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Abstract
Link prediction appears as a central problem of network science, as it calls for
unfolding the mechanisms that govern the micro-dynamics of the network. In this
work, we are interested in ego-networks, that is the mere information of interactions of
a node to its neighbors, in the context of social relationships. As the structural
information is very poor, we rely on another source of information to predict links
among egos’ neighbors: the timing of interactions. We define several features to
capture different kinds of temporal information and apply machine learning methods
to combine these various features and improve the quality of the prediction. We
demonstrate the efficiency of this temporal approach on a cellphone interaction
dataset, pointing out features which prove themselves to perform well in this context,
in particular the temporal profile of interactions and elapsed time between contacts.
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1 Introduction
In recent years, networks have become a ubiquitous way of representing any kind of in-
teracting systems ranging from metabolic protein interactions to online social networks.
This trend is justified by the simplicity of the representation, combined with the techni-
cal possibility of storing and processing large-scale datasets. In most cases though, the
observer only has a partial view of the network, and achieving a comprehensive map-
ping of the interactions is often a challenging task. Big data collection campaigns have
been set in various fields, notably biological networks, or Internet mapping, but collect-
ing large amounts of data remains expensive in both space and time. In addition to that
cost, metrological problems may bias the crawling process and compromise the reliability
of the data. When it comes to social data, the problem often originates in the traditional
data collection methods, which are not suited for large-scale analysis, such as individual
surveys. Online social networks allow to access larger datasets, however, data providers
often restrict the access to their resources for commercial, technical or legal reasons. Sim-
ilarly, even private companies, for instance mobile phone operators, have a restricted view
of a social system, as they only have full information about their clients and are blind to
the connections between clients of other companies.

Analyzing local structures in networks consequently appears as a possible way to cir-
cumvent these issues. In sociology, ego-centered networks have been studied for a long
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time [] and measures have been proposed to describe and understand the local struc-
tural environments around specific nodes [, ]. More recently, the question of how to
adequately define the notion of community in this context has been an important focus of
interest [–]. In this work, we consider the following problem: knowing the interactions
of a node with its direct neighbors, can we guess if there are existing links between these
neighbors? In other words, ‘among someone’s friends, who are likely to know each other?’
This is a typical link prediction problem, but in this case structural information about the
network is lacking. Hence, we resort to other sources namely temporal information, to
discover links between nodes of a social network.

The link prediction problem in networks is often formulated as inferring which links
may appear or not in the future from the observed structure of the network, see for exam-
ple []. This can be formulated as a machine learning task using learning features, which
are related to the probability for a node to appear. Structural features are often used to
that purpose, for example the number of common neighbors, hitting time etc. There are
many available metrics which can be found in surveys []. Other kinds of features are
also available, such as node-level attributes [], or interaction-level attributes []. When
considering link prediction in social networks, one should mention the class imbalance
problem: a sparse network implies the fact that there are much more pairs of nodes than
actual links. It implies that there is a high risk of misclassification by increasing the num-
ber of predictions. Efforts have been made to alleviate this acute problem, in particular, by
using supervised learning techniques that allow to group pairs of nodes in categories for
link prediction and, therefore, reduce the imbalance effect [].

Interaction dynamics is also a valuable source of information. For example, it is known
that the pace and length of communications give clues about the type of relationship
involved: family, commercial, friendship, etc. []. Several works exploited this for link
prediction-related purposes using pattern frequencies to infer which interactions are most
likely in the near future [, ], or predicting link decay from the measure of the elapsed
time since the last interaction []. In other contexts, temporal information was also incor-
porated in order to predict transitions between venues in cities []. In this work, our goal
is to extract information from the interaction dynamics to reveal existing links in ego-
centered social networks. Considering a phone call dataset, where a link represents the
existence of a social interaction between two users, the scenario is that we only have local
information on the interaction network of specific nodes. It is then a minimal version of
the ego-network, as it involves the node and its direct neighbors.a There is very little struc-
tural information available and hence, we use temporal information to rank pairs among
the neighbors of an ego node. A high-ranked pair should feature nodes of the same so-
cial circle, which are prone to interact with each other. We also aim at point out temporal
features, which are particularly informative in predicting links.

