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Abstract
Modifiable health behaviors, a leading cause of illness and death in many countries,
are often driven by individual beliefs and sentiments about health and disease.
Individual behaviors affecting health outcomes are increasingly modulated by social
networks, for example through the associations of like-minded individuals -
homophily - or through peer influence effects. Using a statistical approach to
measure the individual temporal effects of a large number of variables pertaining to
social network statistics, we investigate the spread of a health sentiment towards a
new vaccine on Twitter, a large online social network. We find that the effects of
neighborhood size and exposure intensity are qualitatively very different depending
on the type of sentiment. Generally, we find that larger numbers of opinionated
neighbors inhibit the expression of sentiments. We also find that exposure to
negative sentiment is contagious - by which we merely mean predictive of future
negative sentiment expression - while exposure to positive sentiments is generally
not. In fact, exposure to positive sentiments can even predict increased negative
sentiment expression. Our results suggest that the effects of peer influence and social
contagion on the dynamics of behavioral spread on social networks are strongly
content-dependent.
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Social networks play an important role in affecting the dynamics of health behaviors and
the associated diseases [–], but identifying the main drivers of health behavior spread
in social networks has been challenging. The observation that health behavior dynamics
follow the patterns of social contacts - e.g. that behaviors are often clustered [, ] and pos-
itively assorted at the dyadic level [, ] - can be explained by multiple processes, the two
most prominent being homophily and social influence. The homophily hypothesis posits
that social contacts are a product of likemindedness, whereas the social influence hypoth-
esis posits that likemindedness is a product of social contacts. Measuring and distinguish-
ing between the effects of homophily and social influence can be difficult in observational
studies [, , ], but is important for the development of health behavior intervention
strategies. Vaccination behavior is a prime example of a health behavior shaping disease
dynamics: outbreaks of vaccine preventable disease are more likely if overall vaccination
rates decline [], or if vaccination refusal is clustered in local communities [, ]. The
continuously evolving public concern about vaccines despite the overwhelming scientific
evidence on the safety of vaccines reflect the need for an increased understanding on how
such sentiments spread over time [].
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Studying the dynamics of health behaviors on social networks can also be resource-
intensive because social network data must often be inferred indirectly, and many health
behaviors are complex and thus difficult to quantify. In recent years, online social media
services have emerged as novel data sources where short messages are publicly shared,
allowing for a detailed picture of the flow of information from person to person in large-
scale networks.We have conducted a study to investigate the temporal dynamics of a read-
ily quantifiable health sentiment - the intent to get vaccinated against a novel pandemic
virus - on an online social network involving more than , people, and more than
 million directed relationships among them. The health sentiment dynamics captured
on this network are given by time-stamped messages published by the online social net-
work users, retrospectively classified as expressing positive, neutral or negative sentiments
about the intent to get immunized with pandemic influenza HN vaccine []. Although
not directly measuring the health behavior, the data were shown to explain a large fraction
of the spatial variance in CDC-estimated influenza A HN vaccination rates. Insofar as
the dynamics of these sentiment have shaped the dynamics of the health behavior, we are
interested in the factors affecting the spread of health sentiments in the social network.
The data were collected from the online social networking service Twitter (www.twitter.

com), where users post short messages (so-called ‘tweets’) of up to  characters that
are then broadcast to their followers. Follower relationships are directional - if user A
chooses to follow user B, user A will receive messages from user B, but user B will not
receive messages from user A. In this case, we call user A a follower of user B, and user
B a followee of user A (although followees are sometimes referred to as ‘friends’ in the
media, we prefer the term followee because it more clearly conveys the direction of the
relationship). Nevertheless, user B may also choose to follow user A, in which case a bidi-
rectional relationship is established, and both users will receive messages from each other.
An application programming interface (API) provided by Twitter allows for the collection
of tweets matching a given set of requirements (e.g., containing a keyword), as well as the
collection of follower and followee relationships among users. After data collection, ma-
chine learning algorithms were employed to label tweets as negative, positive or neutral
with respect to the intent of getting vaccinated against influenza HN. Of the ,
collected tweets, , were classified as relevant to the influenza A(HN) vaccine. Of
those, , were classified as neutral, , as negative, and , as positive. As
our data collection efforts were whitelisted by Twitter (a practice that Twitter has now of-
ficially discontinued), we are confident that our data set represents the entirety of relevant
content. We used an ensemble method combining a naive Bayes and a maximum entropy
classifier with an accuracy of .%. The full methodology is described in Salathé and
Khandelwal  [].
In order to identify significant contributors to the likelihood that a user in the social net-

