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Abstract
The expanding availability of high-quality, large-scale data from the realm of culture
and the arts promises novel opportunities for understanding and harnessing the
dynamics of the creation, collaboration, and dissemination processes - fundamentally
network phenomena - of artistic works and styles. To this end, in this paper we
explore the complex network of western classical composers constructed from a
comprehensive CD (Compact Disc) recordings data that represent the centuries-old
musical tradition using modern data analysis and modeling techniques. We start with
the fundamental properties of the network such as the degree distribution and
various centralities, and find how they correlate with composer attributes such as
artistic styles and active periods, indicating their significance in the formation and
evolution of the network. We also investigate the growth dynamics of the network,
identifying superlinear preferential attachment as a major growth mechanism that
implies a future of the musical landscape where an increasing concentration of
recordings onto highly-recorded composers coexists with the diversity represented
by the growth in the sheer number of recorded composers. Our work shows how the
network framework married with data can be utilized to advance our understanding
of the underlying principles of complexities in cultural systems.
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1 Introduction
Networks have been used extensively in recent years for characterizing and modeling intri-
cate patterns found in various social, technological, and biological complex systems orig-
inating from the functional and dynamical interdependence between their components.
The methodology is expanding its horizon, being eagerly adopted in new fields such as cul-
ture for exploring novel answers to new and long-standing issues [–]. In broad terms,
the potential of the network framework for understanding culture originates from the ob-
servation that the creation and transmission of cultural products are essentially network
phenomena. Networks, therefore, may lead to a new fundamental understanding of the
complex nature of culture.

There are several interesting questions one can explore regarding such ‘network in cul-
ture’ - e.g., How does it evolve and change over time? Who are the most prominent or
popular artists, and how do we measure their importance? How do the different styles
combine to produce cultural products? How does information flow over network ties? []

© 2015 Park et al.; licensee Springer. This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made.

http://dx.doi.org/10.1140/epjds/s13688-015-0039-z
mailto:juyongp@kaist.ac.kr


Park et al. EPJ Data Science  (2015) 4:2 Page 2 of 15

- the answers to which would contribute to deepening our understanding of culture and
the arts.

There have been several notable works that highlight the importance of networks on
understanding various issues in culture. Suárez, Sancho and de la Rosa [] analyzed the
linkage patterns from the data of , artworks from Spain and Latin America with re-
spect to genre and theme, identifying religious theme to be a dominant factor connecting
the paintings. Gleiser and Danon [] studied the topology and the community structure
of the collaboration network of Jazz musicians, uncovering the presence of communities
based on the locations of the bands correlated with the racial segregation between the
musicians. Park et al. [] compared two networks of contemporary popular musicians -
one representing the collaboration history of the musicians, and the other representing
musical similarities as judged by human experts - finding that the significant topological
differences are related closely to the nature of the connections. Salganik et al. [] studied
the role of social influence and success of cultural products. They found that social influ-
ence has a significant effect, elevating the inequality and the unpredictability of success.
Uzzi and Spiro [] investigated the small-world property of the network of the creators
of original Broadway musicals that reflect the level of their cohesion and its impact on the
success of the musicals. They found that cohesion had a positive impact up to some point,
but began to impede the creativity when it becomes too large. The characteristics of a sys-
tem and growth or evolutionary dynamics are deeply intertwined []. This is likely to be
the case for cultural system as well, and grasping the underlying growth principles may
need a better understanding of their nature. This line of thinking is behind the work of
Jeong et al. [] who applied network evolution models to the movie-actor network. Re-
cently in the field of music, Serrà et al. [] constructed a time-varying network of pitch
transitions in contemporary western popular music (from  to ) and analyzed the
degree distributions of pitches, pointing out the limited use of various pitch transitions.

