
Gargiulo et al. EPJ Data Science  (2016) 5:26 
DOI 10.1140/epjds/s13688-016-0088-y

R E G U L A R A R T I C L E Open Access

The classical origin of modern
mathematics
Floriana Gargiulo1* , Auguste Caen2, Renaud Lambiotte1 and Timoteo Carletti1

*Correspondence:
floriana.gargiulo@unamur.be
1NaXys, University of Namur,
8 rempart de la Vierge, Namur,
Belgium
Full list of author information is
available at the end of the article

Abstract
This paper introduces a data-driven methodology to study the historical evolution of
mathematical thinking and its spatial spreading. To do so, we have collected and
integrated data from different online academic datasets. In its final form, the database
includes a large number (N ∼ 200K) of advisor-student relationships, with affiliations
and keywords on their research topic, over several centuries, from the 14th century
until today. We focus on two different issues, the evolving importance of countries
and of the research disciplines over time. Moreover we study the database at three
levels, its global statistics, the mesoscale networks connecting countries and
disciplines, and the genealogical level.
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1 Introduction
The statistical analysis of scientific databases, including those of the American Physical
Society, Scopus, the arXiv and ISI web of Knowledge, has become increasingly popular
in the complex systems community in recent years. Important contributions include the
development of appropriate scientometric measures to evaluate the scientific impact of
scholars, journals and academic institutions [–] and to predict the future success of au-
thors [, ] and papers []. In parallel, the structure of collaboration has attracted much
attention, and collaboration networks have become a central example for the study of com-
plex networks, thanks to the high quality and availability of the datasets []. From a dy-
namical point of view, different papers [, ] studied the mobility of researchers during
their academic career, showing that the statistical properties of their mobility patterns are
mainly determined by simple features, such as geographical distance, university rankings
and cultural similarity.

Limitations of the aforementioned datasets include their relatively narrow time win-
dow extension, at best, over  years and the difficulty to disambiguate author names,
and thus to correctly distinguish career paths across time. The original motivation of this
paper was to address these issues by performing an extended study of The Mathematics
Genealogy Project, a very large, curated genealogical academic corpus []. The dataset,
whose basic statistics have been already analysed elsewhere [, ], extends over several
centuries and contains pieces of information allowing us to retrieve the direct genealogi-
cal mentor-student links, but also university affiliations at different points of a career and
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the research domains. Data from the same website have already been used to assess the
role of mentorship on scientific productivity [] and to study the prestige of university
departments [].

Our main goal is to analyse the history of modern mathematics, through the processes of
birth, death, fusion and fission of research fields across time and space. In particular, we fo-
cus on the temporal evolution of the roles and importance of countries and of disciplines,
on the structure of ‘scientific families’ and on the impact of genealogy on the development
of scientific paradigms. As it is often the case when performing a data-driven analysis of
historical facts [, ], the data set is expected to be incomplete and to present biases,
mainly for the more ancient data. In the present case, the website collects the data in two
ways: a participative method, based on the spontaneous registration of scholars (who can
also register their students and their mentors), and a curated method, based on historical
facts and performed by the creators of the web site.

The presence of biases calls for the use of appropriate statistical measures, in preference
based on ranking instead of absolute measures. In this work, we have also introduced
data-mining methods to correct and enrich the data structure. A first contribution of this
work is thus methodological, with the design of a methodological setup that could be ap-
plied to other systems. We have then performed an analysis of the system at three levels of
granularity. First, a global one investigates the fully aggregated ‘demography’ (population
in terms of countries and disciplines) of the database, with the aim to classify countries
and disciplines according to their normalised activity behaviour. Tracking the evolution
of the rankings helps identify transition points in the mathematical history, associated
to emerging fields of research. Second, we have constructed directed weighted networks
where nodes are scholars endowed with a set of attributes (thesis defence date, thesis de-
fence location, thesis disciplines) and linked to other nodes using the genealogy associated
to the mentor-student relation. This ‘mesoscale’ network allows us to investigate the re-
lationships between the attributes and to identify a strong hierarchical structure in the
scientific production in terms of countries as well as its evolution in the course of time.
Finally, using an approach typic of kinship networks studies [, ], we focus on the sta-
tistical properties of the tree structure of the genealogy in terms of family structures. We
conclude by showing the presence of strong memory effects in the network morphogen-
esis.

