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Abstract
Spatial variations in the distribution and composition of populations inform urban
development, health-risk analyses, disaster relief, and more. Despite the broad
relevance and importance of such data, acquiring local census estimates in a timely
and accurate manner is challenging because population counts can change rapidly,
are often politically charged, and suffer from logistical and administrative challenges.
These limitations necessitate the development of alternative or complementary
approaches to population mapping. In this paper we develop an explicit connection
between telecommunications data and the underlying population distribution of
Milan, Italy. We go on to test the scale invariance of this connection and use
telecommunications data in conjunction with high-resolution census data to create
easily updated and potentially real time population estimates in time and space.
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1 Introduction
Census data help us understand patterns of human development and movement. Spatial
variations in the distribution and composition of populations inform urban development,
health-risk analyses, disaster relief, and more. Despite the broad relevance and importance
of such data, acquiring local census estimates in a timely and accurate manner is chal-
lenging because population counts can change rapidly [, ] and are contingent on public
participation [, ]. Moreover, censuses are expensive [, ], can be politically charged
[, ], and suffer from logistical and administrative challenges [, ]. These limitations
necessitate the development of alternative or complementary approaches to population
mapping.

Telecommunications data like cell phone calls, text messaging, and internet use are a
promising new source of real-time measure of population. In Figure , data on aggregate
call volume and internet use in Milan, Italy can distinguish days of the week, holidays, and
important events. The data clearly display daily and weekly rhythms with most telecom-
munication during daytime, high levels on weekdays, less on Saturdays, and even less on
Sundays. They also identify significant holidays, in this case with an unusual calling pattern
during the week of Christmas and New Year’s Eve. The data even attest to the importance
of soccer in Milan, as a spike in internet usage on December ,  coincides with the
World Cup Draw. Telecommunications data clearly encapsulate important information
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Figure 1 Hourly telecommunications activity for Milan, Italy.

about behavioral patterns and social phenomena, so it is reasonable to use these data to
map selected aspects of Milan’s social geography.

In this paper we use telecommunications data in conjunction with census data and satel-
lite images to create high-resolution population estimates in time and space. The next
section details existing approaches. We then describe new data on telecommunications
activity from Milan, Italy, a unique land cover measure developed using recent satellite
images of the region, and a recent national census. The first empirical section investigates
the proportionality of calling activity to population and how it varies over different geo-
graphic scales. We then propose and evaluate several models for predicting the population
of a given area and the percent of that population which is of foreign nationality. We con-
clude with a discussion of the benefits and limitations of our approach and propose ways
it could be used in real inter-census population estimation.

2 Related work
Other sets of telecommunications data have been used to study population density and
distribution [–], detect community networks [–], and map mobility patterns
[–]. Some studies have assumed a connection between telecommunications data and
population—two examples include Girardin et al., who use phone data as a proxy for pop-
ulation [], and Reades et al., who take the spatial and temporal distribution of telecom-
munications activity to indicate urban activity []. In this paper, however, we develop an
explicit connection between call data and the underlying population distribution.

Krings et al. analyze this connection and show that call volume scales linearly with popu-
lation [], a result we reproduce at certain geographic scales with the data for Milan. Kang
et al. explored this connection further: they compute a correlation coefficient of . be-
tween call volume and the underlying population distribution by comparing LandScanTM’s
ambient population estimates to call volume in Harbin, China []. They find that this cor-
relation coefficient improves to . when looking only at selected time intervals rather
than the total daily call volume. We find a dramatically higher correlation between CALL-
OUT volume and underlying population figures in Milan and also demonstrate scale in-
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Figure 2 Region of interest and unit of analysis.

variance above certain levels of aggregation. We are thus able to predict population distri-
bution at a resolution of  m ×  m for much of Milan which is a finer resolution than
the popular LandScanTM which provides population estimates at a resolution of  km.

The work most similar to our analysis is provided by Deville et al. who use a combi-
nation of telecommunications data and remote sensing to develop  m ×  m pop-
ulation estimates for France and Portugal []. Their focus is primarily on downscaling
known population from larger census tracts to smaller grid units, and they estimate a fixed
proportionality between nighttime call activity and population. Our focus is on predict-
ing population with models trained on known census data but applied to an inter-census
period. Because this is a more problematic task, we are interested in variation in the pro-
portionality of telecommunications activity and population, broken down across multiple
types and times of activity, and with potential interactions with remote sensing data like
land use.

