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Abstract
This study introduces a comprehensive framework grounded in recurrence analysis, a
tool of nonlinear dynamics, to detect potential early warning signals (EWS) for
imminent phase transitions in financial systems, with the primary goal of anticipating
severe financial crashes. We first conduct a simulation experiment to demonstrate
that the indicators based on multiplex recurrence networks (MRNs), namely the
average mutual information and the average edge overlap, can indicate state
transitions in complex systems. Subsequently, we consider the constituent stocks of
the China’s and the U.S. stock markets as empirical subjects, and establish MRNs
based on multidimensional returns to monitor the nonlinear dynamics of market
through the corresponding the indicators and topological structures. Empirical
findings indicate that the primary indicators of MRNs offer valuable insights into
significant financial events or periods of extreme instability. Notably, average mutual
information demonstrates promise as an effective EWS for forecasting forthcoming
financial crashes. An in-depth discussion and elucidation of the theoretical
underpinnings for employing indicators of MRNs as EWS, the differences in indicator
effectiveness, and the possible reasons for variations in the performance of the EWS
across the two markets are provided. This paper contributes to the ongoing discourse
on early warning extreme market volatility, emphasizing the applicability of
recurrence analysis in predicting financial crashes.

Keywords: Multiplex recurrence networks; Early warning signals; Financial crashes;
phase transition; Phase transition

1 Introduction
Financial crashes, also known as financial crises, are severe and sudden disruptions that
have far-reaching economic and social consequences, which typically involve a significant
and rapid decline in asset prices, a contraction of credit and liquidity, and a loss of confi-
dence. Since the 2008 global financial crisis, there has been a growing concern to propose
models for providing early warning signals of extreme events (crashes), allowing investors
and traders to take pre-emptive action to hedge against significant financial losses and
to prevent a market collapse. In the field of economics, statistical studies on forecasting
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financial crises or crashes offer a quantitative comparison of various methods, such as lo-
gistic regression. However, these studies have mainly focused on using aggregate macroe-
conomic data, such as the growth of equity prices and credit levels [1]. These macroe-
conomic data are often low-frequency and non-public, which presents significant limi-
tations in predicting financial collapses. Meanwhile, mainstream economic models have
been criticized for their failure to accurately account for the frequency of market crashes
or extreme events [2]. In the realm of measuring financial crashes or systemic risk, the
predominant methods primarily utilize volatility models based on stock market returns
or delve into assessing system performance under risk through stress testing. Noteworthy
systemic risk metrics encompass the CoVaR, MES, SRISK, IVRVSRI, and TALIS methods
[3–7]. While these models offer timely and accurate insights into the actual risk conditions
of financial markets, their outcomes are contingent on the efficiency of the securities mar-
ket. Additionally, these models focus more on describing the magnitude of systemic risk
rather than providing effective early warning signals for extreme risks. With the interdisci-
plinary development of nonlinear dynamics, new approaches to economic modeling have
emerged, inspired by statistical physics. The field of econophysics has been established
with the expectation of better describing the evolutionary behavior of markets, includ-
ing financial crashes [8, 9]. Although econophysics has been criticized for using uncritical
statistical methods to depict nonexistent phenomena or the unpredictability of human
behavior [10, 11], there is considerable research value in using a statistical physics per-
spective to study financial crashes for financial systems to interpret and even predict their
evolutionary behavior.

From a view of complex systems, the emergence of financial crashes is associated with
imminent transitions in states [12, 13], and these transitions are often considered phase
transitions of complex dynamical systems. Early warning signals (EWS) generally refer
to the observed critical phenomena that involve sudden and often irreversible changes
in a system’s behavior or state around the tipping points or phase transitions [14–16],
which are expected to detect and predict critical transitions in complex systems such as
ecological, climatological, thermodynamical, and financial systems. Early warning signals
are also conceived of as leading indicators that may occur in non-equilibrium dynamics
before critical transitions, as they may indicate for a wide class of systems if a critical
threshold is approaching [15].