We design several types of features from the timing of interactions. Then we tackle the
problem as a ranking combination issue. Each feature provides us with a ranking, which
indicates pairs of neighbors likely to be connected. Following a strategy similar to [],
we combine these rankings in a supervised framework to draw as much information as
possible from these features, so that the resulting ranking should rank high the pairs which
are most likely to be connected. We first use traditional classification methods to do so,
as given in [] or [], and show their limits as the number of predictions cannot be set
according to our needs. For this purpose, we use the learning-to-rank framework in [],
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especially designed for link prediction in large networks. The benefit of using learning-to-
rank instead of classification methods is that we predict exactly T links by considering the
top-T pairs of our ranking.

We describe in Section  the phone call and text messages dataset under examination in
this article. Then, in Section  we expose how the temporality of interactions can be used
for predicting links in such datasets. After describing the protocol of evaluation and the
static benchmark that will be used for comparison, we propose temporal features which
aim at guessing links among the neighbors of ego nodes. We explain how these features
are used in order to obtain rankings, where highly-ranked pairs are more likely to be con-
nected. In Section , we propose supervised strategies to combine these rankings in or-
der to obtain the best possible predictions, classification, as well as learning to rank tech-
niques.

2 Dataset
2.1 Preprocessing
The dataset under examination is a collection of communications made among a sub-
set of anonymized subscribers to a European cellphone service provider. It contains
around . ·  calls and . ·  text messages made between any pair of users in the
dataset during a one-month period. Henceforth, we make the distinction between calls
and text messages, because we assume that these means of communication are not used
for the same purposes by the same people. Calls can be represented as a list of quadru-
plets, {source, destination, timestamp, duration}. Calls with null duration, corresponding
to unanswered phone calls, have been filtered out of the dataset. Text messages are stored
as triplets, {source, destination, timestamp}.

The usual network representation of such data consists in describing users as nodes and
the existence of at least one interaction between two users as a link. These links may be
assigned a certain direction depending on who is calling/texting whom. The total num-
ber of interactions (either calls or messages) between two nodes i and j during the whole
record period will be referred to as the weight, w(i, j), of this link.

As we are interested in the social groups underlying the communication network, we
filter out calls and text messages which are not indicative of a lasting social relationship.
We only consider calls on bidirectional links, that is to say links which have been activated
in both directions []. Except for this step, interactions between users are considered as
undirected. The data comes down to ,, nodes, and ,, links - indifferently
call or message links - corresponding to ,, phonecalls and ,, text mes-
sages after preprocessing.

From now on, the network is regarded as a set of isolated ego-networks, that is to say
the interactions between a central node and its direct neighbors. Nodes have heteroge-
neously distributed degrees and weights regarding both phonecalls and text messages,
see Figure . It is known that the prediction quality depends on the degree of the central
node as underlined in []. Typically it is less efficient on low degree nodes because of the
lack of information. We, therefore, group nodes together into degree classes. The learning
process will be made on each of these sets separately to improve performances.

2.2 Ego-networks specificities
We consider a scenario where the only information available is the timing (and duration
for calls) of interactions of a node to its neighbors, the information about the network
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Figure 1 Activity and degree. Activity and degree (inset) distributions in the dataset, for both phonecalls
(left) and text messaging (right) networks.

structure is poor. The temporal patterns of these interactions bear the trace of underlying
social circles, and as such they enable us to predict the links existing in the neighborhood
of the ego node. Former works have stressed the dramatic effect of class imbalance on link
prediction problems in social networks, especially in mobile phone networks ([, ]).
The fact that there are much more pairs of nodes than links in the network makes the pre-
diction and its evaluation tricky. The typical order of magnitude of the classes ratio for a
network of N nodes is O(/N). However, in case of ego-networks, the class-imbalance ef-
fect is less of a problem, since the neighbors of a degree k node have at most k(k –)/ links
among themselves. A direct consequence of the lack of structural information present in
ego-networks is that standard algorithms, for instance based on common neighbors, are
unable to predict links between two nodes better than purely random predictions.

3 Prediction based on temporal information
In this section, we present the protocol used to evaluate how the temporal information
improves the quality of link prediction among the neighbors of an ego node. For this pur-
pose, we define metrics that allow to rank pairs of nodes, where the highest ranked pairs
are the most likely to be connected.

3.1 Protocol and prediction evaluation
For each degree class k, that is the degree of the ego node, we divide ego-networks in three
sets according to the following proportions: learning set (%), validation set (%) and
test set (%). If there are N egos in a set, we rank the N · k · (k – )/ pairs of neighbors in
the union of the ego-networks. The presence or absence of a link between two neighbors
in the learning set is supposed to be known and will be used during the learning phase of
the protocol, while the performance of the whole procedure is evaluated on the test set.
The validation set will be used to fix the parameters of the prediction method as discussed
later.