To summarise this paper has a twofold goal: first to propose, in the framework of data
science, new tools to collect and analyse historical databases, second and in complement
with the former, to provide a narrative on the history of mathematics as extracted from
data. In both cases, this work opens interesting perspectives. Because of their generality,
the presented tools could clearly be used to study different databases with a genealogical
structure, for instance in the case of bibliometrics or Wikipedia studies. In addition, our
results provide a first glimpse of the potential use of data and algorithms in the study
of the history of science. An important future step would consist in complementing and
interpreting this data-driven view with that of epistemologists and historians of science,
as briefly outlined in the conclusions.

2 Dataset and associated networks
The core of our dataset has been extracted from the website ‘Mathematical Genealogy
Project’. It is one of the largest academic genealogy available on the web, consisting of ap-
proximatively K not-isolated scientists (,) with information on their mentors
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and students. The data cover a period between the th century until nowadays. For a
majority of mathematicians, we have detailed information about his/her PhD, including
the title (for % of the scholars), the classification according to the  classes proposed
by the American Mathematical Society [] (for % of the scholars), the University de-
livering the degree as well as the year of its defence. However, because a large part of
the database is spontaneously filled by the scientists, the data is imperfect and attributes
may be wrong or missing. A first step has thus consisted in comparing the database with
additional data form Wikipedia []. In particular, we first downloaded, when available,
the Wikipedia pages of all the scholars present in the Mathematics Genealogy Project
database. Disambiguation of the names is assured by the fact that Wikipedia pages have a
direct link to the Mathematics Genealogy Project site. In the text of the Wikipedia pages,
we then searched the keywords associated to the AMS classification in order to expand
the information about authors. This external dataset allowed to assign a discipline to the
% of the mathematicians.

For more recent entries, we retrieved the affiliations with the Scopus profiles of scien-
tists []. Notice that we only extracted the information required for our needs and that
additional information, e.g. about their scientific impact or on their geographical links,
could be collected in order to address other research questions.

It is worth noting that our analysis are biased by the actual scientific and socio-political
environment. First, the countries’ borders changed in time. In the Mathematics Geneal-
ogy Project, the location of the PhD defence is determined according to the position of the
university in the current geo-political setting. We kept in our analyses this county classi-
fication, but it would be interesting in the future to consider, for example, the resilience
of the system to borders shifts. Similarly, the concept of discipline is also very delicate to
define on such a long time scale [], and we decided here to use the current classification
from the AMS for all authors.

After this preliminary phase, we have enriched the information available for the authors,
by developing algorithms aimed at correcting the dates and assigning to each thesis a dis-
cipline. The algorithm for fixing errors in temporal entries is based on the topological
structure of the genealogical network and uses the available statistics on the age differ-
ence mentor-student to identify and suitably correct wrong time sequences (e.g. the cases
where the mentor has completed its PhD after its student, or where the time distance be-
tween mentor’s and the student’s PhD is too large). The missing disciplines (not previously
extracted from Wikipedia) have been learned based on the thesis title using a Bayesian su-
pervised dictionary learning technique.

As previously stated, these algorithms, summarised in Additional file  (Sections I.B-
I.D), are general and could be applied in other contexts. After the enrichment, all the
scholars of the database have a corrected date, % of them have an associated discipline
and % an associated country. As a next step, we have exploited the enriched database
in order to study the geographical and temporal evolution of mathematics. Different data
representations, described below, have been adopted to mine different typologies of in-
formation from the dataset.

