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Abstract

The hypothesis of preferential attachment (PA) - whereby better connected
individuals make more connections - is hotly debated, particularly in the context of
epidemiological networks. The simplest models of PA, for example, are incompatible
with the eradication of any disease through population-level control measures such
as random vaccination. Typically, evidence has been sought for the presence or
absence of preferential attachment via asymptotic power-law behaviour. Here, we
present a general statistical method to test directly for evidence of PA in count data
and apply this to data for contacts relevant to the spread of respiratory diseases. We
find that while standard methods for model selection prefer a form of PA, careful
analysis of the best fitting PA models allows for a level of contact heterogeneity that
in fact allows control of respiratory diseases. Our approach is based on a flexible but
numerically cheap likelihood-based model that could in principle be applied to other
integer data where the hypothesis of PA is of interest.

Keywords: MLE; Phase-type distribution; model selection; spectral methods

1 Introduction

1.1 Contact heterogeneity in infectious disease epidemiology

Infectious pathogens that spread via contact between people are a major cause of human
disease, driving attempts to understand their epidemiology [1]. Much theoretical work on
infectious disease dynamics has been focused on the role of heterogeneity in the human
population [2], which is often conceptualised as a network of epidemiologically relevant
contacts [3-5].

Perhaps the most important quantity in any infectious disease outbreak is the basic re-
productive ratio, Ry, which is defined verbally as the expected number of secondary cases
generated by an average primary case early in the epidemic. An epidemic is possible exactly
when Ry > 1, and typically the efforts required to control such an outbreak grow mono-
tonically with Ry [1, 2]. In the simplified scenario where each individual picks an integer
number of contacts K from the same degree distribution, but transmission is otherwise

homogeneous,

Ry x E[K?]. 1)
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This dependence of the basic reproductive ratio on the second moment of the degree dis-
tribution has been a ‘textbook’ result for some time [6], however work by Pastor-Satorras
and Vespignani [7] and May and Lloyd [8] raised the question of what might happen for
large, or asymptotically divergent, second moments. Such questions can be posed and
answered at different levels of mathematical rigour [9] however in the context of epidemi-
ology it is clear that a highly variable degree distribution is associated with the epidemio-
logically unrealistic scenario that even the most weakly transmissible pathogen can cause
an epidemic, and as a corollary that control of any infectious disease through untargeted
vaccination would be impossible.

1.2 Data
Of course, whether such a theoretical possibility matters for the study of infectious dis-
eases depends on the actual variance in degree for epidemiologically relevant contacts.
While 20th century models of infectious disease were often based on strong a priori as-
sumptions about mixing patterns [1], various methods for measurement of contact pat-
terns now exist and were reviewed by Read et al. [10]. As well as direct measurement of
individuals through surveys [11] it is possible to improve coverage through snowball and
respondent-driven sampling [12, 13], to make use of the extremely large datasets produced
by electronic sensors [14, 15], and also to combine aggregate data [16, 17].

Previous empirical studies have seen evidence that for direct (e.g. [16, 18]) and sexual
(e.g. [19, 20]) contacts, an approximate power-law relationship may hold such that for
large k, a randomly selected node obeys

Pr(node has k links) &~ k7. ()

As is the case for almost all biological data, there is much more complexity in the data than
such a simple parametric relationships as (2) would imply. For example, Leigh Brown et al.
[20] found that while a power-law was a better functional form than the negative binomial
for sexual contacts, the richer Waring distribution was preferable to either. What is hard
to dispute, however, is that as better quality data on epidemiologically relevant contacts
is obtained the evidence consistently points to a very high level of variance; for example,
Read et al. [21] were able to validate the high numbers of contacts reported by some study
participants through direct (rather than postal) surveying.

These empirical observations of high heterogeneity in contact number, together with
theoretical results about Ry, present a paradox for infectious disease epidemiology: is the
extreme heterogeneity in observed contact patterns indicative of PA and does that im-
ply that Ry > 1 for almost any finite level of person-to-person transmissibility meaning
that our theoretical understanding of infectious disease epidemiology is somehow severely
lacking?

1.3 Preferential attachment and power laws in empirical data

Recent years have seen a debate about the level of heterogeneity that exists in a variety of
observed networks. A particularly influential paper by Barabésiand Albert [22] considered
a model of network formation in which many new nodes are added to a small existing
network. These new nodes connect preferentially to nodes that have more links in the
existing network, leading to the asymptotic result (2) with y = 3. In this way preferential
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attachment is intimately linked with, but not always equivalent to, asymptotic power-law
behaviour.