In this paper we analyze the co-occurrence network of western classical composers con-
structed from the comprehensive data set of CD recordings. Using the network frame-
work, we try to shed light on the following specific questions in order: Who are the promi-
nent composers? What are the driving force behind composers being co-featured on a
common CD? Can we characterize the temporal growth of the network and the com-
posers? We start by measuring the fundamental network properties that give us a bird’s-
eye view of the general features of the network, including the size, clustering coefficient,
assortativity, degree distribution, centralities, and community structure. The centralities
identify influential composers with varying artistic styles, while the positive assortativity
shows that period designations and artistic styles are the main driving force behind co-
featured composers. This is explored further using the community structure of the com-
posers. We characterize the growth of the composer-CD network by way of the temporal
evolution of the bipartite degree distribution, and how it can be mapped to a superlinear
preferential attachment model. It also allows us to forecast the future of the landscape
of the composer network, where the growths of the degrees of prominent composers are
accelerating and accordingly the recordings are becoming increasingly concentrated on
those already well established, an effect similar to the so-called urban-scaling laws, where
existing cultural centers win out over new centers [, ].
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Figure 1 Construction of the network from data, and backbone of the composer network. (A) The
network representation of ArkivMusic data. The association between the CDs and composers visualized as a
bipartite network (left). One-mode projection of the bipartite network onto the set of composers by
connecting composers when they are associated with a common CD (right). (B) The composer-composer
network backbone, projected from the CD-composer network, reveals the major component of the network.
The node sizes represent the composers’ degrees, and the colors represent their active periods (violet -
Baroque, pink - Classical, red - Romantic, orange - Modern). Serrano’s [15] algorithm was used to extract the
backbone. (C) The cumulative distributions for the bipartite degree q, the number of CDs in which a
composer was featured (blue), and the projected degree k, the number of composers with whom a composer
was co-featured on at least one CD (red). Both exhibit a right-skewed behavior.

2 Data and network construction
We utilized two online data resources: ArkivMusic (http://www.arkivmusic.com), an on-
line music retailer, and All Music Guide (http://www.allmusic.com), a comprehensive mu-
sical information provider. As of , ArkivMusic lists more than , classical music
CDs and its title, release date, and the composers and performers of the music. For this
work we specifically use the title, release date and the composers. As we show in Fig-
ure (A), the data can be represented as a bipartite network composed of two node classes
- CDs and composers - where an edge is drawn when a composer’s pieces were recorded
on the CD. A one-mode projection onto the composer class results in a network solely
of composers in which two nodes are connected if they have been co-featured on a CD
(Figure (A)). Figure (B) shows the so-called network backbone (a scaled-down represen-
tation []). Compilation CDs (a repacked collection of previous released recordings) and
the ones without release dates were weeded out from the data, resulting in , CDs
and , composers for analysis.

3 Topology of the composer network
First we examine the fundamental properties of the composer network to understand its
general features. We then analyze the relationship between the characteristics of con-
nected composers to study how they affect the chances of connection, i.e. becoming fea-
tured on a common recording. We investigate the centralities, the assortativity, and the
community structure of the composer-composer network to answer the question of who
are the prominent composers, and what drives the formation of connection patterns.

http://www.arkivmusic.com
http://www.allmusic.com
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3.1 Fundamental network properties reveal the small-world property, a high
clustering, and wide differences in composer prominence

Many networks exhibit the so-called ‘small-world’ property [], often expressed using ‘six
degree of separation’ in common parlance. Mathematically defined as the mean geodesic
distance (the length of the shortest path) between nodes increasing sublinearly (typically
logarithmically) as a function of the size of the network, it is frequently represented by a
small mean geodesic distance (a geodesic is the shortest path between two nodes. If they
are directly connected, the geodesic distance is ). Technically speaking the two definitions
are unidentical [], although for the purpose of our paper the distinction is not critical.
The mean geodesic distance and the diameter (the longest geodesic) in the largest com-
ponent (set of connected nodes) are . and  for the CD-composer network, and .
and  for the composer-composer network, respectively.

The clustering coefficient C is the probability that two nodes connected to a common
neighbor are themselves neighbors. It is a measure of the abundance of triangles in the
network, and a high value is a hallmark of social networks []. In our composer-composer
network we have C = . compared with the random expectation Crandom = .,
meaning that our network is indeed highly clustered. Such a clustered behavior is deeply
related to patterns of mixing and community structure, which we later discuss in detail.