The process is then divided into two parts, an unsupervised ranking part followed by
a supervised aggregation of rankings. During the first part, pairs of nodes are ranked ac-
cording to a metric m. m is chosen to be correlated with the probability of existence of a
link between neighbors. We also use consensus-based strategies to obtain rankings com-
bined from the metric-based rankings. The quality of the various rankings produced is
assessed by measuring the numbers of true and false positive predictions on the top pairs



Tabourier et al. EPJ Data Science  (2016) 5:1 Page 5 of 16

Figure 2 Performance comparison between
structural benchmarks, using precision vs recall
and F-score (inset). Degree class: k ≥ 10 on the
phonecall network, learning set.

and usual related quantities, namely precision (Pr), recall (Rc) and F-score. Let us remind
that the F-score is defined as ·Pr·Rc

Pr+Rc . In the line of [], we use precision-recall curves to
visualize the performances of the prediction. We also plot F-scores as a function of the
number of predictions, as this quantity is proportional to the number of true positive for
a given number of predictions. Then we mix the rankings following supervised learning
methods to obtain a prediction as accurate as possible on the various degree classes.

3.2 Static benchmarks
The quality evaluation is made by comparison to benchmarks, which rely on the basic
structural information. For the comparison to be as fair as possible, we test a few rank-
ing metrics and keep the most efficient one. Each pair of neighbors (i, j) of ego e, with
degree k(e) and total weight W (e) =

∑
i w(e, i), is given a score s(i, j) depending on the

weights w(e, i) and w(e, j), which is the only structural information available here.b The
static benchmark metrics are:

• s(i, j) = w(e, i) · w(e, j),
• s(i, j) = w(e, i) + w(e, j),
• s(i, j) = max(w(e, i), w(e, j)),
• s(i, j) = w(e, i) · w(e, j)/k(e),
• s(i, j) = w(e, i) · w(e, j)/W (e).
Figure  depicts the results of drawing randomly , egos with k ≥  from the learn-

ing set of the phonecall network. It can be seen that s, s and s clearly outperform the two
other metrics and the precision of s is better for low recall predictions. This observation
stands using other samples and other classes. Therefore, s is used as the static benchmark
of reference in the text that follows.

3.3 Metrics using temporal information
We aim at drawing as much information as possible from the temporal communication
patterns of an ego to its neighborhood. For this purpose we define weak classification
metrics, which are complementary to each other as they use either different types of ap-
proaches or different timescales.

.. Link strength metrics
The first approach assumes that if there are strong links between e and i, and e and j, then
i and j are more likely to be connected. A straightforward way to measure the strength of a
relationship is the total duration of phonecalls. If �(e, i) is the total duration of phonecalls
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between e and i, then we define the duration score as

sdur(i, j) =
�(e, i) · �(e, j)
(
∑

k �(e, k)) .

Strength may be measured in other ways, such as using the regularity of a relationship.
We can indeed expect that someone calls his or her relatives not necessarily often nor for a
long time, but on a regular basis (every day or week for example). We define the regularity
γ (e, i) of a relationship as w(e, i) divided by the Fano factor F(e, i) of the inter-event time
series. Let us recall that the Fano factor of a distribution is the ratio of its variance over its
mean. More regular signals are characterized by lower values of F and, therefore, a higher
value of γ (e, i). For γ (e, i) to be defined, we demand that there are at least two inter-event
times in the time series (that is at least  interactions). The regularity score is then defined
as

sreg(i, j) = γ (e, i) · γ (e, j).

In Figures  and , we show the precision and recall improvements compared to the
benchmark s, obtained respectively with the duration and regularity metrics. Note that
precision and recall improvements are equal for a fixed number of predictions. Different
degree classes are considered and it can be seen that there is an improvement to the bench-
mark in all cases except for k =  with duration, where it is low or even negative. In the
case of the regularity metric, the improvement is spectacular for the first predictions but

Figure 3 Precision and recall improvements
using the duration metric (on phonecalls,
learning set) compared to s5 benchmark for
several degree classes.

Figure 4 Precision and recall improvements
using the regularity metric (on phonecalls,
learning set) compared to s5 benchmark for
several degree classes.
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Figure 5 Example of temporal profiles of interactions
between ego e and neighbors i, j, k: a spike represents
a phonecall. The similarity of profiles indicates that i and j
may be part of the same social circle, while k is probably
not.

falls quickly to negligible values. Considering duration, the improvement is not as high for
the first few predictions but remains significant on a large range of predictions.