work will express an opinionated (i.e., positive or negative) sentiment in the future, we use
an approach that estimates the individual effects of numerous covariates related to the
past sentiment expression behavior of users and social contacts as well as the structure
of their social network neighborhood (Figure ). We associate two counting processes,
N+

i (t) and N–
i (t), with each user i to count the number of positive and negative mes-

sages that the user has sent by time t []. This results in multivariate counting processes
N+(t) = [N+

i (t), . . . ,N+
n (t)] andN–(t) = [N–

i (t), . . . ,N–
n (t)], where n is the number of users in

the network. By a mathematical result called the Doob-Meyer theorem [], each of these
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Figure 1 Illustration of covariates related to past sentiment expression behavior of users and social
contacts as well as the structure of their social network neighborhood. Nodes represent users in the
social network (the gray node represents the focal user), arrows represent the follower relationships, and
numbers inside of nodes represent sentiment expression history (numbers of positive and negative
sentiments expressed at given time; neutral sentiments are also counted, though we do not depict them
here). The direction of the arrows represents the direction of information flow. Covariates f1, f2, and f5 are
explained in the article; the remaining covariates are explained in Additional file 1. For instance, the figure
indicates that f1 relates to the number of followees of the focal user and f2 relates to the number of tweets
these followees make, whereas f5 counts reciprocated follower-followee relationships. Other covariates
include information about the followers (as measured by u2), the number of tweets made by the user (u1),
triangle-based covariates that measure certain types of clustering (f6 and f7), and numbers of follower and
followees of the user’s followees (f3 and f4). The figure illustrates that the values of these covariates may
change with the advance of time (e.g. new tweets, new follower relationships, etc.).

(random) counting processes can be decomposed into an integrated conditional inten-
sity process (the signal) and a random process called a martingale (the noise). We denote
the conditional intensity functions for positive and negative tweeting events by user i as
λ+(i, t|β+,Ht–) and λ–(i, t|β–,Ht–), where Ht– is the network right before time t, and β+

and β– are vectors of parameters.
Specifically, ourmodels for the intensity functions λ+(i, t|β+,Ht–) and λ–(i, t|β–,Ht–) are

Cox proportional hazards models [], taking the form

λ+(i, t|β+,Ht–
)
= λ+

(t) exp
[
β+ · s(i,Ht–)

]
()

(similarly for λ–). Here, s(i,Ht–) is a vector of model-specific covariates, such as node
degree and other network statistics deemed appropriate for explaining the intensity of
events, which may depend on both the particular node i and the network history Ht– up
to time t. In our model, each of the network covariates is multiplied by a corresponding
element of one of the beta vectors, much like covariates in a regression model are mul-
tiplied by regression coefficients. Hence, the statistical significance of the estimated beta
coefficients and their signs tell us how the corresponding covariates predict sentiment ex-
pression after correcting for all other covariate effects. Notably, the covariate vectors are
not constant in time; this fact, in addition to the multivariate counting process response,
distinguishes our approach from that of other studies of Twitter data such as that ofGolder
and Macy [], who model multivariate continuous (not counting process) responses as
functions of fixed predictor variables. Our choice of the Cox proportional hazards model
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in equation () is largely due to the wide use of this model not only in the case of indepen-
dently sampled survival-time data forwhich it was originally developed but,more recently,
in the counting process context where observations are not necessarily independent. This
choice entails an assumption that the coefficients do not change over time and that the
covariates influence the intensity function multiplicatively; alternatives such as the Aalen
additive model, discussed below, use different assumptions.
We use exactly the same covariates in both models even though the coefficient vec-