2.1 The mesoscale networks
As a first step, we built a multi-partite network, where the different kinds of nodes are
scholars and their attributes extracted from our database, namely universities, cities, coun-
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Figure 1 Mesoscale networks. An example of the procedure to derive the mesoscale network from the
genealogical data.

tries and disciplines. Hence we considered several possible ‘projections’; for instance con-
sidering the case of universities, we add a direct link between two universities-nodes, say
A and B, if there exists in the database, and hence in the multi-partite network, a couple of
scientists such that the one with attribute ‘university A’ has been the PhD supervisor of the
second one having attribute ‘university B’. Observe that our data have time stamps, corre-
sponding to the time of the defence of the PhD thesis, then under the assumption that a
supervisor is in the same university as his/her PhD student, directed links are therefore a
proxy for the mobility in time of a scholar, but also of the flow of knowledge between differ-
ent places. In the case of disciplines, directed links correspond to a transfers of knowledge
from one scientific discipline (the one of the mentor) to another one (the one of the stu-
dent), from one generation to another, and how disciplines at a certain time may inherit,
in terms of ideas and methods, from research fields at previous times. Let us note that the
network has a large number of self-loops associated to the frequent situation when the
supervisor and the student got their PhD in the same university or in the same discipline.
Moreover the links are weighted by the number of researchers connecting attributes. The
procedure is illustrated, for the case of flows between countries, in Figure . In the follow-
ing, we will perform a longitudinal study of the system, by considering the evolution of
networks observed in different time windows. Note here that the data are not uniformly
distributed across time, with a strong bias towards recent times.

2.2 The genealogical tree and its partitions into families
The genealogical graph is the most obvious representation of our dataset, consisting in an
oriented acyclic graph [] linking a mentor to her/his students. This defines automati-
cally the structure of hierarchical generations. Notice however that the structure of our
data is not simply a tree due to the several cases where a student has two advisors. A very
common process in kinship is to cut the genealogical directed acyclic graphs into linear
trees (alliances) where each individual has a single progenitor (the mother for represent-
ing the uterine links and the father for the agnatic ones). In this representation, the links
between alliances represent the matrimonial structures between the different alliances
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in the society. In our context, when a scientist has more than one advisor, it is not clear
which links should be cut to retrieve the original ancestors (our dataset prevents us from
identifying the principal supervisor from the secondary one, if any). We thus propose a
method to reproduce the optimal ancestry lines and to identify the important families in
the genealogy. The method, fully described in Additional file  (Section I.D), is based on
the decomposition of the network into pure linear trees, and their statistical clustering
based on probabilistic arguments; roughly speaking given two nodes A and B that can be
linked in more than one way, thus implying the presence of non-trivial loops, we assign
to every link in such paths the probability that A and B will be disconnected if the link is
removed. We thus select links to be removed by maximising the probability that A and
B are still linked. The resulting partition of the graph into families identifies  families;
remarkably, the  most populated families cover the % of the scientific population in
the database. Let us observe that alternative methods for family identification do exist, see
for instance [, ].

3 Results
3.1 Global statistics
Let us define the relative abundance profile of each country in different periods fI(t) =
NI(t)/N(t), where N(t) is the total number of scientists whose country is known in the
database at time t and NI(t) is the number of scientists in country I at time t. Notice that,
at this stage, the genealogical information is not used. From such profiles we can asses
the evolution of the importance of the countries had in the history of mathematics due to
the their different historical dynamics. In order to compare the profiles of different coun-
tries independently from their total human capital, we normalise each of these profiles by
their ‘volume’ (f̃I(t) = fI(t)/

∑
t fI(t)) and then we classify them based on their Kolmogorov-

Smirnov distance (see Figure  where the results are reported using a dendrogram, and
the SI where we reported the profiles for the top  countries in the database). We ob-
serve different prototypical behaviours: countries with a central role in the ancient history
whose centrality has decreased in the last centuries (for instance Italy, France and Greece),
countries with a central role before the world wars (e.g. central Europe countries), coun-
tries emerging after the world wars (such as Japan and India), countries recently emerg-
ing (among which China and Brazil). Because of the normalisation procedure we used,
we obtain a cluster where USA is linked with ex-USSR countries and show a similar de-
creasing behaviour in the latest decades (impossible to observed in a non-normalised con-
text).