.. Temporal profile approach
Depending on the moment of the day, week, or year, people use cellphones with different
purposes. For example, co-workers call each other more often during working days than
during the week-end. We, therefore, expect that the calling frequencies give clues about
the underlying social groups. This should reflect on temporal profiles as is shown in the
example in Figure .

We implement this idea in the following way. We divide the timeline T in two sets of
timestamps TA and TB, and count the number of interactions during both periods by
defining a -dimensional weight vector, (wA(e, i); wB(e, i)). Assuming that pairs of nodes
interacting with the central ego in a similar way are more prone to be connected, the score
of the pair (i, j) is then computed from the scalar product of these weight vectors:

spr(i, j) =
(wA(e, i) · wA(e, j) + wB(e, i) · wB(e, j))

W (e)
.

Notice that spr = s for TA = T and TB = ∅.
We use the following profile scores in the rest of the study:
• spr- for a partition according to days of the week: Monday to Friday vs Saturday to

Sunday,
• spr- for a partition according to hours of the day:  am to  pm vs  pm to  am,
• spr- for another partition according to hours of the day:  am to  pm vs  pm to  am.
In Figure  we summarize the precision and recall improvements compared to the

benchmark s obtained for different degree classes with profile , where the timeline is
partitioned between week days and week-end. It reveals that spr- performs much better
than the benchmark, reaching up to a %, %, % and % enhancement for classes
k = , k = , k =  and k =  respectively. Notice that the best improvements are obtained
on the top-ranked pairs, which will be used in the aggregation we develop in Section ..

Of course, we can look for refined partitions of the timeline with more groups, more
precisely defined boundaries, or even overlapping categories. However, we take a different
approach here by combining several weak classifying features to obtain a good ranking.

.. Elapsed time approach
When taking part in a social event, an individual has a high probability to call or to be
called in a short period by several participants, for example, to set up a meeting point.
More generally, the elapsed time between calls may be an indication of a relationship be-
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Figure 6 Precision and recall improvements
using the temporal profile approach (score spr-1
on phonecalls, learning set) compared to s5
benchmark for several degree classes.

Figure 7 The time elapsed between e – i and e – j
interactions is shorter than d, while it is not the case
for e – i and e – k. We assume that it indicates a higher
probability for i and j than for i and k to be part of the
same social circle.

tween the users involved in both phonecalls. That is why specific temporal patterns are
found more often in phonecall networks than what is expected from randomized mod-
els (see [, ]). Such correlations appear at various timescales. For example, defining
a meeting point may involve several phonecalls within a few minutes, while the organi-
zation of a week-end may appear by examining patterns spreading over several hours or
even days.

In order to account for this mechanism, we define a ranking score that takes into ac-
count the fact that an interaction between i and e took place not long before or after an
interaction between j and e. To do so, we define the pair score as a function of parame-
ter d

sd(i, j) =
∑

ti ,tj

H
[
d – (tj – ti)

]
/W (e),

where tk is an interaction timestamp between e and k, and H is the Heaviside function.
In other words, each pair of interactions (e – i, e – j) happening in a time shorter than d
increases the score of the pair (i, j). This idea is represented schematically in Figure . Note
that sd=∞ = s, as limd→∞

∑
ti ,tj

H[d – (tj – ti)] = w(e, i) · w(e, j).
Figure  shows results obtained for sd= h, sd= h and sd= h, corresponding respectively

to a  hour,  day and  week time between phone calls for the degree class k = . Here too,
we see that there is a significant enhancement to the benchmark, and that the precision
improvement curves are not equal for the different elapsed time parameters, meaning that
different time scales bring different information. We will, therefore, combine the informa-
tion brought by the various rankings to improve the quality of the predictions in the study
that follows.
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Figure 8 Precision and recall improvements
using the time elapsed approach (on phonecalls,
learning set) compared to s5 benchmark for
d = 1 hour, 1 day or 1 week.

Figure 9 Spearman correlation coefficients between rankings.
Ranking are ordered according to the following scores (left to right, up to

bottom). Benchmark: s5, duration based: sphone
dur , regularity based: sphone

reg ,

stext
reg , elapsed time based: sphone

d=1 h , s
phone
d=3 h , s

phone
d=24 h, s

phone
d=168 h, s

text
d=1 h, s

text
d=3 h,

stext
d=24 h, s

text
d=168 h, profile-based: s

phone
pr-1 , sphone

pr-2 , sphone
pr-3 , stext

pr-1 , s
text
pr-2 , s

text
pr-3 .