tors are different. The network covariates as summarized in Figure  capture a number
of important aspects of network history Ht– thought to be relevant for the dynamics of
sentiment expression. A detailed description of all the covariates, along with a full list of
the corresponding coefficient estimates and their p-values, is given in Additional file .
Although we do not discuss them in the current paper, alternative methods for modeling
λ+(i, t) exist. For instance, Vu et al. [] discuss the so-called Aalen additive model for a
similar situation, in which the effects of the covariates s(i,Ht–) are additive, rather than
multiplicative, and the coefficients β+ and β– may be assumed to change over time.
The coefficient vector β+ inmodel given by equation (), along with the vector β– corre-

sponding to the analogous model for negative tweeting intensity, is estimated using max-
imum partial likelihood. This is standard practice for Cox proportional hazards models,
whose partial likelihood functions do not suffer from multi-modality due to the fact that
the log-partial-likelihood is concave [] withmaximizers known to have desirable statisti-
cal properties [, ]. However, the computations are difficult in the present case because
of the size of the dataset. Thus, we employ the computational innovations for caching the
time series of network statistic updates outlined in Section . of Vu et al. []. Using
standard statistical theory for the counting process approach to the Cox model [, ],
we may also obtain confidence intervals for each coefficient. These confidence intervals
do not take into account the error introduced by the possible misclassification of the sen-
timent expressed in each tweet by the automatic classifier we employ. Therefore, we do
not base our statistical inferences on the single set of confidence intervals, but instead em-
ploy a series of random reclassifications of each tweet (the four categories being positive,
negative, neutral, or unrelated to vaccination), based on a smaller set of test tweets used
for calibration and using a method we detail in Additional file . In all,  different ran-
dom reclassifications of every tweet are employed, and each such reclassification leads to
a new realization of the network to which we apply our statistical estimation method. The
resulting profile of  % confidence intervals for every individual coefficient allows us
to examine, in aggregate, the direction of each covariate’s effect as well as its robustness
against the misclassifications inherent in the automatic classification process. Examples
of these sets of confidence intervals are presented in Figures  and  (with more given in
Additional file ).
We base our estimates on only the final  days of the data collection time period in

order to ensure that they are based on a maximally accurate network representation. Net-
work relationships could only be captured once a user had been identified as messaging
about HN vaccination, so cumulative network information improves toward the end of
the data collection period. In particular, we have had to make the simplifying assumption
that all users are in the network for the entire period on which estimates are to be based -
as the exact time a user begins to follow other users’ tweets is not observed - and we found
this assumption to be suspect beyond  days from the end of the data collection period.
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Figure 2 Estimated coefficients of covariates related to social contagion. Each panel shows the means
(circle) and 95% confidence intervals (line) for 200 network realizations, stacked horizontally and ordered by
increasing means for better readability. The left column (A, C, E and G) are estimated coefficients for the
likelihood of negative sentiment expression, the right column (B, D, F and H) are estimated coefficients for the
likelihood of positive sentiment expression. The vertical dotted line is positioned at an estimated coefficient
of zero (i.e. no effect). The percentage numbers in the top left corner of each panel indicate what fraction of
the network realizations yielded statistically significant positive (green) or negative (red) coefficient estimates.
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Figure 3 Like Figure 2, but estimated coefficients of covariates related to homophily.

For the time period of  days, , out of , nodes (.%), and ,, out
of ,, edges (.%) are already observed. Therefore, our choice of  days repre-
sents a balance between the desire to minimize bias due to violations of our simplifying
assumption and the desire to use as much data as possible to improve the precision of
our estimates. We have verified that results based on a -day window were not qualita-
tively different (in terms of sign and statistical significance) than those based on a -day
window, whereas a -day window appears to introduce bias due to violations of the sim-
plifying assumption.
Because our main interest is in assessing the effects of homophily and social contagion