3 Description of the data
Our region of interest is a . km square area in the Lombardy region in northern Italy,
Figure . It encompasses Milan, the second largest city in Italy,  towns with populations
greater than ,, and large stretches of rural farmland and commercial areas. Our units
of analysis are a regular grid of  m by  m cells (, in total), dictated by the
resolution of the telecommunications data provided by Telecom Italia as part of the Big
Data Challenge, described in detail below.

We begin by developing a land use map of the region at higher resolution than our unit
of analysis. We classify each  m by  m square as one of five land use types () build-
ings, () vegetation, () water, () road/pavement, and () railroads.a Land use classifica-
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Figure 3 Land use estimate for region. (a) Landsat 8 pansharpened natural color satellite image of region.
(b) Land use classification: water (blue), agriculture (green), buildings (brown), roads (grey), rail roads (black).

tion is directly available for % of our area from polygon and line layers from the Open-
StreetMap database []. To classify the remaining % we employ  m resolution pan
sharpened natural color Landsat  satellite imagery, shown in Figure (a). We train a ran-
dom forest classifier using OpenStreetMap data as labeled training examples.b The final
classifications for each pixel is shown in Figure (b). We estimate that the region is pri-
marily covered in vegetation (%), followed by structures (%), road/pavement (%),
rail (%), and water (%).

Our main outcome of interest is population, the number of total persons living in a given
area, and foreign population, the number of foreign nationals. Our population measures
come from the National Institute of Statistics (Istituto Nazionale di Statistica).c The Cen-
sus of Population and Housing  provides demographic data for sezioni, or census sec-
tions. These population counts are geographically mapped according to ISTAT territorial
bases. There are , sezioni that intersect our region of interest. The census tracts are
irregular polygons of varying shapes and sizes. We divide the population in each sezione
uniformly across the area it covers, sum within each grid square, and round to the nearest
individual for the final population estimate.

The distribution of population is bimodal, shown in Figure (a). Population is dis-
tributed exponentially for small values with % having zero population, % having a pop-
ulation of , % with a population of , and so on. Thirty-nine percent of grid-squares have
a population over  and approximately follow a log normal distribution with a mean of
 persons. The geographic distribution of population is shown in Figure (b).

Our measures of telecommunications activity are provided by Telecom Italia as part of
the Telecom Italia Big Data Challenge.d The Call Detail Records (CDRs) aggregated in the
dataset were generated by the Telecom Italia cellular network in Milan between November
,  and January , . The records measure volume for five types of activity, calls out,
calls in, text messages sent, text message received, and internet activity. For privacy and
proprietary reasons, the units of measure are obscured in a way that preserves variation
and mathematical operations (like addition) but hampers interpretation as a particular
number of calls or texts. The measures of activity are reported in -minute intervals for



Douglass et al. EPJ Data Science  (2015) 4:4 Page 5 of 13

Figure 4 Distribution of population. (a) Distribution of 2011 census population interpolated to grid
squares. (b) Population density across region.

Figure 5 Distribution of calling activity. (a) Distribution of total call volume (CALLOUT) by gridsquare. (b)
Geographic distribution of call volume (CALLOUT).

each of the  m ×  m meter grid cells. The activities are further disaggregated by
country codes that indicate the country of origin (in the case of incoming calls and texts)
or destination (in the case of outgoing calls and texts).

The original dataset contains ,, entries, each of which includes data for all
telecommunication types, for a distinct  minute time slot, country code, and grid square.
We generate several aggregations for each of the five activities including total over the en-
tire period (), total by time of day by hour (), and total by country code ().e Com-
munications activity is approximately log normal, shown in Figure (a) for total CALL-
OUT volume. The geographic distribution for CALLOUT is shown in Figure (b) which
looks similar to the geographic distribution of population.
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Figure 6 Scale variance of the relationship between population and calling activity. (a) Proportionality
of call volume (CALLOUT) to population. Fits shown include linear trend (black), piecewise linear trend with an
estimated structural break at 351 persons (red), and LOESS curve with 95% confidence intervals (blue). (b)
Proportionality of call volume and population at larger geographic aggregations of size 1× 1 grid squares,
2× 2 grid squares, etc. LOESS curve fit to each separately with 95% confidence intervals. A 45 degree line
(black) shows linear proportionality for comparison.