4 Combining different predictors
The ranking methods presented in the former section use temporal information in com-
plementary ways. That is, we do not communicate in the same fashion with our family,
friends, co-workers, etc. Hence, a link detected as likely using a specific ranking method
may not be discovered using another. In this section, we explore the possibility to combine
the different rankings in order to obtain the best possible prediction.

4.1 Feature selection and ranking correlations
In the rest of our study, we use the  rankings corresponding to the following scores: s,
sphone

dur , sphone
reg , stext

reg , sphone
d= h , sphone

d= h , sphone
d= h, sphone

d= h, stext
d= h, stext

d= h, stext
d= h, stext

d= h, sphone
pr- , sphone

pr- ,
sphone

pr- , stext
pr-, stext

pr-, stext
pr-. To support the idea that different rankings bring different infor-

mation, we measure the correlation between these  rankings and represent in Figure 
the Spearman correlation coefficient matrix between rankings in the case of degree class
k = . Correlations for other degree classes look similar, but are not reported here for
the sake of brevity. We observe that correlations are heterogeneous. For example stext

reg is
lowly correlated to all other rankings, whereas s is quite highly correlated to a majority of
rankings. Groups of metrics can be distinguished based on the correlation matrix, while
sphone

dur , sphone
reg and stext

reg are relatively independent from the others. The profile-based clas-
sifiers of Section .. are on average highly correlated and the same can be said for the
elapsed time-based classifiers of Section .., as is expected. We also notice that these
two groups can be divided into two subgroups, corresponding respectively to phone and
text-messages classifiers.

On the whole, it appears that some pairs of nodes are ranked high according to a classi-
fier, but not by all others. In the following study, we present ways to draw benefit from the
complementarity of these scores.
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4.2 Unsupervised consensus methods
We describe here unsupervised techniques used to merge rankings based on social choice
theory []. These methods are consensus-based. They rely on the assumption that every
ranking provides a reasonable solution to the problem and combine rankings by giving to
each of them an equal weight.

.. Borda’s method
Borda’s method is a rank-then-combine method, originally proposed to obtain a consensus
in a voting system []. We use the index κ to refer to a specific ranking among the α rank-
ings combined. Hence, rκ (i, j) denotes the rank of pair (i, j) according to this ranking, and
|rκ | denotes the number of elements ranked in rκ . Each pair is given a score corresponding
to the sum of the number of pairs ranked below, that is to say

sB(i, j) =
α∑

κ=

|rκ | – rκ (i, j).

This scoring system may be biased by the fact that some rankings feature less elements
than others. To alleviate this problem, unranked pairs in ranking rκ , but ranked in rκ ′ will
be considered as ranked in rκ on an equal footing as any other unranked pair, and below
all ranked pairs of rκ . Borda’s method is computationally cheap (linear in the ranking size),
which is a highly desirable property in our case, where many items are ranked. A compre-
hensive discussion of this method can be found in [].

.. Medrank
Borda can be described as building the ranking by averaging the rankings combined. An-
other possibility is to look for the median of the rankings. The output, that is to say the
combined ranking, is initially empty and built iteratively in the following way. At step n
of the algorithm, the user register which pairs are ranked in position n of every ranking
and how many times each pair has been seen until then. As soon as a pair (i, j) has been
seen in half (or more) of the number of rankings it belongs to, it is appended to the list
representing the combined ranking. Going through all rankings from top to bottom simul-
taneously, we obtain a ranking which can be interpreted as the median ranking of the input
rankings. This consensus method is called Medrank [], and it is also linear in terms of
computational complexity.

4.3 Classical supervised classification methods
Another class of merging techniques proceeds in a supervised way. Let us first introduce
traditional classification methods. The rankings obtained with unsupervised methods on
the learning set are the scores used as input features. Then the link prediction issue is
considered as a two-classes classification problem: the model trained on the learning set
is applied on the test set to estimate if a link does exist or not.

For this purpose we used three different methods: Classification Trees, AdaBoost and
k-Nearest Neighbors, as documented in the python toolkit scikit-learn.c One of the draw-
backs of these methods is that the operator cannot set the number of predictions. We,
therefore, explore a small part of the precision-recall space using the parameters of the
method.
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Figure 10 Left to right, top to bottom: k = 2, k = 4, k = 6, k = 8, k = 10, k = 12. Main plots: precision vs
recall. Insets: F-scores against the number of predictions. Blue circles correspond to Classification Tree (CT)
results, purple triangles to AdaBoost (AB) and green squares to k-Nearest Neighbors (kNN).