on the health sentiment dynamics in the network, we would like to measure the effects of
both how many opinionated people a user is connected to, as well as how many opinion-
atedmessages a user is exposed to. These two effects are often confounded because on av-
erage, the more people a user is connected to, the more messages a user is exposed to. We
therefore define covariates that separate these two effects as much as possible. A further
important consideration is that users cannot simply be classified as positive or negative in
their overall opinions because over the course of time they might have expressed different
sentiments in numerous tweets. To address this issue, each followee is weighted by the
fraction of opinionated (positive or negative) tweets he or she makes. The following para-
graph gives precise definitions of these three positive-sentiment covariates as employed by
the vector s(i,Ht–) of the model given by equation (). The three corresponding negative-
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sentiment covariates are defined similarly. The full set of covariates, of which there are 
in our full model, is explained in Additional file .
In order to measure the extent to which a user is connected to people expressing posi-

tive or negative sentiments, we define the opinionated neighborhood size of a user to be
the number of followees. The corresponding covariate, f + (i, t) as indicated in Figure , is
defined as

f + (i, t) =
∑

j∈F(i,t)

N+(j, t)
Na(j, t)

, ()

where F(i, t) is the set of followees of i at time t and N+(j, t) and Na(j, t) are, respectively,
the number of positive tweets and the total number of vaccination-related tweets (positive,
negative, or neutral, but excluding any tweets not related to HN vaccination) made by
j before time t. We take the opinionated reciprocal neighborhood fraction of a user to be
the proportion of followees that are reciprocal (i.e., who are also followers), weighted by
the positivity fraction. The corresponding covariate, f + (i, t) in Figure , is defined as

f + (i, t) =


f + (i, t)
∑

j∈F(i,t)

N+(j, t)
Na(j, t)

Yji(t), ()

where Y (t) is the adjacency matrix of the network at time t and thus Yji(t) is the indicator
that j follows i at time t. Finally, we define the average opinionated exposure intensity to
be the weighted number of opinionated tweets by followees, normalized by the sum of the
weights (to minimize the confounding with f + (i, t) as mentioned above). The correspond-
ing covariate is

f + (i, t) =


f + (i, t)
∑

j∈F(i,t)

N+(j, t)
Na(j, t)

N+(j, t). ()

We focus our attention on the six coefficients corresponding to the covariates described
above, i.e., f + (i, t), f + (i, t), and f + (i, t) and their corresponding negative-sentiment covari-
ates. We do not study the remaining  coefficients in the model with the same level of de-
tail, both for the sake of simplicity and because our interest lies primarily in those effects
that relate directly to social contagion. However, it is important that the other statistics, all
of which are explained in Additional file , are included in themodel, since this means that
the six coefficients we discuss are estimated after accounting for the effects of all of the
other statistics. For instance, we account for possible triangle-based clustering effects by
including terms for average number of shared followers (of followees) and average num-
ber of shared followees (of followees); as we mention below, these terms control for some
types of homophily. Readers interested in statistics used in different applications might
compare the statistics used in the citation network examples of Vu et al. [] or the social
network and email examples of Vu et al. [] and Perry and Wolfe [].
The results are summarized in Figures  and , which simultaneously account for two

different types of uncertainty. Error due to selecting a random sample of individuals from
a hypothetical infinite population of potential Twitter users, as represented by the model,
is expressed by the % confidence intervals, whereas error due to misclassifying senti-
ments is captured by the  randomly reclassified samples. The percentages in green
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and red are therefore the proportion of times we could expect our dataset to result in re-
jecting the null hypothesis of no effect and concluding that a positive (green) or negative
(red) effect exists; we may therefore understand these values as bootstrapped probabili-
ties that our dataset will produce these two statistical results. Generally, larger opinionated
neighborhood sizes have an inhibitory effect on the expression of opinionated sentiments
(Figure A-D):While both larger positive and larger negative neighborhood sizes have the
expected inhibitory effect on the expression of the opposite sentiments (i.e., negative and
positive, respectively), they also predict diminished expression of that same sentiment. If
we look at the opinionated reciprocal neighborhood size (Figure ), we see that the effects
are content-dependent, i.e., the effects are different for negative and positive sentiments.
On one hand, larger positive reciprocal neighborhood sizes do not generally have a signifi-
cant predictive effect on the rate of expressing opinionated sentiments. On the other hand,
increasing negative reciprocal neighborhood size has the expected effect of increasing the
likelihood of expressing a negative sentiment, and decreasing the likelihood of expressing
a positive sentiment. Finally, the predictive effects of opinionated exposure intensity are
also content-dependent (Figure E-H).While a range of outcomes are observed in the 
network realizations obtained via reclassifying each tweet’s sentiment (as explained ear-
lier), there is a sizable fraction of outcomes that show unexpected effects. In particular, in
a substantial fraction of cases, being exposed to an increased intensity of positive tweets
is predictive of increased intensity of negative sentiment (Figure G), as well as decreased
intensity of positive sentiment (Figure H). Finally, the past expression of a sentiment by
an individual predicts an increased propensity for that individual to express that same
sentiment again, a finding that is very consistent across all  network realizations (see
Figure S in Additional file ).
It is worthwhile to consider these results in the context of what the statistics are expected