4 An elementary model
Previous analyses of telecommunications data have shown that call volumes, wi, associated
with a location/region i scale with the populations, pi: wi ∝ pα

i [, ]. Equivalently,

log wi = b + α log pi. ()

We begin by finding the parameters b and α so that () best fits population and total
call data. More precisely, since the total SMSIN, SMSOUT, CALLIN, CALLOUT, and
INTERNET volumes have correlations of ., ., ., ., ., with popu-
lation, we let wi be the total CALLOUT volume for grid square i. That CALLOUT is best
correlated with grids quare population is consistent with analyses of other telecommuni-
cations datasets [, ]. The results of a linear regression, a piecewise linear regression,
and LOESS curve appear in Figure (a). If call volume and population were proportional,
these points would lie on a  degree line. The expected linear fit (black) fits the data rather
poorly. Instead, a LOESS curve (blue) better captures the changing proportionality, which
we can further approximate with a piecewise linear fit with an estimated structural break
at  persons. That is, in contrast to previous work, we find a linear proportionality only
above a certain threshold of population, a slope . (% CI of .-.), but below that
threshold the fit and the trend substantially weaken to only . (% CI of .-.).

Substantively, the relationship between call volume and population in this region is
much weaker below a threshold of  persons. We suspect that this scale variance of
our results differs from existing studies for at least two reasons. First, existing studies tend
to be at higher levels of aggregation and so never observe the relationship at scales smaller
than the discontinuity we discovered. Second, our call data are provided as grid squares
that are imperfectly interpolated from what are actually coverage areas around specific cell
towers. To the degree that this interpolation is more accurate in population dense areas
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Figure 7 Bivariate relationship between population and telecommunications activity disaggregated
by hour. (a) Bivariate correlation between telecommunications activity at a particular hour and population.
(b) Population as a function of call volume (CALLOUT 10 am). Linear fit (red) with 95% confidence intervals.

where there are more towers, the relationship would be easier to observe in dense areas
and weaker in less dense areas.

To test for this possibility, we generate synthetic grid squares at larger levels of aggre-
gation. The nonoverlapping tiles begin with edge length of  which is the original  m
aggregation, edge length of  is twice that at  m, and doubling accordingly up to  by
 grid squares. Figure (b) shows the change in log population relative to log call volume
with points colored by their level of aggregation and a LOESS curve with % confidence
intervals. If the relationship were only scale driven, larger aggregations with population
above  persons should be distributed around the  degree line of proportionality one.
Instead, each level of aggregation shows a hook pattern, shifting to a proportionality of 
above some population size except for very large aggregations which lie almost entirely
on the  degree line. This relationship supports the view that, regardless of aggregation,
there is something different about measurements from sparse areas. It also demonstrates
why other studies depending on larger levels of aggregations would show near proportion-
ality averaging over the difference between kinds of areas.

That the estimated slope in () is not significantly different from  (above a relatively
small threshold) justifies the use of a simple model in which wi ∝ pi, or equivalently,

pi = mwi, ()

where we have written () with the populations on the right hand side because our goal is
to use call volumes, wi, to estimate populations, pi.

Before fitting this model, that is, before estimating the proportionality constant, m, we
pause to reconsider which call volumes we should use as the predictors. We have five com-
munication types, aggregated to  hour intervals; as Kang et al. found for Harbin [], it
seems likely that some communication types, at some times of day, will correlate more
strongly with population data than others. Figure (a) plots the correlation of each com-
munication type aggregated by hour of the day, with populations at the grid level. Each
type correlates most strongly during the hour from  am to  am, and as with the total
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call volumes, CALLOUT has the greatest correlation, approximately .. Thus we use
CALLOUT from  am to  am for the wi in ().

Figure (b) shows populations plotted as a function of CALLOUT volume from  am to
 am, i.e., a transposed, unlogged version of Figure (a). The red line is the least squares
fit to model (); it has slope . ± .; the RMS error is approximately  persons; and
it has an R of ..