The results obtained are displayed in Figure , they show that these methods are effi-
cient to make high precision and low recall predictions (especially AdaBoost), clearly out-
performing the static benchmark s. They are nonetheless inappropriate to make effective
predictions over a large range of the precision-recall space.

4.4 Supervised learning-to-rank methods
Finally, we use RankMerging, a supervised machine learning framework [], recently de-
veloped to aggregate information from various ranking techniques, in a way that is suited
to link prediction. Here we do not describe the algorithm in details and only focus on the
points which are important for this study. Notice that other learning-to-rank techniques
could be used following the same scheme, but our framework is built for such situations
with many ranked items as it is computationally linear. Moreover, it does not demand for
a pair to be highly ranked according to all criteria, but at least one, which we believe is
appropriate in the context of link prediction in a social network. Finally, it allows to inves-
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Table 1 Improvement to benchmark s5 of the area under the curve in the precision-recall
space

Ego degree class Pr-Rc improvement

k = 2 +15.5%
k = 3 +18.8%
k = 4 +19.3%
k = 5 +21.4%
k = 6 +22.3%
k = 7 +22.5%
k = 8 +25.5%
k = 9 +25.5%
k = 10 +28.1%
k = 11 +30.9%
k = 12 +26.4%
k = 13 +33.1%
k = 14 +36.2%
k ≥ 15 +51.6%

tigate which features contribute to the final ranking and thereby, giving indications about
the information sources which are important.

According to our framework, we first create the  rankings defined in the former parts
( unsupervised score-based rankings plus Borda and Medrank) on each of the three sets
(learning, validation and test). Then we evaluate during the learning phase the coefficients
that compute the contribution of each of these rankings to the merged ranking on the
labelled learning set to optimize the quality of the prediction. In more details, to create
a combined ranking of length n, we learn the fraction φκ of pairs which are extracted
from each input ranking rκ . φκ coefficients are computed to maximize the quality of the
prediction on the learning set. The closer φκ is to , the heavier the weight of ranking rκ

in the merging process. The only parameter of the method (called g in []) is fixed on
the cross-validation set to get the best prediction quality. Finally, the performance of the
whole process is evaluated by measuring the improvement of the prediction on the test
set, compared to the static benchmark defined in Section .. The performance will be
measured using the area under the curve in the precision-recall space.

Results of RankMerging on the test set are displayed in Figure  and Table , degree
class per degree class. In general, predictions are more accurate for low-degree than for
high-degree classes, which is a consequence of the fact that the clustering coefficient in a
phonecall network is higher for low-degree nodes []. Hence, it should be easier to target
connected pairs. However, the improvement to s benchmark is higher for high degree-
classes. It is well-known that the higher the degree of an ego, the higher its activity [],
so that we have access to a richer temporal information on high-degree ego networks to
improve the predictions.

4.5 Contribution of rankings and discussion
We want to measure the contribution of each ranking to the merged ranking in order to
evaluate its weight in the aggregation process. RankMerging allows to do so by indicating
how many pairs of each ranking has been taken into account to create the merged ranking
(for more details see []). A number of pairs close to the number of predictions therefore
indicates that a ranking has a heavy weight in the merging process. We show in Figure 
the contribution of each group of rankings to the process in the case of degree class k = .
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Figure 11 Contributions of each ranking to the
merged ranking, class k = 8.

Figure 12 Contributions of each ranking to the merged ranking. Top left: phonecalls profile-based, top
right: text messages profile-based, bottom left: phonecalls elapsed time-based, bottom right: text messages
elapsed time-based.

We display a refined analysis on the elapsed time-based and profile-based predictions
in Figure  to have an idea of the contribution of each profile (resp. elapsed time) within
each category.

Several trends can be seen in these graphs as mentioned below.
• Some classifiers are very little explored or even not used at all during the process

probably because the information that they bring is redundant with other classifiers.
This is the case of sphone

reg , stext
reg , and sdur on this specific example.

• During the first steps the rankings used are mostly profile-based and elapsed
time-based. As the first predictions correspond to the highest scores, these steps
correspond to high precision and low recall, that is the top-ranked items of the
merged ranking. It means that these two sets of features may be considered as
informative time-based predictors on this dataset.

• A more thorough observation reveals that the information brought by phone calls is
used more for the first predictions while text messages are used later in the process.
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More precisely, the most used ranking during the first steps is related to the phonecall,
elapsed time-based score.