Simple power-law relationships have been claimed for numerous real-world systems,
and a critical review of these claims by Clauset et al. [23] used maximum-likelihood fitting
of distribution tails to power-law distributions to show varying levels of statistical support
for claims in the literature. In the context of discrete data, pioneering work by Zipf [24]
found power-laws in word frequencies; considering the count of unique words in Moby
Dick both Newman [25] and Clauset et al. [23] agree that the statistical evidence for Zipf’s
power-law distribution in this context is strong. On the other hand, the in- and out-degrees
of E. coli metabolic networks have been claimed to follow a power law [26], but this is
disputed by the analyses of Huss and Holme [27] and Clauset et al. [23].

The debate around presence or absence of power laws in real data continues, perhaps
most strongly in the context of networks. For example, Barabdsi [28] writes that prefer-
ential attachment is network science’s “most profuse concept,” and that “the impact of
preferential attachment is hard to miss” At the same time, Stumpf and Porter [29] argue

that “most reported power laws lack statistical support and mechanistic backing”

1.4 Testing preferential attachment directly

In this work, we attempt to test the hypothesis of preferential attachment in social con-
tact data directly, rather than via asymptotic power law behaviour. We make use of previ-
ously collected data on social encounters specifically designed to measure heterogeneity
in numbers of contacts amongst the British population, and fit mechanistic models of
different complexity to these data. We determine that models with significant levels of
preferential attachment have better evidential support from the data than models with-

out.

2 Methods

2.1 Social Contact Survey data

A cross-sectional study was conducted between May 2009 and October 2010, recruiting
households and individuals through postal and online questionnaires, supported by a large
random-address mailshot and a modest online and media promotion [30, 31]. Question-
naires asked respondents to report on the number of distinct individuals they encountered
the previous day: their contacts. Respondents were able to report contacts either as indi-
viduals or as members of a group with a reported size. Allowing the reporting of groups of
individuals was a deliberate methodological design to permit the easy reporting of large
numbers of contacts, to avoid the approach taken by previous studies [11], which imposed
a high burden on respondents with large number of contacts, and to ensure the best cap-
ture of the right-hand tail of the degree distribution. In general, we expect that such data
will become increasingly available due to the epidemiological importance of this tail (e.g.
the study of Read et al. [21]).

In total, completed questionnaires were received from 5,388 participants in Great
Britain, 3,901 of which were from postal surveys. There was some bias in demograph-
ical representation, most notably younger age groups and males were generally under-
represented (see Danon et al. [31] for more details). The data is available at http://wrap.

warwick.ac.uk/54273/.
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2.2 Generalised preferential attachment

As noted by Durrett [32], Barabdsi [28], and Simkin and Roychowdhury [33], the basic idea
behind the preferential attachment model is close to the population model of Yule [34].
We consider a Yule-like stochastic process described precisely as follows. In a population
of N individuals indexed by i each individual has an integer-valued random variable Kj(¢)
for its number of contacts. Individual i starts with K;(0) = 0 and makes new contacts over
a time period T, which is given by a positive real-valued random variable with probability
density function p(t). The generation of new social contacts is modelled by a continuous-
time Markov chain with the following events and rates:

Ki— K;+1 atratefg, :=1+ 1K, (3)
We take the preferential attachment hypothesis PA to be stated mathematically as
PA& t>0. (4)

Writing pi(¢) for the probability that K; = k at time ¢ < T}, we can use the method of char-
acteristics to derive an expression for the probability generating function of Kj,

gt:9) =Y p®s = (s (s-De”) ™", selo,1l. 5)
k

From this, we can derive expressions for the probability mass function,

1 d%g Fk+4) . . &
) = ——— . S— T -1
Pt = | TTOTk+1) (e -1)
— k(€7 = 1) k00, (6)

where k; is a function of ¢ but not k and the asymptote holds as k becomes large. This is
not a simple power-law relationship, and so the asymptotic behaviour of the moments is
not determined by the power-law exponent, but rather through the moment generating
function M(¢, z) = g(t, €°), z € (—00, 0], such that the rth moment of the degree distribution,
conditional on t < T, is

M

m,(t) = 7 | (7)
In particular,
my(t) = l(e” -1), moy(t) = m(t) + (v + 1)(m1(t))2, (8)

T

Then accounting for the randomness of the times, the rth moment of the degree distribu-
tion will be

WV:/ p(t)m,(t) dt. )

=0

We will be interested in the empirical evidence for whether such moments converge or
diverge, in light of the epidemiological relationship (1).
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Figure 1 A model of m phases. v is the probability of starting in
phase a, 44 is the exit rate of phase a, and Qg is the rate of moving
from phase a to phase b.