Most EWS are so-called indicators of a loss of resilience [17] such as critical slowing
down (CSD), which refers to a slowing down of the system’s dynamics, as the system
becomes more susceptible to small perturbations and its recovery time after a pertur-
bation increases. CSD can be directly observed in perturbation experiments [16] or be
manifested as a pattern of increasing variance or autocorrelation [18, 19]. Other statis-
tical summary indicators include skewness [20], conditional heteroscedasticity [21], and
mean power spectrum at low frequencies (MPS) are also considered potential detectors
of CSD. The fluctuation of the time series of these CSD indicators has been widely used
in financial systems to detect EWSs of financial crises [22, 23]. These statistical indicators
are often calculated on sliding windows of univariate time series data and tested formally
or informally for trends [18]. But the effectiveness of these tests varies considerably with
data and there is no evidence of the superiority of one indicator over others [24, 25]. Also,
measuring these indicators requires sometimes arbitrary data processing and parameter
selection. Lenton et al. pointed out that the power of lag-1 autocorrelation to detect a
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regime shift is highly uncertain due to the changing methods of data aggregation and de-
trending, the changing sliding window length, and the change of filtering signal bandwidth
[26]. Guttal et al. and Diks et al. found that rising volatility might provide an early warning
sign of financial crises [27, 28]. However, Diks et al. also stated that these CSD indicators
might fail to deliver real EWSs because a univariate analysis approach may not be appro-
priate to model a financial time series, given the complexity of financial markets, which
typically involve multiple variables and parameters [28]. Under the framework of multi-
variate analysis, some other approaches are used to detect EWSs prior to financial crises
such as complex networks and measures of information theory. Squartini et al. affirmed
that the topology of an interbank network undergoes major structural change as a cri-
sis suddenly occurs and the topological precursor of this structural change could be used
as EWSs of the approaching crisis [29]. Works with a similar approach can be found in
Saracco et al. and Joseph et al. [30, 31], but these studies typically describe observed early
warning signals qualitatively rather than quantitatively, which limits their practical appli-
cation. Building on information theory, Quax et al. introduced the concept of information
dissipation length (IDL) as a leading indicator of global instability in dynamical systems
[32]. They found that the IDL steadily increases towards bankruptcy, and then peaks at
the time of bankruptcy. However, the lack of a mechanism for self-organizing systems
presents challenges in constructing related models with sufficient predictive power. Gat-
faoui and Peretti analyzed information spreading patterns in dynamic temporal networks,
where nodes are connected by short-term causality [33]. They observed flickering in infor-
mation spreading before a tipping point occurs. But they found that financial crises occur
far from the identified tipping points. Wang proposed a novel interconnected multilayer
network framework based on variance decomposition and block aggregation techniques
to study the risk correlation between global stock and foreign exchange markets [34]. Em-
pirical evidence demonstrated that the French stock market is the largest transmitter in
the multilayer network. However, the method only provides warnings for the paths of risk
transmission and does not offer accurate predictive tools for the timing of risk occurrence.
These previous studies indicate that detecting EWSs is a challenging task, and it is essen-
tial to continue developing this field.