Additional information on how the total number of mathematicians compares with that
of scientists would make these results more significative, but this type of information is
difficult to be retrieved in electronic archives.

The same procedure is applied to disciplines and results reported in Figure  allow to
identify three main blocks of disciplines: the disciplines that were more central during the
industrial revolution (before ) are associated to physical applications (such as thermo-
dynamics, mechanics and electromagnetism). The disciplines reaching their maximum of
expansion around the  are more abstract, even if several links exist to applied topics,
such as telecommunication and quantum physics. Finally, the last decades have witnessed
the emerging dominance of applied mathematics (e.g. statistics, probability) and computer
science. This last point shows the considerable impact of the computer revolution on the
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Figure 2 Country prevalence dendrogram. Clustering of the countries according to their time prevalence
profile f̃I(t). The lines in the plots on the right describe the average prevalence profile for the cluster
〈f̃C (t)〉 =∑

I∈C f̃I(t)/(
∑

I∈C 1). The shadowed area is included between the minimum value and the maximum

value of the prevalence profile on the cluster (minI∈C f̃I(t),maxI∈C f̃I(t)).

evolution of mathematics: the magenta subfield in Figure  (operations research; systems
theory; category theory; computer science) has emerged at the expense of many other
fields, but the yellow one, which may have also been helped by the introduction of com-
puters.

To capture the rise and fall of countries or disciplines, we have compared the rankings of
the top  countries and disciplines in different time periods. Standard indicators for rank
comparison, such as the Kendall-Tau index, cannot be applied here since the elements in
the top-k lists are not conserved in time []. For this reason, we have used a distance
measure based on a modified version of the Jaccard index allowing to compare ranked
sets, J(rank, rank) (more information is provided in Additional file , Section A). As for
the original Jaccard index the modified version is such that J(rank, rank) =  when the
rankings rank and rank are completely equivalent, and gives a value  when these lat-
ter are not correlated at all. This information is then transformed in a distance by taking
dJ =  – J . Increases in the distance measure, dJ , indicate major reshaping of the rank-
ings.

As we can observe in the upper plot of Figure , corresponding to countries, we ob-
serve several transition points; for example a transition can be observed during the First
World War, with the decreasing centrality of Austria and Hungary due to the end of the
Austro-Hungarian emperor and the entering in the ranking of Russia. Another transition
is connected with the European political reshaping during the Second World War and
with the massive migration of Jewish and dissident scientists to US due to fascism in Eu-
rope. This is the period at which for the first time, USA surpasses Germany in the ranking.
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Figure 3 Discipline prevalence dendrogram. Clustering of the disciplines according to their time
prevalence profile f̃I(t). The lines in the plots on the right describe the average prevalence profile for the
cluster 〈f̃C (t)〉 = ∑

I∈C f̃I(t)/(
∑

I∈C 1). The shadowed area is included between the minimum value and the

maximum value of the prevalence profile on the cluster (minI∈C f̃I(t),maxI∈C f̃I(t)).

A third transition, around the s, shows the increase of centrality of the Soviet Union
(testified by the presence of several East-European countries in the ranking). Finally, more
recently, we observe the decline of Russia and the emergence of new countries such as
Brazil.

A similar analysis can be performed for disciplines. Results reported in Figure  show the
presence, among the others, of three significative tipping points. The first one is connected
to industrial revolution and to the emergence of disciplines related to the physics of ma-
chines (such as thermodynamics and electromagnetism). The second one is connected to
the emergence of fields linked to telecommunication and cryptography (e.g. number the-
ory, spectral functions) during the Second World War period. Finally the third one, in the
s, concerns the emergence of computer science and statistics.