We now investigate the nodes’ degrees in the network. A node’s degree, the number of its
neighbors, is a type of its centrality, a class of quantities that signify a node’s importance or
prominence determined from the network. The degree is the basic and most intuitive cen-
trality, and is the principal factor behind many network properties []. As such, it can be
useful in understanding the different roles or positions of the composers in our network.
Specifically, in our study we consider two types of composer degrees: The bipartite degree
q in the CD-composer network, and the projected degree k in the composer-composer
network. While closely related, they carry slightly different yet interesting probable inter-
pretations: The bipartite degree would mainly represent a composer’s popularity, while
the projected degree would mainly represent a composer’s versatility or compatibility with
others, likely in terms of musical styles. The nodes’ degrees as a whole can be character-
ized by plotting the degree distributions p(q) and p(k), or the cumulative distributions
P(q) =

∑∞
q′=q p(q′) and P(k) =

∑∞
k′=k p(k′) plotted in Figure (B) on a log-log scale. We note

that both distributions exhibit heavy tails, i.e. a few composers take up the lion’s share
of recordings and composer-composer associations: In the CD-composer network, Wolf-
gang Amadeus Mozart (-) has the highest degree q = ,, approximately 
times the mean q = ., followed by Johann Sebastian Bach (-) with k = ,.
In the composer-composer network JS Bach has the highest degree, k = ,, approxi-
mately  times that of average degree k = ., followed by WA Mozart with k = ,.
For reference, in Table  we show the names of composers with the twenty highest q and
k values. The heavy-tailed degree distribution in Figure (B) tells us that there is a signifi-
cant variation in the composers’ prominence and popularity in the landscape of classical
music, which provides us with an important clue for understanding its nature and how it
would potentially evolve in time, which we discuss in a later chapter.

3.2 Composer centralities reveal the relationship between the network and
composer characteristics

Next, we study further types of composer centralities in the composer-composer network
that capture various ‘flavors’ of a node’s importance in a network.
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Table 1 Top 20 composers for degree, eigenvector, and betweenness centralities

Rank Bipartite degree (q) Projected degree (k) Eigenvector centrality Betweenness centrality

Name Period Name Period Name Period Name Period

1 WA Mozart C JS Bach B JS Bach B JS Bach B
2 JS Bach B WA Mozart C WA Mozart C WA Mozart C
3 Beethoven R Handel B Handel B Handel B
4 Brahms R Brahms R Brahms R Piazzolla M
5 Schubert R Mendelssohn R Mendelssohn R Brahms R
6 Verdi R Debussy M Schubert R Gershwin M
7 Tchaikovsky R Schubert R Debussy M Debussy M
8 R Schumann R Beethoven R Beethoven R Mendelssohn R
9 Handel B Saint-Saëns R Saint-Saëns R Schubert R
10 Wagner R Tchaikovsky R Tchaikovsky R Beethoven R
11 Chopin R Ravel M Ravel M Villa-Lobos M
12 Haydn C Gershwin M Fauré R Ravel M
13 Liszt R R Schumann R R Schumann R Tchaikovsky R
14 Mendelssohn R Fauré R Liszt R Copland M
15 Debussy M Liszt R Chopin R Saint-Saëns R
16 Puccini R Vivaldi B Vivaldi B Vivaldi B
17 Vivaldi B Piazzolla M Rossini R Stravinsky M
18 Dvor̆ák R Rossini R Rachmaninoff M Britten M
19 Ravel M Chopin R Haydn C Hindemith M
20 R Strauss R Verdi R Gershwin M Bernstein M

Each centrality can be interpreted as representing distinct composer characteristics: The bipartite degree represents a
composer’s popularity; the projected degree represents a composer’s compatibility with others; the eigenvector centrality is
a generalization of the degree that considers the quality of connections (e.g. whether a composer tends to be paired with
other prominent composers); the betweenness centrality measures how often a composer acts as an intermediary between
two composers. Periods are abbreviated: Baroque (B), Classical (C), Romantic (R), and Modern (M).

Besides the degree that we have already seen, the Eigenvector Centrality and the Be-
tweenness Centrality (also called the Freeman Centrality after its inventor) [, ] are
widely used. The eigenvector centrality is a generalization of the degree that considers the
‘quality’ of a connection: Being a neighbor to a central node in turn raises one’s own eigen-
vector centrality. The name comes from its mathematical definition as the components of
the leading eigenvector of the adjacency matrix. The betweenness centrality measures how
often a node sits on the geodesic between two nodes, acting as an intermediary (e.g., in
communication). One benefit of investigating different centralities is that while the cen-
tralities are often correlated, significant disagreements can point to unusual aspects of the
network that in turn can lead to a deeper understanding of it. The highest-ranked com-
posers in each centrality are given in Table . The lists do appear correlated, with Spearman
Rank Correlations (SPR) equal to . ± . between degree k and eigenvector cen-
trality, and . ± . between degree k and betweenness. But composers labeled ‘M’
for Modern (the composer’s period, to be discussed later) are ranked significantly higher in
betweenness than in other centralities. It turns out that Modern composers form a tight-
knit group with many connections between them, elevating the betweenness of prominent
Modern composers such as Aaron Copland (-) and Leonard Bernstein (-
) although their degree is significantly lower than those from other periods. In order
to understand the implications of this type of relationship between a node attribute and
network topology, next we review the common period designation in western classical
music and analyze them further.