While there may be various reasons for the limitations of the existing EWS indicators,
one possible explanation is the assumption of weak complexity that dominates main-
stream studies’ treatment of time series. This approach regards stylized facts such as
non-stationarity, non-homogeneity, and long memory in time series data as confound-
ing factors that must be eliminated [35, 36], potentially hindering the detection and anal-
ysis of complex systems. In traditional time series processing, nonlinear phenomena are
often modeled as noise or specific model parameters, such as time-varying parameters in-
volved in time-varying autoregressive models [37] or fractional integration components
in ARFIMA models [38, 39]. Such models have been criticized for limiting dynamic sys-
tems to linear or short time scales [40]. In multivariate analysis, the common practice of
averaging different time series to achieve dimension reduction is also not recommended,
as it overlooks significant nonlinear dependencies among variables [41]. Therefore, Has-
selman proposed the idea of detecting EWSs under the assumption of strong complexity,
which involves using developed analytical methods to analyze time series data that allow
for the presence of non-stationarity and non-homogeneity to quantify the dynamics of
complex systems [40]. To achieve this, he constructed recurrence matrices [42, 43] for
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the time series of different state variables of respondents and obtained the corresponding
directed weighted networks. Then, he constructed the recurrence network in the phase
space of different subsystems into multiple recurrence networks [44] to avoid the use of
brute aggregation or dimension reduction. Hasselman found that sudden changes in the
key indicators, called geometric resilience loss indicators, of the multiplex recurrence net-
works (MRNs) could serve as EWSs before respondents were diagnosed with major de-
pression [40]. In fact, this was not the first try to apply MRNs to analyzing the evolution
of complex systems. Lacasa et al. were the first to introduce the technique of constructing
multiplex recurrence networks based on multiple single-layer recurrence networks [45].
Similarly, Eroglu et al. used key indicators of MRNs to characterize the evolution of veg-
etation dynamics systems [46]. However, their focus was not on EWSs, but rather on the
detection of abrupt changes in these indicators and their correspondence to events. Al-
though Hasselman intended to promote this technique for detecting EWS, he was more
focused on its application in preventing human diseases or psychopathology, which are
based on relatively low-frequency research data [40]. Additionally, the study did not pro-
vide a clear scheme for quantifying the peaks of the indicators of the MRNs. Considering
the strong complexity of financial systems and drawing inspiration from the aforemen-
tioned technique based on the strong complexity assumption, this study aims to employ
MRNs to capture the structural similarity of financial complex systems. And the multidi-
mensional high-frequency financial returns of constituent stocks in the China’s and U.S.
stock markets are used as the main empirical objects. Additionally, the study will propose
quantitative criteria for effectively detecting sudden changes in key MRN indicators.

To the best of our knowledge, this study represents the first attempt to apply indica-
tors of multiplex recurrence networks in the early warning of extreme volatility or finan-
cial crashes in financial systems. The aim of this paper is to provide a quantitative ana-
lytical tool for examining changes in the state of complex financial systems, rather than
qualitatively describing their evolutionary processes. It offers a perspective on consider-
ing financial issues from the perspective of complex system, emphasizing the necessity
of preserving typical characteristics of financial time series under strong complexity as-
sumptions before conducting modelling analysis. This approach can help financial prac-
titioners enhance their capabilities of risk management, timely avoid extreme losses to
some extent. The study aims to answer two main questions: did any financial crash or ex-
treme event occur when the indicators of the multiplex recurrence network change, and
can these indicators serve as quantifiable early warning signals of an approaching crash?
Our empirical results suggest that the answer to both questions is affirmative, achieving
the goal of developing financial risk management from an econophysics perspective. The
remaining sections are organized as follows: Sect. 2 will comprehensively introduce the
process of constructing multiplex recurrence networks and the geometric resilience loss
indicators, incorporating the basic concept of recurrence quantification analysis (RQA).
Section 3 will propose a methodological framework for detecting EWS prior to a finan-
cial crash and introduce a quantitative algorithm for determining whether the indicators
have undergone a sudden change. Section 4 conducts a simple simulation experiment to
demonstrate that MRN and its indicators are suitable for identifying different states in
the evolution of complex systems with noise, such as financial complex systems. Section 5
will provide a detailed account of the empirical analysis, including the basic results and a
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comparative analysis of the proposed model with the benchmark. Finally, Sect. 6 provides
concluding remarks and a discussion of the findings.

2 Recurrence and multiplex recurrence network
2.1 Recurrence plots and recurrence quantification analysis
Eckmann et al. first proposed the concept of recurrence plots (RP), which they believed
was a fundamental property of all dynamic systems [47]. RP is a two-dimensional visual-
ization tool developed based on this property. Over the past two decades, RP has devel-
oped into a nonlinear method for describing complex dynamics [42].