to measure. Our main interest is in identifying the extent to which social contagion and
homophily drive sentiment dynamics within the social network. In an observational study
like the present study, causality cannot be established. Furthermore, disentangling effects
of homophily and contagion is notoriously hard [] because they are often confounded.
Our approach tries to minimize these issues as much as possible. We use the term social
contagion to mean the extent to which exposure to a given sentiment is predictive of fu-
ture expression of that sentiment. Previous studies have focused on binary outcomes such
as the adoption (vs. non-adoption) of a service [, ], and have measured exposure as
the number of social contacts that have adopted the service previously. Our methodology
allows us to consider more complex measures of exposure: For instance, in the present
analysis we measure both the number of social contacts expressing a given sentiment as
well as the intensity with which the sentiment is expressed. Thus, both the opinionated
neighborhood size as well as the average opinionated exposure intensity relate to social
contagion as defined above. Homophily, on the other hand, is assessed by the opinionated
reciprocal neighborhood size of a user, i.e., the weighted number of reciprocal followees,
or followees who are also followers of that user.
The finding that the opinionated neighborhood size generally has an inhibitory effect

on the likelihood of expressing any opinionated sentiment (Figure A-D) is difficult to in-
terpret in the context of a standard contagion framework, because contagion is normally
associated with spread, rather than inhibition. For example, it makes intuitive sense that
a larger number of negative followees should lead to a reduction in the expression of pos-
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itive sentiments. The finding that it also leads to a reduction in the expression of negative
sentiments is harder to interpret, but nevertheless agrees with the general pattern of inhi-
bition.When looking at the average opinionated exposure intensity (Figure E-H), a differ-
ent picture emerges. The results are rather sensitive to misclassification of the messages,
but the most stable result (% of all network realizations, Figure E) is that increased av-
erage negative exposure intensity does predict increased negative sentiment expression,
in line with the expectation of social contagion. Surprisingly, the second most stable re-
sult (.% of all network realizations, Figure G) is that the average positive exposure
intensity does also predict increased negative sentiment expression. Equally surprisingly,
the third most stable result (.% of network realizations, Figure H) is that higher aver-
age positive exposure intensity predicts decreased positive sentiment expression. Taken
together, the results suggest that exposure to negative sentiment is contagious - by which
we merely mean predictive of future negative sentiment expression - while exposure to
positive sentiments is generally not. They also suggest that exposure to increased inten-
sity of opinionated sentiments has on balance led to increased negative sentiment expres-
sion and decreased positive sentiment expression, overall favoring the spread of negative
vaccination sentiments.
The lack of detailed information about the users prohibits us from assessing manifest

homophily, and our analysis is thus subject to the problem of latent homophily which
is generally confounded with contagion []. We assess homophily with the opinionated
reciprocal neighborhood size of a user, which is the weighted number of reciprocal fol-
lowees (i.e., followees who are also followers of that user). Bidirectional follower relation-
ships mean that two users are interested in receiving messages from each other, which
we assume to indicate that the users may share similar interests, which in turn suggests
homophily. To further reduce the confounding effects of homophily and contagion, our
model contains covariates for the number of shared followees and followers. These covari-
ates are expected to control for latent homophily to a certain extent, since homophily is
known tomanifest itself in network clustering [, ]. Our findings suggest that the effects
of homophily, insofar as we can measure it, are content-dependent: the positive recipro-
cal neighborhood size does generally not have significant effects (Figure C and D), while
increasing negative reciprocal neighborhood size has the expected effects of predicting
decreased positive and increased negative sentiment expression (Figure A and B). This
finding further contributes to favoring the spread of negative vaccination sentiments.
Overall, the finding that the effects of various network covariates are strongly content-