Park et al. EPJ Data Science  (2015) 4:2 Page 6 of 15

3.3 Common artistic style and period designations in western classical music
As one of the oldest art forms, music has a rich history of academic research and investi-
gation [–]. While not every expert would agree on one single scheme, it is common
to break down the evolution of western classical music into the following several stages by
distinguishable styles [, ] (we follow the convention employed by All Music Guide, all
years are approximate and in CE):

. Medieval (-). The period when primeval shape of musical notation
appeared, along with advances in tonal material, texture, and rhythm. Polyphony
took shape in terms of tonal material []. Notable composers include Guillaume de
Machaut (-) and Francesco Landini (-).

. Renaissance (-). The period of modes and rich textures in four or more
parts blending strands in the musical texture, harmony, and progression of chords
[]. Notable composers include Thomas Tallis (-), William Byrd
(-), and John Dowland (-).

. Baroque (-). The period distinguished by the creation of tonality. During
this period, composers used elaborate musical ornamentation and made changes in
musical notation. Baroque music became more complex and expanded the range of
instrumental performance []. Notable composers include Henry Purcell
(-), Antonio Vivaldi (-), Johann Sebastian Bach (-), and
George Frideric Handel (-).

. Classical (-). The period characterized by a lighter, clearer texture than
Baroque. Variety and contrast within a piece became more pronounced than before,
and melodies tended to be shorter, with clear-cut phrases and clearly marked
cadences []. Notable composers include Wolfgang Amadeus Mozart (-)
and Franz Joseph Haydn (-).

. Romantic (-). The period when music was closely related with
romanticism, the artistic and literary movement in Europe []. Romantic music is
characterized by freedom of form, emotions, individuality, dynamic changes and
nationalism. Notable composers include Ludwig van Beethoven (-), Franz
Schubert (-), Frédéric Chopin (-), Robert Schumann (-),
Franz Liszt (-), and Pyotr Ilyich Tchaikovsky (-).

. Modern (-current). The period characterized by musical innovations in
organizing and approaching harmonic, melodic, sonic, and rhythmic aspects
leading to many novel styles including expressionism, abstractionism,
neoclassicism, futurism, etc. []. The rise of American classical music was also
significant. Notable composers from this period include Claude Debussy
(-), Maurice Ravel (-), Sergei Rachmaninoff (-), Igor
Stravinsky (-), George Gershwin (-) and Leonard Bernstein
(-).

The composer metadata (period and active years) were available for  composers,
leaving us with , edges between those in the composer-composer network. While
accounting for .% of the entire composer group, these are still the most prominent and
significant ones who would be of primary interest; the average bipartite degree for this
group is q = ., nearly twenty times larger than the remainder for which q = ..
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3.4 Assortativity and community structures reveal artistic styles and periods as
the main factor behind connections between composers

The relationship between node characteristics and network topology can be quanti-
fied by the assortativity coefficient for discrete node characteristics [] given by r ≡
∑

i eii –
∑

i aibi

 –
∑

i aibi
, where e = {eij} is a matrix whose element eij is the fraction of edges in

a network that connect a node of type i to one of type j, and ai and bi are the fraction of
each type of end of an edge that is attached to nodes of type i. For the composers’ peri-
ods we have r = . ± ., meaning that composers belonging to a common period
tend to be connected preferentially to one another. The Pearson Correlation Coefficient
(PCC) between connected composers’ active years (the middle point between their birth
and death years) is even higher, with . ± ..