• Borda and Medrank are used during the whole process, which could be expected as
these methods are designed to be an average or a median of all the others. In our case
it seems that Borda’s aggregation is much more informative than Medrank.

Notice that the class k =  was taken as an example of a typical behaviour. There are
quantitative variations from a class to another. However, the trends identified previously
remain true with the other classes.

The fact that a ranking is used early in the process tends to prove that the information
that it brings is relevant for link prediction. From this observation, we suggest several con-
clusions related to the social meaning of our experiments. First, the most efficient classifier
is the time elapsed between interactions, especially phone calls. It seems indeed that calls
separated by less than a few hours have a significant probability to involve members of
the same social circle. On the other hand, regularity-based classifiers proved themselves
inefficient when aggregated. Very regular interactions are probably too rare to allow the
identification of a large number of social circles where it is a standard communication pat-
tern. The duration based classifier brings little improvement to the prediction too. How-
ever, the cause may be different as duration score is quite highly correlated to other scores,
while regularity is not. We suggest that duration is ignored during the combination pro-
cess because it brings redundant information. Finally, profile-based predictors appear as
moderately efficient. But interestingly, they seem complementary with the elapsed time-
based predictors. A possible interpretation is that there are social circles where people
call or send messages according to a certain schedule, and others where interactions are
rather triggered by other interactions. This conclusion is of course hypothetical and calls
for additional investigation.

5 Conclusion
In this article, we explored how it is possible to infer links in ego-networks, where the only
information available is the timing of interactions of ego to its neighbors. We proposed
several ways of extracting information from the temporal communication patterns and
showed that they can largely improve predictions when compared to a prediction based
on the static information available - that is to say the weights of interactions. More pre-
cisely, it seems that profiling interactions based on when ego communicates with other
users and measuring the elapsed time between interactions are two particularly efficient
techniques to infer which of ego’s neighbors are likely to interact. Our study also supports
that depending on the kind of social relationship, communication modes vary, as we ob-
served that different features as well as different time-scales reveal different links. We took
advantage of this for link prediction by using a learning-to-rank framework that may rank
high items even if some features do not rank them high.

We studied a case, where structural information is minimal and therefore, isolating how
the temporal features that we defined improved the prediction. However, this temporal-
based approach can be advantageous even if we have richer information on the network
since it provides additional sources of information for link inference. It could for example
be used to predict future interactions. Knowing the current state of a social network as
well as the dynamics of existing interactions, it would improve our knowledge of the active
social circles and potential new interactions.
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Endnotes
a Note that in other contexts, some authors refer to the ego-network as the links of an ego to its neighbors and the

connections among them.
b Note that by convention, the pair (i, j) of neighbors of ego e is considered distinct from the pair (i, j) of neighbors of

e′ . Hence, there are duplicates among the ranked pairs which may predicted twice, but this event is rare as it
concerns less than 1 pair over 1,000 and have practically no impact on the prediction.

c http://scikit-learn.org/.

Received: 30 September 2015 Accepted: 22 December 2015

References
1. Freeman LC (1982) Centered graphs and the structure of ego networks. Math Soc Sci 3(3):291-304
2. Everett M, Borgatti SP (2005) Ego network betweenness. Soc Netw 27(1):31-38
3. Stoica A, Prieur C (2009) Structure of neighborhoods in a large social network. In: International conference on

computational science and engineering (CSE 2009), vol 4, pp 26-33.
4. Friggeri A, Chelius G, Fleury E (2011) Triangles to capture social cohesion. In: 2011 IEEE international conference on

privacy, security, risk and trust (PASSAT) and IEEE international conference on social computing (SOCIALCOM),
pp 258-265.

5. McAuley JJ, Leskovec J (2012) Learning to discover social circles in ego networks. In: NIPS, vol 25, pp 548-556
6. Danisch M, Guillaume J-L, Le Grand B (2012) Towards multi-ego-centered communities: a node similarity approach.