dependent suggests that a standard contagion framework might be too constrained to
understand the health sentiment dynamics occurring on this network. By standard conta-
gion framework, we mean the conceptual idea that increased exposure to any given agent
(whether biological or social) will lead to an increased transmission - and predict an in-
creased adoption - of that agent. In such a framework, the expectation is that there is a
positive relationship between exposure and the consequent adoption of whatever it is in-
dividuals are exposed to. In our data, the only effect that corresponds to this pattern is
that increased negative exposure intensity does predict increased negative sentiment ex-
pression. All the other results suggest that increased exposure predicts either a decrease
of the same sentiment expression or an increase of the opposite sentiment expression.
From a public health perspective, the results raise some questions about the design of

health behavior communication strategies. In particular, the notion that increased posi-
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tive exposure intensity predicts increased negative sentiments could be of great concern
if this turns out to be a consistent finding in future studies, since it would indicate that the
level of positive messaging needs to be assessed carefully. Equally worrisome is the notion
that the identified effects overall seem to favor the spread of negative sentiments, but not
the spread of positive sentiments. This suggests that increased attention should be given
to the prevention and control of negative sentiments (particularly if based on rumors,mis-
information, misunderstandings, etc.). A recent study [] has found that the popularity
of documents shared on Twitter decreased significantly faster if the documents contained
more words related to negative emotion, rather than to positive emotion. In general, the
ability tomeasure the dynamics of sentiments on online networks generates opportunities
to dramatically reduce the time lag between communication strategies and the assessment
of the effects of those strategies.
The study framework has a number of limitations that need to be taken into account

when assessing its applicability. First, our study design has been set up to catch expression
of sentiments only (rather than actual vaccination behavior), but users might have been
affected by exposure to sentiments from social contacts without ever expressing these
sentiments themselves. For example, a user exposed to many negative messages may have
been influenced and adopted a negative stance on HN vaccination, but the user might
not consequently have expressed that opinion in the network. Thus, a substantial frac-
tion of actual contagion may have gone unnoticed. Conversely, peer pressure effects may
have driven users to express a certain sentiment online even though they personally hold
a different opinion (and behave differently from what one would expect based on the ex-
pressed sentiment), leading to false positives. Future research should address the question
to what extent health sentiments expressed online overlap with actual health behaviors.
Moreover, our study design ignores the possibility that follower relationships may have
been established because users already share the same opinion on vaccination. While it is
not unlikely that vaccination sentiments can be a contributor to establishing follower rela-
tionships, we believe that overall it had a small effect in the short period of time on which
our analysis is based. Finally, the content of short messages like the ones studied here is
subjective and open to interpretation by the reader of the message. Given the sometimes
strong dependency of the effect on network realizations, this is an important problem that
needs to be addressed in the future.
The dynamics of sentiments and behaviors on social networks is of great importance

in many fields concerning human affairs [], and particularly also in the health domain.
There is an increased understanding that modifiable health behaviors are a key contribu-
tor to health outcomes [], and that health behavior modificationmight be a key strategy
to control major public health issues, both from the perspective of prevention (vaccina-
tion, smoking cessation, diet modification, etc.) and treatment (adherence to treatment
plans, antibiotic overuse, etc.) strategies. The rapid worldwide adoption of online social
network services means that an increasing fraction of (mis-)information diffusion is oc-
curring on these networks. The methods and findings presented here are a small step
towards an increased understanding of these dynamics, demonstrating both the promise
and the challenges associated with these large and often unstructured data sets. In addi-
tion to online experiments [, ], analysis of large-scale, high-resolution observational
data will provide a much better picture of the dynamics of health behavior diffusion on
social networks.

http://www.epjdatascience.com/content/2/1/4
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