The assortative mixing we see here is intimately related to the existence of communi-
ties or modules in a network. A community is commonly defined as a group of nodes of
a network in which connections are denser than randomly expected or to the rest of the
network. Algorithms for detecting communities have seen significant developments in re-
cent years [–]. We used the Louvain algorithm of Blondel et al. [] on our reduced
network, among many excellent choices. We examined the five largest communities that
accounted for % of the  nodes with known periods. We split Community  further
into two (named A and B) since unlike other communities, Community  was osten-
sibly a mixture of many periods. This leaves us with the six sizable communities shown
in Figure . We find that the communities roughly correspond to the periods introduced
earlier; i.e. Community A to Renaissance and early Baroque, B to late Baroque and Clas-
sical,  to Romantic, and , ,  to Modern (differentiated further among themselves as
presented below). We note that, while in terms of sheer number B contains more Mod-
ern composers, they are rather insignificant compared with others, mainly late Baroque
and Classical (the mean degree of Modern composers in the Community is ., while it
is . for the rest). The notable composers in each community are

• Community A: William Byrd (-, Renaissance) and Henry Purcell
(-, Baroque)

• Community B: Antonio Vivaldi (-, Baroque), Johann Sebastian Bach
(-, Baroque), George Frideric Handel (-, Baroque) from the
Baroque period, and Wolfgang Amadeus Mozart (-, Classical), and Franz
Joseph Haydn (-, Classical) from the Classical period.

• Community : Ludwig van Beethoven (-) and Franz Schubert (-)
who are considered transitional between Classical and Romantic; Robert Schumann
(-, Romantic), Frédéric Chopin (-, Romantic), Franz Liszt
(-, Romantic), Johannes Brahms (-, Romantic), and Pyotr Ilyich
Tchaikovsky (-, Romantic) from Romantic.

• Community : A US-centric Modern community, with two highest-degree Modern
composers being George Gershwin (-, Modern) of Rhapsody in Blue and
Leonard Bernstein (-, Modern) of West Side Story. Scott Joplin (-,
Modern) and Billy Strayhorn (-, Modern), both prominent Jazz composers,
and Richard Rodgers (-, Modern) and Irving Berlin (-, Modern),
both Broadway composers, are also included.

• Community : Another US-centric community. Including the likes of Charles Ives
(-, Modern) of The Unanswered Question, Aaron Copland (-,
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Figure 2 The community structure of the composer-composer network. The five largest composer
communities identified using the Louvain method [37] (covering 6.2% of the composers who account for
60.1% of degrees) correspond well to the established period definitions in classical music history and
musicological literatures. For each community we list its size and the major represented period(s).
Communities 1A and 1B are subcommunities of Community 1, and correspond to the earlier and the later
periods of Medieval and Classical. Community 2 represents the Romantic period, and Communities 3, 4, and 5
represent Modern composers. A closer inspection further differentiates the Modern communities:
Community 3 represents US Jazz and Broadway composers, while Community 4 represents the other Modern
US composers. Community 5 represents the non-US branch of Modern music.

Modern) of Appalachian Spring, Samuel Barber (-, Modern) of Adagio for
Strings, and John Cage (-) of ′′′, this can be said to represent the
th-century American vernacular style of classical music []. More contemporary
US composers, Terry Riley (-current, Modern), Steve Reich (-current,
Modern) and Philip Glass (-current, Modern), are also in this module.
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• Community : Composed of mainly Modern (.%) and Romantic (.%)
composers, it includes transitional figures such as Gabriel Fauré (-,
Romantic), Claude Debussy (-, Modern), and Maurice Ravel (-,
Modern). In contrast with Community , this community represents the non-US
branch of modern music, including Arnold Schoenberg (-, Modern, Austria),
Manuel de Falla (-, Modern, Spain), Béla Bartók (-, Modern,
Hungary), Igor Stravinsky (-, Modern, Russia), Heitor Villa-Lobos
(-, Modern, Brazil), Paul Hindemith (-, Modern, Germany), Francis
Poulenc (-, Modern, France), Ástor Piazzolla (-, Modern,
Argentina), and Luciano Berio (-, Modern, Italy).

That the communities appear to correspond well to periods indicate the existence of
correlation between the two partitions. The overlap can be quantified, for instance, via
the normalized mutual information measure proposed by Danon et al. [, ]. It is given
as Inorm(X ,Y) = I(X,Y )

H(X)+H(Y ) , where X and Y are the partitions of the nodes by community
detection and period designations, I(X, Y ) is the mutual information, and H(X) and H(Y )
are the Shannon entropies of X and Y . Widely used in tests of community detection algo-
rithms, the normalized mutual information equals  if the partitions are identical and  if
the partitions are independent. In other words, in our network of composers, the normal-
ized mutual information is  if the members in each community are completely identical in
periods, and  if they are uncorrelated. The normalized mutual information of our result
using Louvain method is ., indicating a significant level of overlap, as was hypothe-
sized.