Gargiulo et al. EPJ Data Science  (2016) 5:26 Page 8 of 15

Figure 4 Countries’ centrality tipping points. Modified Kendall-Tau index comparing the countries’
rankings in different periods.

Figure 5 Disciplines’ centrality tipping points. Modified Kendall-Tau index comparing the disciplines’
rankings in different periods.

3.2 Mesoscale networks
.. Network of countries
The countries network can be used to represent the knowledge flows from one country
to another one, associated to the transition of a student in a country, becoming a profes-
sor and PhD supervisor in another country. The network presents few important hubs,
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that are the gravity centres of the scientific research (USA, Germany, Russia, UK). Each of
these hubs tends to be surrounded by a community of countries. These communities can
be associated to historical divisions, for instance a large block connected to USA scientific
production, the Commonwealth nations, the ex-Soviet block, the central European coun-
tries. The betweenness of countries allows to detect countries at the interface between
different communities, such as France connecting the central European countries with
the USA-centred community or Poland connecting European research and the ex-Soviet
area.

Another important index of the countries network is the weighted in (out)-degree of the
nodes and the number of self loops. The in-degree of a country represents the number of
scientists obtaining their PhD elsewhere and mentoring a PhD student in that country.
Therefore a high in-degree is associated to a country with a strong capacity of attract-
ing scholars and absorbing knowledge from abroad. On the contrary, a high out-degree
represents a country producing scholars and exporting knowledge elsewhere. Each coun-
try can be therefore characterised by three normalised quantities, the fraction of scientist
formed inside the country and remaining there, the fraction of scientist formed inside and
leaving and the fraction formed abroad and absorbed by the country. In Figure A we dis-
play the different positions of the most important countries with respect to these indexes,
the closer a country is to one of the triangle vertices the larger is the associated index.
The size of the dot is a measure of the production of a country, i.e. estimated by its num-
ber of PhDs. The most productive countries tend to be the most scientifically autarchic
ones, with a large fraction of self-loops. The most important exporters are Russia and the
UK. Countries with small scientific production show a tendency for importing scholars.
Observe that these indexes evolve in time (see Figure  of the SI). An important inver-
sion point between kin(t) and the kout(t) is often observed around the Second World War.
Moreover, a key signature of emerging scientific countries seems to be the presence of
kin(t) > kout(t).

Figure 6 Autharchic, exporting and absorbing behaviors in the countries network. Panel A: relative
position of the countries between scientifically autarchic/exporting and absorbing behaviours. Panel B:
fraction of scientists produced and absorbed from the first countries in the rankings respectively of kin and
kout . In the boxes are displayed the countries producing and absorbing the 80% of scientists. Both the panels
concern the temporal aggregate of the network.
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Figure 7 Temporal network. Fraction of countries producing (and absorbing) the 80% of the scientists in
different historical periods.

To characterize the mobility of scientists across countries, we show in Figure B the
fraction of the total production and the total absorption of migrant scientists for the first r
countries respectively in the in and out-degree ranking. The distribution is highly skewed,
as one observe from the fact that the top  countries produce % of the total international
scholars. On the contrary, the curve concerning the total absorption has a lower slope,
depicting a larger worldwide spreading around the world. This shows a strong hierarchical
structure in academic research where few countries ensure a large share of the worldwide
diffusion of scientific knowledge. This scenario obviously evolved in time, as we observe
in Figure . Remark that scientific leaders changed at different points in time, but also
that the scientific leadership group (countries producing the % of the whole scientists
production) is more restricted in recent times. It is interesting to notice that the minimal
size of the scientific elite has been reached in the sixties during the world bi-polarisation
resulting from the cold war. Since then, the size increased again with the emergence of
globalisation.

More information about this network, in particular the properties of the aggregated
transition networks concerning the whole historical period, can be found in Additional
file  (Section III).