2.3 Phase-type holding times

The question is then posed as to an appropriate distribution from which to draw the hold-
ing times {T;} for the amount of time spent making new contacts on the day for which
individuals provide data. In previous work [30] on a related model of contact formation
we considered holding times 7; that were log-normally distributed. This provided a good
fit to data, but was computationally intensive and lacked a mechanistic interpretation. We
therefore consider here a class of distributions for the holding times that is highly flexi-
ble, but which has analytic and numerical benefits - the distributions of phase type [35].
Phase-type distributions are dense in the space of positive-valued probability distributions
[36], meaning that they can be made arbitrarily close to any other distribution. They have
a mechanistic interpretation and allow for analytic manipulations that greatly reduce the
numerical cost of likelihood evaluation.

The basic idea behind the model is shown in Figure 1. A set of phases is indexed by 4, b =
1,...,m; the probability of starting in phase a is v, (meaning these parameters must sum to
unity); the rate of stopping making new social contacts is 1, for an individual in phase a;
and the rate of moving from phase a to phase b is Q, . Note that different rates of making
contacts in different phases are not realistically distinguishable from different times spent
and so are not included as parameters. The phases have a mechanistic interpretation as
the activities that individuals undertake on a given day.

In this model, the probability density function for the holding time is given by the general

expression
p(t) = p"eM, (10)
where:

= (1a); v =(v,);

(11)
Ma,a = _Mzz; Mﬂ =Ug t+ Z Qh,a; Ma,b#a = Qb,a'
b

From the expressions (5), (7), (8) and (9) above, in particular through inspection of the
form of the moment generating function, it is clear that the rth moment of the degree

distribution will involve a term like

o0 o0
7, = / () dt= T / eM+rTDt qpy, 12)
Lt

=0 t=0

where I is the identity matrix. Let A = M + rtI; this matrix is triangular and so its

eigenvalues are equal to its diagonal elements; in particular the ath eigenvalue of A is
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Aq = =M, + rt. If we let R be a matrix whose ath column is the ath right eigenvector of A

and L be a matrix whose ath row is the ath left eigenvector of A then

o0 o0
I,=p" / L'LeARR ' dtv = "L / Dd:R v, (13)
t=0 t=0

where D is a diagonal matrix whose ath diagonal element is e*, The integral Z, therefore
converges exactly when Va, 1, < 0, which implies that the condition for divergence of the

rth moment is
m, diverges <  Ja such that v > M,/r. (14)

In general, however, combination of (10) and (6) is not the most numerically efficient
method for calculation of the overall probability mass function for final number of con-

tacts K;(7;) and a different approach is needed.

2.4 Numerically efficient model solution

The model as described above can be solved in a numerically efficient manner using the
spectral methods for continuous-time Markov chains developed by Bailey [37]. We con-
sider the limit as the population size N — oo and write down ordinary differential equa-
tions (ODEs) for the proportion of the population in phase a and with & social contacts at
time ¢, p, (¢). These ODEs take the form

d
—Pak = —(fk Flat Y Q;:,b)]%,k +ferbaja+ Y Quabbo (15)

d b>a b<a
where f; is the rate at which individuals with k social contacts make new contacts, given in
(3). We are then interested in d, the probability mass function for a randomly selected in-
dividual having made k social contacts by the end of the process. A series of manipulations
directly analogous to those of Bailey [37] shows that

o0
di=timY o [ e pastiide = Y nada (16)
a 0 a

Applying Laplace transformation to (15) subject to the initial condition p,x(0) = v,;8k0
and taking the frequency-space limit s |, 0 then leads to a set of linear equations for dj

that are triangular and so can be evaluated directly without numerically costly matrix in-

version:

Valio = —(fk Flat ) Qa,b)Aa,k +ferAgia + Y QuaApk. 17)

b>a b<a

These equations are at the root of the numerical efficiency of our model. Note that we use
Laplace transformation mainly for technical reasons and our results could be obtained
by directly integrating (15) if one were not concerned by all quantities being rigorously
defined.
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2.5 Model likelihood, fitting and selection