5 Toward real time population estimates
While the next census won’t be available until , telecommunications data combined
with readily available mapping and land cover data can potentially provide highly accurate
and nearly real-time monitoring of population growth and migration. Such data facilitate
standard applications of census data, such as the planning and provision of services, by
producing up-to-date population data in between census years. High-resolution popula-
tion estimates in real-time are especially useful in scenarios that require a time-sensitive
understanding of population distribution and density. For example, emergency planning
utilizes data on physical landscapes and hazards as well as on population to create opera-
tional evacuation plans. Change in the size or distribution of sub-populations impacts the
viability of evacuation plans; up-to-date population data can thus complement traditional
census data to make emergency planning more effective [].

Developing such an estimator requires building a model that has both high predictive
accuracy and generalizes without overfitting the data. Additionally, the above analysis sug-
gests several desirable properties and motivates the need to move away from a simple
ordinary least squares framework. First, because proportionality of calls to population is
approximately linear only above a certain density of population, our model will need to
account for nonlinearities, discontinuities, and nonmonotonic relationships. Second, we
speculate that the proportionality should vary with factors such as urbanity which could
be captured with measures of land use, so the model needs to be able to test for complex
interactions. Third, there is additional information in call activity at other times of day
that might help distinguish between commercial and residential areas, so the model will
need to able look for those signals among hundreds of correlated features.

One method that meets all of these criteria is a random forest regression, which com-
bines the strengths of ensembles, bagging, and nonparametric binary trees []. A random
forest is an ensemble of fully grown decision trees, each fit to different random subsets of
the data and with a random subset of features. For each tree, the data are randomly par-
titioned into a training sample that includes two-thirds of the observations and an out
of sample test set that includes the remaining third. Each tree is then constructed iter-
atively, selecting cut points that partition the training set into increasingly pure subsets
with respect to the outcome variable. Because our data are spatially correlated, we further
partition our data with -fold cross validation, each time holding back a spatially con-
tiguous section of one-tenth of the region []. For each fold, we fit  trees. For variable
importance, we report the median and spread across all  folds. For predictive accuracy,
we report the root mean squared error (RMSE) for predictions made on the spatially con-
tiguous hold out test set for each fold.

We develop several models with results presented in Table  below. The first three mod-
els include one based only on land cover measures, one based only on telecommunication
measures, and one based on a combination of both. Land cover is measured as the per-
centage of the grid square covered by buildings, vegetation, water, roads/pavement, or
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Table 1 Model results: Total population

Model Variables Telecom Land Cover R2 RMSE OOB

Land Cover Only 18 All 0.51 232
Telecom Only 375 All 0.54 227
Combined 402 All All 0.65 200
Combined [Small] 16 10 6 0.66 193
Combined [Tiny] 2 1 1 0.60 212

Figure 8 Total population model (random forest, top 16 predictors, Combined [Small] model).
(a) Residuals in number of persons for true population under 100 and in percent error by true population over
100. (b) Boxplot of permutation importance for features across each of 10 spatially contiguous holdout test
sets during cross-validation.

railroads and measured at three different levels of spatial aggregation,  × ,  × , and
 ×  grid squares. The telecommunications measures include each of the five activities
broken down by hour of day and again measured at three different spatial aggregations. In-
dividually, both the land cover measures and telecom measures have comparable accuracy
with a RMSE of  persons and  persons. Combining the two results in a substantial
% reduction in RMSE to  persons.

A fourth model is a subset of the combined model, keeping only the  most important
variables identified by a procedure introduced by []. Focusing on only a subset of im-
portant variables further improves the out of sample accuracy to a RMSE of  persons.
This is an improvement on the baseline OLS benchmark by %. Figure (a) shows the
prediction accuracy and how it varies by the size of the true population. The model over-
estimates small populations and underestimates larger populations.f The variance is also
larger for less populated areas.

Figure (b) shows the top  predictors ranked by median out of sample permutation
importance which gauges the relative increase in error that would result from introduc-
ing additional noise to that predictor while holding others at their observed values. The
results provide several interesting insights. First, both telecommunications activity and
land-cover measures consistently rank high in importance. Second, telecommunications
activity averaged over a larger  ×  window performs better than the  ×  interpolation.
Third, the top performing telecommunications measures include time windows and ac-
tivities that are not just those that are mostly highly correlated with population but rather
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Figure 9 Predicted population as a function of calls out at 10 am and building land cover from
Combined [Tiny] random forest model. (a) Marginal effects, predicted population setting the variable at a
fixed level and holding the rest of the dataset at their observed values. Shown are the mean prediction (black)
and 95% confidence interval of the mean (red). (b) Joint effects, predicted population varying both calls out
and land cover together.

those that contribute unique information not found elsewhere (e.g. calls out made at  pm,
text messages received at  am, and calls in at  am).