Our investigation of the centralities, assortativity, and community structure shows how
large-scale data built primarily for commercial purposes can yield a coherent and useful
picture of the landscape of western classical music. This demonstrates that the quantita-
tive analysis of a large collection of cultural artifacts such as CDs can indeed yield mean-
ingful results, validated by agreements with qualitative musicology. A deeper understand-
ing of the network of artists based on commercial cultural products may help in devising
new ways of approaching the market which can in turn result in larger, more elaborate
commercial data that can further help advance our understanding of the subject.

4 Growth and evolution of the composer network
The classical musical sphere is constantly evolving, with new composers entering the
scene, and old composers gaining further prominence or fading out in popularity. As a
consequence it is interesting to understand the dynamics of the evolution of popularity or
success [].

4.1 Network growth process hints at the uneven growth of oldboys and newbies
The network growth is microscopically driven by the creation (publication) of a new CD,
as it is the only way in which new edges or new composers can be added into the net-
work (see Figure (A)). Since the introduction of CD in the early s, , CDs have
been released, featuring compositions by , composers, with , edges connect-
ing CDs and composers. Here we distinguish two different classes of composers, the ones
first introduced before  (via the older LPs, many of which were re-released as CDs
after ) whom we call the oldboys (OBs), and the others first introduced post-
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Figure 3 Growth and evolution of the composer network. (A) The fundamental process of network
growth. Our network grows when a CD is created (labeled ‘C’, left), bringing new composers (‘6’ and ‘7’)
and/or new edges (dotted) into the projected network. (B) The evolution of the bipartite degree distribution.
As the network grows the bipartite degree distribution converges to a power-law form p(q) ∼ q–γ with
γ = 1.89± 0.01 (solid line). The color of dots indicate the different timestamps (blue - 1990, green - 1995, red -
2000, cyan - 2005, violet - 2009). The plots are cumulative. (C) The growth behaviors of the number of edges
and the degree of six highest-degree composers indicate the predictability of top-ranked composers. The
number of edges in the CD-composer network (black square) and the bipartite degrees of six highest-degree
nodes (colored) show an accelerating growth rate that appears to be quadratic (dotted curves). Assuming this
behavior persists, in 2019 Mozart is projected to have q � 10,264, JS Bach q � 9,211, Beethoven q � 8,119,
Brahms q � 5,162, Verdi q � 4,897 and Schubert q � 4,842. (D) Estimating the non-linear preferential
attachment exponent α . ρ > 0 indicates that the network exhibits a superlinear preferential attachment
behavior, i.e. �(k) ∝ kα with α > 1, where �(k) is the probability that a node with degree k gets connected to
a newly added link. The behaviors are observed for the majority of years (1990-1991, 1994 and 1997-2008),
pointing out the disproportionately heavy concentration of new recordings onto the established composers.

whom we call the newbies (NBs). By this criterion, there are  oldboys and , new-
bies, so that the majority of composers were introduced after the advent of the CD tech-
nology. The popularity of the composers, nevertheless, are clearly skewed in the opposite
direction: The total degree of the oldboys has increased from , in  to , (an
increase of ,) while only , links have been created for the newbies, for mean
degrees of qOB = . and qNB = .. This implies that, while the number of recorded
composers steadily increases by introduction of new ones, the old established ones are
perhaps out of their reach in terms of recordings.

4.2 Evolution of bipartite degree distribution indicates predictability for
top-ranked composers and explains the rich-get-richer phenomenon in
classical music industry

Extending the skewed bipartite degree distribution in the CD-composer network shown
in Figure (B), we now focus on a more detailed figure of the temporal evolution of P(q). In
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Figure (B) we show the degree distribution of five snapshots of the network taken every
five years. The degree distribution approximates a truncated power law that approaches
a true power law (with power exponent γ = . ± .) as the network grows. For com-
parison with another example in culture, in the movie actor network the power exponent
is γactor = .. The highest-degree (most recorded) composers are WA Mozart, JS Bach,
L van Beethoven, F Schubert, and J Brahms throughout the observational period (with
final degrees ,, ,, ,, ,, and ,, respectively). The mean degree of the
rest of the composers stays nearly constant at ., again confirming the significant dis-
crepancy between the ‘major minority’ and the ‘minor majority’ in the network landscape
of classical music.