RP is a graphical representation of the recursive states of a dynamic system in its m-
dimensional phase space. A pairwise measurement is performed on all phase space vectors
�xi(i = 1, . . . , N , �xi ∈ �m) regarding their distances to determine whether they are close:

Ri,j = �
(
ε – d( �xi, �xj)

)
, (1)

where �(·) denotes the Heaviside function, while ε represents a threshold for d( �xi, �xj),
and d( �xi, �xj) is the distance between the vectors [42]. The distance measure d( �xi, �xj) can
be determined using various methods, such as spatial distance, string metrics, or local
rank order [42, 48]. In most cases, spatial distance is considered to be the Euclidean norm,
i.e., d( �xi, �xj) =‖ �xi – �xj ‖. Denote R as the binary recurrence matrix and consider Ri,j as the
elements in the matrix. Ri,j is set to 1 if the distance ‖ �xi – �xj ‖ is less than ε, and 0 otherwise.
The phase space trajectory can be reconstructed from the time series {ui}N

i=1 by time-delay
embedding [49]:

�xi = (ui, ui+τ , . . . , ui+τ (m–1)), (2)

where m represents the embedding dimension and τ represents the time delay, and their
appropriate values can be chosen according to [50]. In empirical studies, ε is usually cho-
sen to yield a recurrence rate of 0.05, or as 0.05 times the standard deviation of the original
data [42, 46]. Clearly, the RP has a diagonal line representing the recursion of each point
with itself, and if spatial distance is used as the criterion for recursion, the RP is also sym-
metric. The small-scale features of the RP can be observed using the diagonal and vertical
lines, and Zbilut and Webber introduced Recurrence Quantification Analysis (RQA), a
quantitative description of the RP based on these line structures [51]. It defines measures
of diagonal line segments, recurrence rate, average length of diagonal structures, entropy,
and more [52], offering insights into the nonlinear dynamics of the analyzed system. How-
ever, RQA focuses on identifying recurrence patterns in the time series, which may not
capture the full complexity of the dependence between variables. The empirical section of
the study will provide evidence that RQA may have limitations in describing system tran-
sitions and changes in underlying dynamics and may not offer an intuitive visualization of
higher-order interactions between variables in the system.

2.2 Multiplex recurrence network
Multiplex recurrence networks (MRN) provide a framework for investigating the tem-
poral structure of multivariate time series in a complex dynamical system and allows for
more flexibility in representing their interaction relationship [40], which have been de-
veloped by horizontal visibility graphs [45] and recurrence networks [46]. Specifically, an
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M-layer multiplex recurrence network is constructed from M recurrence networks. For
an M-dimensional time series, M different recurrence networks can be created that have
the same number of N nodes, each of which represents a different time point. And these
networks will form different layers of a multiplex recurrence network. Any two layers are
connected by the global interrelationship between the same time nodes in the two net-
works. To construct a multiplex recurrence network, M different recurrence networks can
be created from an M-dimensional time series, each with N nodes representing different
time points. These networks form different layers of the multiplex recurrence network,
which are interconnected by the non-linear relationship between the same time nodes in
each network.

Consider an M-dimensional time series {s(t)}N
t=1, where s(t) ∈ �m and s(t) = (s1(t), s2(t),

. . . , sM(t)). A recurrence network for the kth component of s(t) can be constructed fol-
lowing Eq. (1) and the corresponding adjacency matrix A[k] = a[k]

ij can be obtained, where
a[k]

ij = 1 (i.e., R[k]
ij = 1) if the ith and the jth vertices in the kth layer are connected, and 0

otherwise. The giant adjacency matrix that describes the multiplex network can then be
expressed as:

⎡

⎢
⎢⎢
⎢⎢
⎣

A[1] IN · · · IN

IN A[2] . . . IN
... IN

. . . IN

IN · · · · · · A[M]

⎤

⎥
⎥⎥
⎥⎥
⎦

, (3)

where IN is the identity matrix of size N . In practice, the multiplex recurrence network
is typically not constructed using the giant NM × NM matrix, but rather by represent-
ing M-layer recurrence networks as vertices connected by their interdependence. Hence,
the MRN will be a weighted network of size M × M. This projection of multilayer net-
works into single-layer networks has been shown to be a superior and efficient approach
compared to other methods that require symbolic processing of time series [40, 45, 46].