A fifth model includes only the top two predictors: calls made out at  am and building
land cover. Just these two variables are sufficient to provide a RMSE of  persons. To
better understand how they help capture population, Figure (a) shows their marginal
effect and Figure (b) shows their joint effect. Greater call volume out at  am has a clear
positive association with population. In contrast, the percentage of a gridsquare covered
by buildings has a non-monotonic and conditional relationship with population. The most
populated areas are those with both high levels of buildings and high call volume. Areas
with a great deal of buildings (over %) but little calling activity, however, are sparsely
populated and likely commercial or industrial areas.

6 Documenting immigrant populations
According to the National Institute of Statistics (Istituto Nazionale di Statistica), the for-
eign resident population was nearly .% of the total population of Milan on January ,
.g Some of these immigrants form geographically concentrated communities while
others are distributed more evenly throughout the city []. Moreover, some migrants are
irregular (illegal) and thus complicate efforts to compile population data []. The increas-
ing number of immigrants to Italy, both regular and irregular, has led Italy to tighten its
migration and integration policies as well as to institute a number of amnesty programs
in recent decades [].

Consequently, it is important to develop tools to better understand where these regu-
lar and irregular migrants live and the concentration or dispersal of their communities.
Such data is integral for policy makers working to address public health concerns and cre-
ate economic policies [–]. Moreover, irregular migrants are vulnerable to economic
exploitation and human rights abuses because of their legal status. More complete data
may be useful to organizations - like Naga,h the Platform for International Cooperation
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Figure 10 Foreign population model (random forest, top 16 predictors). (a) Residuals in number of
persons for true population under 100 and in percent error by true population over 100. (b) Boxplot of
permutation importance for features across each of 10 spatially contiguous holdout test sets during
cross-validation.

on Undocumented Migrants,i the European Programme for Integration and Migration,j

and more - that work on behalf of these migrants.
As before, we fit a random forest regression with -fold spatially-contiguous cross-

validation. We start with the full set of land use measures, the full set of telecommunica-
tions measures, and include additional measures of each communications activity broken
down by the target country. Again we cull the model, coincidentally also leaving  key
variables. The model has an RMSE of  foreign born persons, and an R of .. The
model tends to over-predict in areas with few foreigners and greatly under-predict the
number of foreigners with populations of  or more, Figure (a). Figure (b) shows
the permutation importance of each variable and highlights the utility of including mea-
sures of international communications. Calls out to other nations, in particular Egypt
and Switzerland, are strong indicators of foreign populations in and around Milan. Other
countries which were flagged as important for some geographic folds but not the entire
region include Peru, Sénégal, and China. Not only do these records indicate where im-
migrant populations live in and around Milan, they plausibly could indicate the specific
ethnic origin.

7 Discussion
We create high-resolution population estimates from telecommunications activity by
showing the correlation between call volume and population in a given area to be scale
invariant above a certain population size. For populous areas, publicly released telecom-
munication records provide a reliable estimate of population with a relatively simple
model. With properly georeferenced raw proprietary call data, the results suggest that the
method could be extended to also track population in less populous areas and at an even
higher spatial resolution than available here. The same analysis can be used to create sub-
population estimates by age, gender, and ethnicity. Thus, we not only create population
estimates in time and space, but develop methods that can be extended to further explore
telecommunication data and its application to the study of population.
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We have also shown, however, that telecommunications activities are most useful in
context, in conjunction with other spatial measures of human activity, tuned to local con-
ditions. Model parameters developed for one region or country would likely be inappro-
priate if applied blindly to another. In each application, a baseline model should be estab-
lished with a recent census. Once a baseline model is established, it will need to be recal-
ibrated over time. As mobile phone market penetration and usage patterns change, the
relationship between telecommunications activity and population will also change. We
envision an inter-census calibration using a very small scale stratified population count
in key calibration regions. Inter-census calibration could also be supported by direct es-
timates of changing market penetration and use patterns as well as additional annually
updated population proxies such as tax records. Further, population estimates are typi-
cally extrapolated based on long term growth rates. How estimates based on real-time
telecomunications measures compare to or improve those estimates is an open question
for future research.
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Endnotes
a We select these classes because they are simple to interpret and broadly applicable across regions. We rely on

recent satellite imagery (rather than older more advanced multi-source estimates) because it minimizes the time
between telecommunications activity and the land cover measurement.