In Figure (C) we show the growths of the number of edges in the network and the de-
grees of six highest-degree composers. The curves appear to be quadratic (i.e. ∝t, dotted
curves), suggesting a constant acceleration. Although it remains to be seen if the trend
continues, if it does then in the year  WA Mozart would have a bipartite degree of
q � ,, JS Bach would have q � ,, and so forth (see Figure (C) for all six top
composers). Regarding the number of edges, we find that they are becoming increasingly
concentrated between the top-degree nodes: The top % of the nodes in  ( composers
out of ) account for .% of all the degrees, while in  the top % ( composers
of ,) account for .%. These observations tell us that a reasonable growth dynamics
of the network must incorporate at minimum two properties, namely, power-law degree
distribution and the increasing concentration of degrees on the top-degree nodes.

A popular model of a growing network that exhibits a skewed degree distribution (such
as the power law) is the Cumulative Advantage (CA) or Preferential Attachment (PA) [,
]. Our CD-composer network, too, boasts typical features that render PA a reasonable
mechanism of its growth: It has a skewed distribution and a fixed fraction of the high-
degree nodes take up a larger portion of the total degrees as it grows, evidenced by Fig-
ures (B) and (C).

The PA model assumes that the rate at which a node acquires new degrees is propor-
tional to its degree, i.e. dki/dt = �(ki) with �(ki) ∝ ki. This results in a power-law degree
distribution with degree exponent  []. Different �(k) results in different degree distri-
butions [, ]. Often studied is a polynomial form of �(ki) ∝ kα

i where α > . α =  is the
classical PA model. In general, α <  results in a stretched exponential degree distribution,
and α >  results in a more skewed degree distribution than the PA model, a single node
linking to all other nodes asymptotically []. Given the power exponent of our network,
γ � , and the increasing share of the degrees by the top nodes, we estimate that for our
CD-composer network, effectively  < α < , which we show as follows. Given the node
degrees {q}, we calculate the mean degree Eα[q] of the node that will take the next added
edge under �(k) ∝ kα , and also the empirical Edata[q] from data. In Figure (D) we plot
the quantity

ρ ≡ Edata[q] – Eα=[q]
Eα=[q] – Eα=[q]

, ()

which shows that in the majority of years our data sits in the range  < ρ < ., i.e.
Eα=[q] < Edata[q] < Eα=[q]. Our network indeed shows a superlinear preferential attach-
ment behavior, which can explain the degree distribution and the growing concentration
of degree portions on the highest-degree nodes.
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Figure 4 Growth of the composer network and its relation to Heaps’ and Zipf’s laws. (A) The number of
composers grows sublinearly as a function of the number of edges in the network, indicating that
newly-created edges are increasingly attached to pre-existing composers. (B) As the network grows the
rank-frequency plots of the bipartite degree ranks also more clearly follow the Zipf’s law, P(r) ∼ r–b with
b = 1.13± 0.03 (solid line). This is consistent with the correlation between Heaps’ law and Zipf’s law [46].

Table 2 Top 10 pairs of composers for edge weights

Rank Weight Pair

Name Period Active year Name Period Active year

1 680 Giacomo Puccini Romantic 1891 Giuseppe Verdi Romantic 1857
2 613 Beethoven Romantic 1798 WA Mozart Classical 1773
3 417 Giuseppe Verdi Romantic 1857 Gaetano Donizetti Romantic 1822
4 389 Beethoven Romantic 1798 Johannes Brahms Romantic 1865
5 384 JS Bach Baroque 1717 WA Mozart Classical 1773
6 381 Gioachino Rossini Romantic 1830 Giuseppe Verdi Romantic 1857
7 368 JS Bach Baroque 1717 GF Handel Baroque 1722
8 355 Giuseppe Verdi Romantic 1857 WA Mozart Classical 1773
9 352 Maurice Ravel Modern 1906 Claude Debussy Modern 1890
10 350 Franz Schubert Romantic 1812 WA Mozart Classical 1773

The weight of a pair indicates the number of records where they are co-featured. The pairs with high weights belong to the
same period, or have similar active years.