A commonly used measure to reflect the non-linear dependence between different lay-
ers is the interlayer mutual information [45]. The interlayer mutual information Iα,β rep-
resents the correlations between the degrees of the same node at layers α and β , where
α,β = 1, . . . , M; α �= β . The detailed definition is defined as:

Iα,β =
∑

k[α]

∑

k[β]

P
(
k[α], k[β]) ln

P(k[α], k[β])
P(k[α])P(k[β])

, (4)

where P(k[α]) and P(k[β]) are the degree distributions of recurrence networks at layer α and
β , respectively, and P(k[α], k[β]) is the joint distribution of the vertices that have degree k[α]

at layer α and degree k[β] at layer β .

2.3 The indicators of MRN
The indicators of MRN provide a quantification tool to characterize information shared
across all layers of the underlying high-dimensional system. The averaged mutual infor-
mation is defined as:

I = 〈Iα,β〉 =
M(M – 1)

2
∑

α>β

Iα,β , (5)



Song and Li EPJ Data Science           (2024) 13:16 Page 7 of 31

which is considered as an important measure of typical information flow between the mul-
tivariate time series [45, 46]. Another common measure to capture the overall coherence
of the original timeseries in the MRN is the Average Edge Overlap ω. It should be noted
that the definition of average edge overlap used here differs subtly from that used by Lacasa
et al.and Eroglu et al. [45, 46]. Their average edge overlap represents the average number
of identical edges across all layers of the multiplex network, while we first calculate the
proportion of edges shared between any two vertices in each layer-pair and then calculate
the average value across all layer-pairs, which is consistent with Hasselman [40]. Then the
Average Edge Overlap ω could be defined as:

ωα,β =
∑

i
∑

j>i(α
[α]
ij + α

[β]
ij )

M
∑

i
∑

j>i(1 – δ0,α[α]
ij +α

[β]
ij

)
. (6)

It is also a global measure of coherence between different layers of MRN, and, together
with the averaged mutual information, forms the most important quantitative indicators
of MRN to detect phase transitions in multidimensional time series systems. When these
two indicators suddenly increase, it indicates a sudden increase in the similarity between
different dimensional variables in the system. This may signify the emergence or impend-
ing emergence of certain system behaviors, thus providing a theoretical basis for its po-
tential use as an EWSs.

Using sample data with dimension M = 3 and length N = 20 as an example, Fig. 1 demon-
strates the essential steps in constructing the MRN. For the single-dimension time series,
the interlayer Recurrence Networks(RNs) of the MRN are individually constructed, with
their topology displayed in subplot (b) of Fig. 1 when the recurrence rate is set to 0.05. Sub-
sequently, based on Eq. (4), the interlayer mutual information between the three RNs is
computed, and a fully connected, undirected, weighted network with three nodes is estab-
lished using the interlayer MI as edge weights, as depicted in subfigure (c). This schematic

Figure 1 Illustration of the process for constructingmultiplex recurrence network based onmultidimensional time
series. Subgraph (a) displays the original time series from three dimensions, marked as A, B, and C. The
recurrence networks from the time series with a threshold of ε, yielding a recurrence rate of 0.05, are shown in
subgraph (b). The multiplex recurrence network with edges weighted by inter-layer mutual information is
displayed in subgraph (c)
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diagram highlights that no supplementary assumptions are necessary for the generation
process or model of the time series during the construction of the MRN. Additionally,
there are no stringent requirements concerning data sample length or addressing issues
related to non-stationarity and autocorrelation. Moreover, when calculating mutual in-
formation, the similarity of the degree distribution of the paired RNs is considered after
converting the series into RNs, rather than relying on the distinct state values of the orig-
inal time series. This approach quantifies the inter-layer information flow of the multiple
networks from the topology of the recurrence network, thereby reflecting the system’s
characteristic behavior with enhanced robustness.