We assume a vector of data y = (yx), where yi is the number of individuals reporting k
social contacts when surveyed. A model M is therefore specified by a number of phases m
and the presence or absence of PA, meaning the general parameters are 6 = (t, v, g, Qup),
with 7 present only if there is PA. The number # of individuals sampled from the British

population N is
n=Y y=5388 <N Z6x10, (18)
k

and so it is appropriate to assume that each individual picks a number of contacts indepen-
dently from the distribution with pmf given by dj as in (16). Accounting for the censoring
of zero contacts in the real data, we define

dy =0, diso = , (19)

meaning that the overall likelihood function is then given by

(@) (20)

L(yl6) = o
N

Note that the combinatorial factors do not depend on the parameters, and so need not be
calculated during model fitting.

We consider the use of the likelihood function (20) using standard statistical methodol-
ogy. Numerical maximum likelihood estimation was performed using simulated anneal-
ing run from multiple starting points to ensure the global optimum was obtained. Model
selection was performed using AIC [38] and BIC [39], as well as likelihood ratio tests
[40] on pairs of models where this test was informative. This was done since each ap-
proach involves different trade-offs between model fit and complexity, and to check that
our conclusions about PA are not overly sensitive to the precise method used. Uncer-
tainty in model parameters was quantified using confidence intervals obtained through
bootstrapping the data, and uncertainty in model outputs such as the predicted degree
distribution was quantified using a parametric bootstrap.

3 Results and discussion
Table 1 shows the models we fitted, their number of parameters, AIC/BIC relative to the
minimum, and the first moment that diverges according to (14). Figure 2 shows the results
of performing likelihood ratio tests. These show that AIC prefers a 5-phase model with PA
as do likelihood ratio tests for any significance level between 0.07% and 20%. BIC penalises
complex models more severely and therefore selects a 3-phase model with PA.
Therefore, regardless of the number of phases selected by different approaches to model
selection, we see that the models with PA are preferred over models without. Figure 3
shows the predictions of the models preferred by different selection criteria, as well as
the models with the same number of phases but no PA, against real data. We see in the
left column of plots that for the 5-phase models, the main difference is in the tail of the
distribution as we would expect. In the 3-phase models shown in the right column of plots,
the model without PA also smooths over features in the bulk of the distribution compared
to the model with PA.
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Table 1 Comparison of models with different numbers of phases, with and without
preferential attachment (PA), together with: number of parameters; differences in AIC and BIC
values compared to the overall minimum; and the lowest divergent moment for models

with PA
(Phases, PA)  No.Params  AAIC ABIC Diverge
(1,No) 1 22%x10°0  21x10° -
(2,No) 4 21 %102 15%x10%2 -
(3,No) 8 12x10%2 83 -
(4,No) 13 42 38 _
(5,No) 19 23 58 -
(6,No) 26 27 11x10%2 -
(1,Yes) 2 19% 102 11x102 3
(2,Yes) 5 13x102 72 4
(3,Yes) 9 31 [0] 3
(4, Yes) 14 11 14 3
(5, Yes) 20 [0] 42 3
(6, Yes) 27 9 97 3

Preferred models are shown using square brackets and bold type.

Figure 2 The results of likelihood ratio tests on the models.
Arrows point towards the model preferred by the likelihood ratio
test, with p values shown.

For the 3-phase model with PA, 7 = 0.018 [0.012, 0.026]; and if we set T = 0 but leave the
other parameters at their fitted values, then the total number of contacts per person is re-
duced to 64% of its original value. For the 5-phase model with PA 7 = 0.026 [0.019,0.036];
and if we set T = 0 but leave the other parameters at their fitted values, then the total num-
ber of contacts per person is reduced to 58% of its original value. This shows that in both
of these models, we can attribute a substantial fraction of the contacts to PA.