The behavior of the bipartite degree distribution in Figure (B) merits further study.
First, in Figure (A) we show the number of unique composers in the network as a function
of the number of edges in the network. The growth is sublinear, meaning that the rate at
which a new composer is added to the network is smaller than the rate of the increase of
network edges. This is reminiscent of Heaps’ law that shows that the vocabulary grows
sublinearly with the document size []. Lü et al. demonstrated the connection between
Zipf ’s law and Heaps’ law []; we indeed observe Zipf ’s law for our system as well via the
rank-frequency plot of the bipartite degree in Figure (B). Consistent with Figure (B), as
the network grows larger, Zipf ’s law becomes clearer.

The sublinear growth in Figure (A) indicates that new edges are increasingly attached
to pre-existing composers, reflecting the preferential attachment behavior that we dis-
cussed above. An interesting question to ask is between which composers (in the projected
network) the new edges are created. Each added edge between two composers translates
into edge weights (strength), which we believe can also shed on the growth dynamics of
the network. In Table  we list the top ten strongest composer pairs. Here, too, we see
that the newly created edges are placed between composers of similar characteristics: For
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example, the strongest pair is Giacomo Puccini (-) and Giuseppe Verdi (-
); they not only belong to the same Romantic period, but are prominent in a common
musical style, Italian opera. Their active years are nearly identical as well. Another inter-
esting example is the pair of Giuseppe Verdi and Gaetano Donizetti (-). Although
Donizetti does not appear on any list of top twenty influential composers on his own in
terms of network centrality, he shows a drastic rise in prominence thanks to the number of
records shared with a composer (Verdi) with an identical musical style (Romantic Italian
opera) and similar active years. Likewise, other top pairs in Table  either share the same
musical period or show similar active years.

Here we identified two main components of the evolution of the classical composer
networks: growth and attachment. We observe that the power-law degree distribution be-
coming clearer as the network grows, which allows us to forecast the future degrees of the
most recorded composers. We also find an effective superlinear preferential attachment
behavior which can partially explain the observations.

5 Conclusion
In this paper, we studied the network of classical music composers constructed from the
comprehensive recording data from ArkivMusic. We presented the basic properties of
the CD-composer and composer-composer networks, finding that they exhibit charac-
teristics common to many real-world networks, including the small-world property, the
existence of a giant component, high clustering, and heavy-tailed degree distributions. We
also explored the global association patterns of composers via centrality, assortative mix-
ing, community structure analyses, which suggest an intriguing interplay between the net-
works of musicians and our musicological understanding of the western musical tradition
in which both are undoubtedly continuously influencing each other. We then examined
the growth of the CD-composer bipartite network over time. We identified superlinear
preferential attachment as a strong candidate for explaining the increasing concentration
of edges around top-degree nodes and the power-law degree distributions. The growth
of edges and composer degrees exhibits a quadratic growth, allowing us to forecast the
future of several prominent composers. If this behavior persists further into the future, it
would suggest an interesting future research direction regarding the growth dynamics of
the network.

An analytical investigation as ours on new, large-scale data can provide either new
lessons or more rigorous answers to questions that are only partially understood on a
subject matter (in our case classical music), although the boundary between the two can
often be fuzzy: New findings challenge us to find rigorous answers to already known is-
sues, which in turn can bring about novel discoveries about a system. In our paper we have
quantified the overlap (correlation) between manually designated periods and the compu-
tationally identified communities; found the superlinear preferential attachment behavior
and a quadratic growth of network edges; and showed that the growth of the composer
pool is sublinear against the network size, leading to a concentration of edge weights onto
specific composer pairs. These findings pose interesting possibilities and opportunities
for the type of commercial databases such as the one on classical music that we have used
here which, we believe, will play an increasingly important role as a source of many more
academic findings than those presented here. We are living in an era where technology
is greatly facilitating the consumption of culture by the public, evidenced by the increas-
ing adoption of technology by artistic institutions worldwide for public outreach. This
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will lead to larger and higher-quality data that can allow us to learn more about culture
and art. Classical music as presented here is merely one of many cultural subjects for this
kind of investigation, and we believe that it would be interesting to apply our quantitative
methodology to other subjects, e.g. visual arts and literature, and explore their nature in
novel ways. Going further, it would also be interesting to compare different systems and
find universal characteristics of cultural systems as well as those unique to each. We be-
lieve that our work highlights the potential of network science coupled with well-curated
large-scale data in answering many pertinent questions.
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