b We train a random forest with 300 trees on a 3 × 3 moving window of a pan sharpened 15 meter resolution rgb
scene. We convert to the LAB color space, and we include an additional three layers with a difference of Gaussian
transformation that highlights edges associated with structures (54 features and 658,430 training examples).
Because the distribution of types in the training examples is unbalanced, we weight each observation by the
inverse of its proportion of all examples. The out of bag error classification error was 4.6%.

c Istituto Nazionale di Statistica: demo.istat.it; http://www.istat.it/it/archivio/104317.
d Source of the Dataset: Telecom Italia Big Data Challenge 2014 now available for public use at

http://theodi.fbk.eu/openbigdata/.
e We further experimented with activity by country code and hour which provided minimal improvement for the two

outcomes studied here.
f This is in part an artifact of the random forest classifier which trades accuracy on observations with a lot of support
for decreased accuracy at extreme values. It could be ameliorated by building an ensemble that includes both
random forests and linear models that are specialized for extrapolating into the extremes.

g Istituto Nazionale di Statistica: demo.istat.it; http://www.istat.it/it/archivio/104317.
h Naga: naga.it.
i Platform for International Cooperation on Undocumented Migrants: picum.org/en.
j European Programme for Integration and Migration: http://www.epim.info/.

Received: 9 September 2014 Accepted: 13 April 2015

References
1. Leviathan’s spyglass: The traditional census is dying, and a good thing too. The Economist (2010)
2. Coleman D (2013) The twilight of the census. Popul Dev Rev 38(s1):334-351
3. Vigdor JL (2004) Community composition and collective action: analyzing initial mail response to the 2000 census.

Rev Econ Stat 86(1):303-312

http://demo.istat.it
http://www.istat.it/it/archivio/104317
http://theodi.fbk.eu/openbigdata/
http://demo.istat.it
http://www.istat.it/it/archivio/104317
http://naga.it
http://picum.org/en
http://www.epim.info/


Douglass et al. EPJ Data Science  (2015) 4:4 Page 13 of 13

4. Singer E, Mathiowetz NA, Couper MP (1993) The impact of privacy and confidentiality concerns on survey
participation the case of the 1990 US Census. Public Opin Q 57(4):465-482

5. Boyle P, Dorling D (2004) Guest editorial: the 2001 UK census: remarkable resource or bygone legacy of the ‘pencil
and paper era’? Area 36(2):101-110

6. Bamgbose JA (2009) Falsification of population census data in a heterogeneous Nigerian state: the fourth Republic
example. Afr J Polit Sci Int J 3(8):311-319

7. Ferrando O (2008) Manipulating the census: ethnic minorities in the nationalizing states of Central Asia. Natl Pap
36(3):489-520

8. Gregory IN, Ell PS (2005) Breaking the boundaries: geographical approaches to integrating 200 years of the census.
J R Stat Soc, Ser A, Stat Soc 168(2):419-437

9. Kayyali R (2013) US Census classifications and Arab Americans: contestations and definitions of identity markers.
J Ethn Migr Stud 39(8):1299-1318

10. Dan Y, He Z (2010) A dynamic model for urban population density estimation using mobile phone location data. In:
The 5th IEEE conference on industrial electronics and applications (ICIEA), 2010, pp 1429-1433. IEEE

11. Girardin F, Vaccari A, Gerber A, Biderman A, Ratti C (2009) Quantifying urban attractiveness from the distribution and
density of digital footprints. Joint Research Centre of the European Commission

12. Kang C, Liu Y, Ma X, Wu L (2012) Towards estimating urban population distributions from mobile call data. J Urban
Technol 19(4):3-21

13. Reades J, Calabrese F, Sevtsuk A, Ratti C (2007) Cellular census: explorations in urban data collection. IEEE Pervasive
Comput 6(3):30-38