.. The transition network of disciplines
The transition network of disciplines represents transfers of knowledge from one scientific
discipline (the one of the mentor) to another one (the one of the student). The structure of
this graph is quite homogeneous in terms of degree and four major topological commu-
nities can be identified using standard community detection algorithms working on the
topological structure of the weighted network []: computer science, geometry, analy-
sis and physics. Each community represents the disciplines exchanging more knowledge
between them than with other research fields, and therefore can be interpreted as the sci-
entific paradigms (according to Thomas Kuhn definition) at a certain period.
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Figure 8 Mutual information between the
communities structures of the discipline
network in different historical periods.

In Figure  we show the normalised mutual information (NMI) between the commu-
nity structures obtained from different temporal slices of the network. The NMI index
varies between one, when the two partitions are equal, and zero, when the two classifi-
cations are completely disjoined. A low value of the NMI indicates a ‘revolution’ in the
sense of a strong reorganisation of the knowledge structures, previously non interacting
research fields start to exchange knowledge. The figure shows two important points where
the NMI is low. The first transition, observed between  and , can be associated to
the period when Statistics and Probability merged together, attracting then more applied
disciplines like information theory, game theory and statistical mechanics, and leading
to the emergence of the field of applied mathematics. The second transition is between
 and , where computer science and statistics form one community, together with
dynamical systems and applications in other fields of science. The latest transition is ex-
pected to be a spurious effect, due to a lack of data in recent years (the last time window
starts in  and therefore can contain data only for  years). Another potential approach,
alternative to the measure of the NMI, to identify the structural changes in these structure
could be the one proposed in [].

3.3 The genealogical structure
This last section is devoted to the study of the genealogy tree reconstructed from our data
and of its relevance in the evolution of the history of mathematical science.

The first result is the presence of a strong memory effects in the network morphogene-
sis, as students very often do research in the same discipline their mentor did. To quantify
this idea we analysed the genealogical chains where the ‘filiation’ link connects a mentor
with a student maintaining the same discipline of the mentor. We call these objects iso-
discipline chains. Let us observe that our analysis is data driven and that we only have
information about ‘filiations’ present in the Mathematics Genealogy Project. In Figure 
(left panel) we show results concerning the conditional probability of having a chain of
length n +  given a chain of length n, in other words the probability to have one more
descendant working in the same research field of the whole chain, aggregating data over
all the disciplines. The first point thus represents the probability for a student to have the
same discipline of his/her mentor, one can clearly appreciate that as the chains get longer
the probability to continue the same iso-discipline increases. This very marked memory
effect in the network can be associated to the existence of ‘schools’ where a long tradi-
tion in a discipline exists such that new students are attracted and continue the tradition.
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Figure 9 Conditional probability of having an iso-discipline chain of length n + 1, having a chain of
length n. Left panel: aggregated data all disciplines together; right panel: some selected disciplines.

Figure 10 The families in the mathematical academic genealogy. Panel A: relative size of the different
families and family’s initiator name. Panel B: table with the values of the topological indicators for the real
(observed) network in the first row and for the randomised model (expected) in the second row.

Observe however (Figure , right plot) that this phenomenon strongly depend on the dis-
cipline.

As previously explained, we have partitioned the network into disjoint families of schol-
ars. Figure A shows that the % of the scientists can be divided into  macroscopic
families with size S > . The largest family is the one originated in  by the Italian
medical doctor, Sigismondo Policastro. The second one, is the family originated by the
Russian mathematician Ivan Petrovich Dolby, at the end of the th century. The large size
of this family, born more recently than other families and geographically located mostly
around Russia, is due to a high ‘fecundity rate’ in the Russian School of Mathematics.