We also calculate that the second moment does not diverge in any of the fitted mod-
els, which helps to resolve the epidemiological paradox that we introduced at the start of
this paper. PA is empirically supported, and is also mechanistically plausible since existing
social contacts give more opportunities for future social contact. Combined with a suffi-
ciently detailed phase-based mechanistic model of the contexts in which social contacts
are made, however, PA does not imply a divergent second moment for the distribution of
contacts relevant for the spread of directly transmitted infections. This means that our un-
derstanding of how basic epidemiological quantities like the basic reproductive ratio, Ry,
are related to contact networks does not need to be revised in the light of empirical evi-
dence.
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Figure 3 Data at different scales versus (left column) model selected using AIC and likelihood ratio
tests (right column) model selected using BIC. Models are labelled by the number of phases and whether
PA is present. Confidence intervals in the data are calculated using bootstrapping for data and parametric
bootstrapping for models.

As a final observation, we believe that as computational resources for fitting models to
data improve, it will in general be easier to test the hypothesis of PA directly in all kinds

of data, rather than looking for asymptotic power laws.

Appendix A: Code

We provide the function phase_ll.c below as a Mex file for use within MATLAB; how-
ever, the C syntax is standard and modification to run within R, Python or C should be
straightforward. Once compiled, use within MATLAB is:

>> [LL, P] = phase_11(params,M,kh,K);

where params is a vector of the model parameters [nu(:), mu(:), Q(:), taul,
M is the number of phases, kh is a vector of count frequencies from 0 : X, K is the maximum
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count, LL is the log-likelihood given the parameters and P is a the probability vector for

the observed counts given the parameters.

A.1 The function phase_ll.c

#include <mex.h>
#include <math.h>

void mexFunction (int nlhs, mxArray *plhs[],
int nrhs, const mxArray xprhs[])

/* Input variables =/
double *params, =*kh, xMmex,
size_t 1p;

int M, K;

*Kmex ;

/* Get inputs in correct form =x/

params = mxGetPr (prhs[0]);
1lp = mxGetN(prhs[0]);
Mmex = mxGetPr (prhs([1]);
kh = mxGetPr (prhs[2]);
Kmex = mxGetPr (prhs[31]);

M = (int) Mmex[0];

K = (int) Kmex[O0];

/* Working variables =x/

double nu[M], mu[M], Q[M][M],

double f[K];
double tau, S;
double A[K] [M];
int fi, fj, k, m;

/* Output variables =*/
double %P, =*LL;

/* Organise outputs into correct form x/
plhs[0] = mxCreateDoubleMatrix(1l,1,mxREAL) ;

LL = mxGetPr(plhs[0]);

plhs[1l] = mxCreateDoubleMatrix (K, 1l,mxREAL) ;

P = mxGetPr (plhs[1l]);

nul[0] = 1.0;

for (fi=1; fi<M; fi++) {
nul[fi] = params[fi-17;
nul[0] -= params[fi-17];

}

for (fi=M; fi<(2xM); fi++) {
mul[fi-M] = params[fi-1];

}

m = (2*M)-1;

for (£i=0; fi<M; fi++) {
s[fi] = 0;
for (fj=(fi+1); f£j<M; fj++)

s[M];
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Alk][m] = ((£[k-1]1#A[k-1][m])+S)/ (£[k]+mu[m]+s[m]);

Q[fil[fj] = params([m];
s[fi] += params[m];
m=m+1;
}
}
if (1p == (m+1))
tau = params[m];
else
tau = 0;
fro] = 1;
for(k=1; k< (K-1); k++)
f[k] = 1+ (tauxk);
f[K-1]1 = 0;
A[0][0] = (nuf0])/(£[0]+mu[0]+s[0]);
for(k=1; k<K; k++) {
A[k][0] = ( £[k-1]/(E£[k]l+mu[0]+s[0])
}
for (m=1; m<M; m++) {
S=0.0;
for (£i=0; fi<m; fi++) {
S += Q[fi]l [m]*A[0][£fi];
}
A[0] [m] = (nulm]+S)/(£[0]+mu[m]+s[m]) ;
for(k=1; k<K; k++) {
S=0.0;
for (fi=0; fi<m; fi++) {
S += QIfi]l [ml*A[k][£fi];
}
}
}
P[0] = 0.0;

for (m=0; m<M; m++) {
P[0] += A[O0] [m]+mulm];

for(k=1; k<K; k++) {
P[k] = 0.0;
for (m=0; m<M; m++) {
P[k] += A[k] [m]*mu[m];
}
P[k] /= (1-P[0]);
}
P[0] = 0.0;

LL[O] = 0.0;
for(k=1; k<(K-1); k++) {
LL[0] += kh[k]l*log(P[k]);

) *A[k-1]1[0];

Page 11 0of 13
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