each row of the matrix sums
to .

Figure  confirms that the hep-th subject class is indeed more related to the gr-qc
class than to the other hep categories: hep-th co-occurred with gr-qc in , articles,
and with all other hep categories in only , articles, even though the number of the
corresponding hep papers (hep-ph, hep-ex, hep-lat) exceeds the number of gr-
qc ones threefold. This high level of relatedness between hep-th and gr-qc categories
justifies the merging of the articles of these categories into a single cluster and indicates the
meaningful deviation from the arXiv classification scheme. It is worth to mention that
in the idf partition, where all hep category articles tend to belong to a single cluster, the
same cluster is supplemented by % of all gr-qc articles, in agreement with the result
observed above. Moreover such a tendency in not restricted to the dataset for the selected
year: it has also been observed for the arxivPhys2014 one.

The same approach explains the presence of a significant fraction of physics, non-
linear (nlin) and quantum physics (quant-ph) articles in cond-mat clusters. It also
allows us to understand a possible reason why nuclear physics articles (both theory and
experiment) occur significantly within hep clusters. However, it cannot explain the pres-
ence of roughly one half of nucl-th articles in the condensed matter cluster (cluster
no.  in idf and no.  in bp partitions) in both network representations. The latter de-
viation from the article classification, which is not explained by category co-occurrence,
does not exclude that similarities between these topics exist but are considered not strong
enough by the authors to label the articles with both subject classes. To uncover the pos-
sible essence of these similarities, we examine the top representative concepts that char-
acterize the nucl-th articles that belong to the two different clusters, see Table . In
both cases, the top representative concepts contain the ones that characterize the object
of investigation within theoretical nuclear physics, such as Isotope, Isospin or Nu-
clear matter. However, one may clearly identify method-related concepts, such as
Hartree-Fock, Hamiltonian and Mean field, among the top representative con-
cepts of articles in the cond-mat cluster. These concepts clearly characterize methods
that are widely used in condensed matter physics research, and that have not been identi-
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Table 4 Top representative concepts of two groups of articles categorized as nucl-th

% Concept (cluster no. 1) % Concept (cluster no. 3)

43 Hadronization 55 Isotope
39 Isospin 53 Hamiltonian
37 Pion 39 Hartree-Fock
33 Degree of freedom 36 Quadrupole
32 Heavy ion collision 34 Isospin
31 Quark 31 Nuclear matter
29 Chirality 30 Degree of freedom
29 Hamiltonian 28 Mean field
29 Nuclear matter 26 Harmonic oscillator
26 Coupling constant 25 Spin orbit

The left side of the table represents the group of articles that fell into hep dominated cluster (no. 1) in idf partition. The
right side - the other group: the nucl-th articles that fell into cond-mat dominated cluster (no. 3). For each group, the
numbers next to the concepts give the percentage of articles in which the concept has been identified. The table allows us
to make a suggestion that the two groups of articles significantly differ by the methods used to investigate nuclear matter.

fied among top concepts in any other cluster. This result emphasizes the ability of scientific
concepts found within research articles to highlight not only topics focussed on the same
objects, but also methodologically similar research directions.

5 Conclusions
The differences between the outcomes of community detection algorithms and possible
external classifications may have various reasons. The most notable of them concern a
possible failure of the considered algorithm or the unavoidable loss of data about real
complex systems determined by their representation as networks. To deal with the first
issue, algorithms are heavily tested on benchmarks, while the second issue is still un-
der investigation []. In this article, we emphasize a third possible reason behind such
discrepancies, i.e. the fact that the external classification itself may possess its own lim-
itations. For this reason we performed a detailed investigation of a scientific publication
records, which (i) may be naturally represented as a network and (ii) owns an external
author-made classification of articles. While, indeed, some discrepancies are caused by
the lack of data (for instance in the case of the articles for which no concept has been
identified), we argue that the most remarkable of them may reflect real commonalities
across different subject classes. Academic publications are traditionally categorized and
classifiedd according to objects or phenomena under investigation. The same phenom-
ena, however, may be explored using various approaches, experimental observation and
theoretical modeling being among them. On the other hand, the phenomena that belong
to different research topics may be investigated using the same methods, composing the
core of the interdisciplinary research. Thus, a more comprehensive classification of re-
search articles may be represented by a two layer categorization scheme, where one layer
reflects phenomena or objects while the other one stands for the methods of investigation.
Usually, these two layers are not taken equally into account. The expert made classifica-
tion may include rather a strong bias towards the object layer. The reasons involve the
classification scheme itself and the limited knowledge about all other research disciplines
that employ the same methods. Instead, automatic concept-based categorization should
have no direct preference for any of the layers: the extracted concepts correspond both to
phenomena and methods, and the algorithm has no information about the possible divi-
sion of the concepts. Thus, the observed discrepancies may reflect the dominance of the
methodological layer over the other one, which corresponds to phenomena or objects.
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Similar results have been previously observed within the collaboration network of sci-
entists at Santa Fe Institute [], where, besides the expected grouping around common
topics, some methodologically driven clusters have been observed.

This shows that the failure in reproducing an external classification may indicate a gen-
uinely more complicated organization within the system, in addition to the lack of data or
algorithmic mistakes. Besides developing sophisticated algorithms to deal with real sys-
tems, we should therefore keep in mind that some observed discrepancies may go beyond
the standard classification and carry important information about the system under study.
We believe that similar results may be observed in other systems. Indeed, the ground truth
necessarily follows from a given classification criterion; however, the considered data may
contain more than that single type of information (perhaps in conflict one with each other).
In general, therefore, it may happen that what we consider as the ground truth is just one
of the possible reference points, rather than some absolute truth. Understanding the in-
formation employed to define the so-called ground truth is therefore crucial in order to
perform a proper comparison between external classification and automatically retrieved
communities.
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Endnotes
a In fact, there are 13 physics categories in arXiv classification scheme, but there is no single article in
arxivPhys2013 dataset that belong to math-ph category only.

b By performing a detailed comparison we ignore all single-node clusters, which contain the articles for which no
concepts has been identified.

c Indeed, it is very likely that nowadays the hep categories would be split in multiple subcategories (namely
hep.th, hep.lat, etc.). However, here we point out that our study (in particular in the bipartite case) shows that
hep-th looks actually more similar to gr-qc than to the other hep- classes. This therefore seems to strengthen
the apparently counterintuitive choice of dividing the high energy articles in different primary classes.

d Document classification and categorization are different processes: classification refers to the assignment one or
more predefined categories to a document, while categorization refers to the process of dividing the set of
documents into priory unknown groups whose members are in some way similar to each other [35].
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