The aggregated network between the families, reminiscent of kinship of the alliance net-
works defined in [, ], can be described using some typical topological indicators []:
() the endogamy index, ε describing the fraction of loops in the network (links between
the same family); () the concentration index cx denoting the heterogeneity of the con-
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Figure 11 Country and disciplines distribution inside the families. Panel A: countries are set on the
horizontal axis, ranked by the relative presence in the database, while in the vertical axis, we report the
families ranked by their size. A point at the intersection of the country-column and family-row indicates that
the country is present in this family. The upper plot, is the column-marginal of the matrix represented in the
central plot, representing the number of families where each country appears. The right plot is the
row-marginal of the matrix represented in the central plot, representing the number of countries present in
each family. Panel B: on the horizontal axis we put the disciplines, ranked by the relative presence in the
database, in the vertical axis, the families ranked by the size. A point at the intersection of the
discipline-column and family-row indicates that the discipline is present in that family. The upper plot, is the
column-marginal of the matrix represented in the central plot, representing the number of families where
each discipline appears. The right plot is the row-marginal of the matrix represented in the central plot,
representing the number of disciplines developed in each family.

centration of links between pairs of families (cx =  when all links are concentrated on a
single pair and cx = /n when links are homogeneously distributed among the n fami-
lies); () the network symmetry index sx that varies from  in case of total link unbalance,
namely the outgoing flux and the ingoing one are very different each other, to  in case of
perfect symmetry of fluxes. To asses the relevance of such indicators computed for our ge-
nealogy network, we compared them with the expected values for a random multinomial
reshuffling - null model - (see Figure B), we can observe that, while the symmetry is a
structural property, being unchanged by the reshuffling, the endogamy and the concen-
tration are typical signatures of this network and moreover they are much higher than in
traditional kinship networks []. These results imply that the obtained scientific families
are structurally very distant between them and that their relationships are very hierarchi-
cal (being these mediated by the largest families).

This strong separation between the genealogical families can be a signature of the exis-
tence of tacit knowledge in mathematics []. It would be interesting to study the historical
development of the kinship structure in order to better address this phenomenon.

Finally, we studied the distribution of families across countries and disciplines. As shown
in Figure A, with the exception of few cases, the most important countries (in term of
production) are present in all the families, while the remaining countries are represented
in a very low number of families (from  to ). This feature implies a strong correlation be-
tween the genealogical structures and the geography. A similar behaviour can be observed
for disciplines (Figure B) even if, in this case, the curve describing the number of fam-
ilies with members working in a given discipline is smoother. We can therefore conclude
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that the genealogical families are strongly specialised in terms of geography and epistemic
content.

4 Conclusions
In this paper, we have presented a data-driven study of the history of mathematical sci-
ence, based on the Mathematical Genealogy Project. A first important aspect has been the
cleaning and correction of the incomplete and sometimes inaccurate dataset. This opera-
tion was performed by means of machine-learning and by incorporating data from other
sources, including Wikipedia.

We have then considered three different approaches to analyse the data: a demographic
approach analysing the time evolution of the prevalence of certain attributes (i.e. coun-
try or disciplines); a mesoscale network approach focusing on the connections between
these attributes; a ‘kinship’ approach based on the clustering of genealogical trees. Our
analysis reveals important transition points in the history of mathematics and allows us to
categorise countries according to their capacity to attract, export and self-maintain knowl-
edge. Moreover, the community structures of the network of disciplines allows us to bet-
ter describe the transformation of knowledge across time. Finally, we have also identified
important scientific families, associating them to their founder, and described their geo-
graphical and disciplinary distribution.

Interesting lines of research for the future include the integration of additional datasets,
based on different methodologies, to extend the scope of this work beyond the mathemat-
ical sciences.

Another research direction still connected to history of mathematics, could be to anal-
yse how the scientific labor market reacts to exogenous events [, ] or to study the
innovation dynamics due for instance to the impact of the computer age, of the Internet,
of the peer review practices, etc. in the disciplinary prevalence.

Finally it would be worth also to build an abstract agent based models of innovation dif-
fusion, that could be calibrated and implemented on this framework, in order to forecast
future events and thus to add a predictive character to this dataset.

Other interesting research directions could include the analysis of gender roles in sci-
entific production, using methods similar to the ones proposed in [, ].
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