14. Krings G, Calabrese F, Ratti C, Blondel VD (2009) Urban gravity: a model for inter-city telecommunication flows. J Stat
Mech Theory Exp 2009(07):L07003

15. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat
Mech Theory Exp 2008(10):P10008

16. Lambiotte R, Blondel VD, de Kerchove C, Huens E, Prieur C, Smoreda Z, Van Dooren P (2008) Geographical dispersal of
mobile communication networks. Phys A, Stat Mech Appl 387(21):5317-5325

17. Calabrese F, Pereira FC, Di Lorenzo G, Liu L, Ratti C (2010) The geography of taste: analysing cell-phone mobility and
social events. In: Pervasive computing. Springer, Berlin, pp 22-37

18. Calabrese F, Di Lorenzo G, Liu L, Ratti C (2011) Estimating origin-destination flows using mobile phone location data.
IEEE Pervasive Comput 10(4):36-44

19. Calabrese F, Colonna M, Lovisolo P, Parata D, Ratti C (2011) Real-time urban monitoring using cell phones: a case
study in Rome. IEEE Trans Intell Transp Syst 12(1):141-151

20. Gonzalez MC, Hidalgo CA, Barabasi A-L (2008) Understanding individual human mobility patterns. Nature
453(7196):779-782

21. Isaacman S, Becker R, Cáceres R, Kobourov S, Martonosi M, Rowland J, Varshavsky A (2011) Identifying important
places in people’s lives from cellular network data. In: Lyons K, Hightower J, Huang EM (eds) Pervasive computing,
vol 6696. Springer, Berlin, pp 133-151

22. Deville P, Linard C, Martin S, Gilbert M, Stevens FR, Gaughan AE, Blondel VD, Tatem AJ (2014) Dynamic population
mapping using mobile phone data. Proc Natl Acad Sci USA 111(45):15888-15893

23. Haklay M, Weber P (2008) OpenStreetMap: user-generated street maps. IEEE Pervasive Comput 7(4):12-18
24. Blondel V, Krings G, Thomas I (2010) Regions and borders of mobile telephony in Belgium and in the Brussels

metropolitan zone. Brussels Studies 42(4):1-12
25. Jiang Z-Q, Xie W-J, Li M-X, Podobnik B, Zhou W-X, Stanley HE (2013) Calling patterns in human communication

dynamics. Proc Natl Acad Sci USA 110(5):1600-1605
26. Chakraborty J, Tobin GA, Montz BE (2005) Population evacuation: assessing spatial variability in geophysical risk and

social vulnerability to natural hazards. Natural Hazards Review 6(1):23-33
27. Breiman L (2001) Random forests. Mach Learn 45(1):5-32
28. Brenning A (2012) Spatial cross-validation and bootstrap for the assessment of prediction rules in remote sensing:

the R package sperrorest. In: IEEE international geoscience and remote sensing symposium (IGARSS), 2012,
pp 5372-5375

29. Genuer R, Poggi J-M, Tuleau-Malot C (2010) Variable selection using random forests. Pattern Recognit Lett
31(14):2225-2236. ISSN 0167-8655

30. Rimoldi S, Terzera L (2012) Ethnic segregation of foreign immigrants in Milan. In: European population conference
31. Strozza S (2004) Estimates of the illegal foreigners in Italy: a review of the literature. Int Migr Rev 38(1):309-331
32. Bonifazi C, Heins F, Strozza S, Vitiello M (2009) Italy: The Italian transition from an emigration to immigration country.

IDEA Working Papers 1-92
33. Quassoli F (1999) Migrants in the Italian underground economy. Int J Urban Reg Res 23(2):212-231
34. Devillanova C (2008) Social networks, information and health care utilization: evidence from undocumented

immigrants in Milan. J Health Econ 27(2):265-286
35. Matteelli A, Volonterio A, Gulletta M, Galimberti L, Maroccolo S, Gaiera G, Giani G, Rossi M, Dorigoni N, Bellina L et al

(2001) Malaria in illegal Chinese immigrants, Italy. Emerg Infect Dis 7(6):1055


	High resolution population estimates from telecommunications data
	Abstract
	Keywords

	Introduction
	Related work
	Description of the data
	An elementary model
	Toward real time population estimates
	Documenting immigrant populations
	Discussion
	Competing interests
	Authors' contributions
	Author details
	Endnotes
	References