3 Detection of EWSs in the financial system
For the indicators of MRN, several studies have demonstrated through simulations and
empirical analyses that the peaks in their sequences can reveal phase transitions in various
systems, such as financial instability periods [45], climate transitions, or human impact in
ecological systems [46], and shifts in psychological states [40]. This implies that the ab-
solute size of the indicators is not as meaningful as the sudden and significant changes
in these indicators. However, these peaks are usually obtained through visual inspection
rather than measured by quantitative standards, which may raise doubts about the credi-
bility of the results. This study introduces a changepoint detection algorithm with the aim
of determining the quantity and location of indicator peaks, which will lay the founda-
tion for detecting EWSs. Finally, a general framework for monitoring phase transitions in
financial markets and examining potential EWSs before financial crises will be presented.

3.1 Detection of changepoints
The test for multiple changepoints is a general method for detecting changepoints in time
series, which has an advantage over other tests for structural changes in that it does not
require assumptions about the model underlying the original series. This is particularly
suitable for MRN indicators, as the distribution or generative model of the indicators is
unknown. Assume that there is an ordered data series, y1:n = (y1, y2, . . . , yn), and there exists
a changepoint γ , γ ∈ {1, . . . , n – 1}, such that {y1, . . . , yγ } and {yγ +1, . . . , yn} are expected to
be essentially different. Assume that there are p changepoints in the sequence, with their
positions represented by γ1:p = (γ1, . . . ,γp), where each changepoint is represented by an
integer between 1 and n – 1. Define γ0 = 0 and γp+1 = n, and assume that the changepoints
are ordered, such that γe < γf only when e < f . The p changepoints will divide the data into
p + 1 segments, with the eth segment containing the subsequence y(pe–1+1):pe . Each segment
will be characterized by a set of parameters, represented as {θe,φe}, where φe is a set of
(possibly empty) disturbance parameters, and θe is the set of target parameters. Typically,
the number of segments needed to represent the data, i.e., the number of changepoints,
will be detected and the corresponding parameters will be estimated.

In the test of multiple changepoints, the detection procedure can be converted to an
estimation problem of parameters that minimize the following equation:

p+1∑

e=1

[
C(y(γe–1+1):γe )

]
+ μf (p), (7)
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where C is the cost function for the segments, such as negative log-likelihood, and
μf (p)(μ > 0) is a penalty term to prevent overfitting, which increases with p, since for
most cost functions, adding a changepoint always reduces the total cost.

The minimization of Eq. (8) involves two key issues: finding the optimal sequence seg-
mentation method and determining the penalty term. For sequence segmentation, there
are three common algorithms: binary segmentation [53], segment neighborhoods [54],
and the recently proposed pruned exact linear time (PELT) [55]. Binary segmentation first
performs a single changepoint test on the entire data. If a changepoint is found, the data is
split at that point until it cannot be further divided. It is fast, but its speed may come at the
expense of the accuracy of the obtained changepoints [55]. The segment neighborhoods
algorithm was proposed by Auger and Lawrence [54]. The algorithm precisely minimizes
Eq. (8) using dynamic programming techniques, but its computational complexity is much
higher than that of binary segmentation. The PELT algorithm balances the trade-off be-
tween speed and accuracy well. It provides an accurate segmentation similar to the seg-
ment neighborhoods algorithm, but it greatly reduces computational complexity by using
dynamic programming and pruning. If f (p) in Eq. (8) is linear, the minimization problem
can be expressed as follows:

F(t) = min
M,γ1:M

{M+1∑

e=1

[
C(y(γe–1+1):γe ) + μ

]
}

. (8)

In the iteration of the PELT algorithm, the above equation can be represented as:

F(t) = min
M,γ1:M

{M+1∑

e=1

[
C(y(γe–1+1):γe ) + μ

]
}

= min
ζ∈0,...,t–1

{
F(ζ ) + C(y(ζ+1):n) + μ

}
. (9)

The so-called pruning means that if there exists a constant K such that for all ζ < t < n:

C(y(ζ+1):t) + C(y(ζ+1):n) + K ≤ C(y(ζ+1):n), (10)

and for t > ζ , if F(ζ ) + C(y(ζ+1):t) + K ≥ F(t),then at some future time n > t, ζ cannot be the
last changepoint before T .