Int J Web Based Communities 9(3):299-322
7. Liben-Nowell D, Kleinberg J (2007) The link-prediction problem for social networks. J Am Soc Inf Sci Technol

58(7):1019-1031
8. Lü L, Zhou T (2011) Link prediction in complex networks: a survey. Phys A, Stat Mech Appl 390(6):1150-1170
9. Bliss CA, Frank MR, Danforth CM, Dodds PS (2014) An evolutionary algorithm approach to link prediction in dynamic

social networks. J Comput Sci 5(5):750-764
10. Merritt S, Jacobs A, Mason W, Clauset A (2013) Detecting friendship within dynamic online interaction networks. In:

Seventh international AAAI conference on weblogs and social media
11. Lichtenwalter RN, Lussier JT, Chawla NV (2010) New perspectives and methods in link prediction. In: Proceedings of

the 16th ACM SIGKDD international conference on knowledge discovery and data mining, pp 243-252.
12. Eagle N, Pentland AS, Lazer D (2009) Inferring friendship network structure by using mobile phone data. Proc Natl

Acad Sci USA 106(36):15274-15278
13. Tylenda T, Angelova R, Bedathur S (2009) Towards time-aware link prediction in evolving social networks. In:

Proceedings of the 3rd workshop on social network mining and analysis, p 9.
14. Bringmann B, Berlingerio M, Bonchi F, Gionis A (2010) Learning and predicting the evolution of social networks. IEEE

Intell Syst 25(4):26-35
15. Raeder T, Lizardo O, Hachen D, Chawla NV (2011) Predictors of short-term decay of cell phone contacts in a large

scale communication network. Soc Netw 33(4):245-257
16. Noulas A, Shaw B, Lambiotte R, Mascolo C (2015) Topological properties and temporal dynamics of place networks in

urban environments. In: Proceedings of the 24th international conference on world wide web companion,
pp 431-441.

17. Pujari M, Kanawati R (2012) Supervised rank aggregation approach for link prediction in complex networks. In:
Proceedings of the 21st international conference companion on world wide web, pp 1189-1196.

18. Tabourier L, Bernardes DF, Libert A-S, Lambiotte R (2014) RankMerging: learning-to-rank in large-scale social networks
(extended version). arXiv:1407.2515

19. Onnela J-P, Saramäki J, Hyvönen J, Szabó G, Lazer D, Kaski K, Kertész J, Barabási A-L (2007) Structure and tie strengths
in mobile communication networks. Proc Natl Acad Sci USA 104(18):7332-7336

20. Comar PM, Tan P-N, Jain AK (2011) LinkBoost: a novel cost-sensitive boosting framework for community-level
network link prediction. In: 11th international conference on data mining (ICDM), pp 131-140.

21. Davis J, Goadrich M (2006) The relationship between precision-recall and ROC curves. In: Proceedings of the 23rd
international conference on machine learning, pp 233-240.

22. Kovanen L, Karsai M, Kaski K, Kertész J, Saramäki J (2011) Temporal motifs in time-dependent networks. J Stat Mech
Theory Exp 2011(11):P11005

http://scikit-learn.org/
http://arxiv.org/abs/arXiv:1407.2515


Tabourier et al. EPJ Data Science  (2016) 5:1 Page 16 of 16

23. Tabourier L, Stoica A, Peruani F (2012) How to detect causality effects on large dynamical communication networks:
a case study. In: 2012 fourth international conference on communication systems and networks (COMSNETS), pp 1-7.

24. Dwork C, Kumar R, Naor M, Sivakumar D (2001) Rank aggregation methods for the web. In: Proceedings of the 10th
international conference on world wide web, pp 613-622.

25. de Borda J-C (1781) Mémoire sur les élections au scrutin
26. Sculley D (2007) Rank aggregation for similar items. In: Proceedings of the 2007 SIAM international conference on

data mining, pp 587-592.
27. Onnela J-P, Saramäki J, Hyvönen J, Szabó G, De Menezes MA, Kaski K, Barabási A-L, Kertész J (2007) Analysis of a

large-scale weighted network of one-to-one human communication. New J Phys 9(6):179
28. Miritello G, Moro E, Lara R, Martínez-López R, Belchamber J, Roberts SG, Dunbar RI (2013) Time as a limited resource:

communication strategy in mobile phone networks. Soc Netw 35(1):89-95


	Predicting links in ego-networks using temporal information
	Abstract
	Keywords

	Introduction
	Dataset
	Preprocessing
	Ego-networks speciﬁcities

	Prediction based on temporal information
	Protocol and prediction evaluation
	Static benchmarks
	Metrics using temporal information
	Link strength metrics
	Temporal proﬁle approach
	Elapsed time approach


	Combining different predictors
	Feature selection and ranking correlations
	Unsupervised consensus methods
	Borda's method
	Medrank

	Classical supervised classiﬁcation methods
	Supervised learning-to-rank methods
	Contribution of rankings and discussion

	Conclusion
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	Endnotes
	References