For the problem of selecting a penalty term, extensive research has been conducted
by many authors. Commonly used penalty terms in literature include μ = 2q (Akaike’s
information criterion [56]); μ = q log n (Schwarz’s information criterion [57]; and μ =
2q log log n [58], where q represents the number of additional parameters involved in
adding a changepoint. More complex penalty methods, such as modified Bayesian in-
formation criterion (mBIC [59]), take into account the length of the segments. Although
these common choices have good theoretical properties, they rely on assumptions about
the data generation process. Unfortunately, modeling assumptions associated with a par-
ticular criterion may be violated in practice [60]. Haynes et al. proposed a new algo-
rithm – Changepoints for a Range of Penalties (CROPS), which utilizes the simple rela-
tionship between the solutions to the penalty-minimization problem and the constraint-
minimization problem to find a set of different penalty values [61]. Each penalty value
corresponds to a different segmentation or excludes certain numbers of changepoints be-
cause no best segmentation that minimizes the penalty cost can be found. In practical ap-
plications, the combination algorithm of PELT and CROPS has been shown to have good
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performance for the detection of multiple changepoints in time series [62, 63]. It does not
require strict model assumptions about the time series itself and has strong applicabil-
ity. Therefore, in this paper, the PELT- CROPS algorithm is employed to detect multiple
changepoints in the indicators of MRN, with technical support provided with the “change-
point” package in R [64]. It is worth noting that when applying the above algorithm to the
indicator sequences of MRNs, the detected changepoints in the indicators are not entirely
equivalent to the local peaks of the indicators. In fact, the changepoints here correspond
to the moment just before the occurrence of the indicator’s local peak or local valley. If
the first part of the empirical evidence can demonstrate a one-to-one correspondence be-
tween the local peaks of the indicators and the periods of financial extreme volatility, then
the changepoints of the indicators can serve as potential early warning signals. Therefore,
the focus of the second part of the empirical analysis will be on observing whether the
changepoints in the indicators occur before the actual onset of risks, and whether most
risks happen within the period alerted by two adjacent changepoints.

3.2 A framework for detecting EWSs using MRNs
The steps for building a general framework for monitoring EWSs in financial markets can
be summarized as follows:

(a) As financial crises often manifest as significant and widespread declines in stock
prices, assume there are M representative constituent stocks in the market and treat their
return data as time series variables for the M dimensions of the system.

(b) Determine an appropriate time window length and sliding step size, construct a re-
currence network for each dimension’s return series within each time window; calculate
the inter-layer mutual information between each pair of recurrence networks; construct
a multiplex recurrence network with M nodes and consider the inter-layer mutual infor-
mation as edge weights.

(c) Calculate the average mutual information and average edge overlap for all MRNs
corresponding to each time window, and thus obtain the series of the indicators.

(d) Apply the method of changepoint detection to series of these two indicators. The de-
tected changepoints only indicate that the segment before and after the changepoint have
significant differences, and the values after the changepoint may be significantly greater
or smaller than the changepoint. Previous empirical results have shown that only sudden
increases in indicator values correspond to system phase transitions. Therefore, this study
considers only upward-trending changepoints as potential EWSs.

(e) Treat the moments corresponding to extreme values of market index returns as the
actual times of financial crises. If the EWSs obtained in step (d) precede these moments,
it can be demonstrated that the general framework to detect EWSs is effective.

4 Simulation experiment
Financial return series often contain a large amount of noise. Before applying the method
based on MRNs to actual market data, we aim to demonstrate through a simulation exper-
iment that the indicators of MRNs can still distinguish different states of complex systems
containing varying degrees of noise, in order to mitigate the impact of noise on the results
in the final empirical analysis. We consider Coupled Map Lattices (CMLs) to generate time
series with nonlinear correlations, in an effort to closely replicate the non-independence
of actual return series. CMLs are simple spatiotemporal chaotic models, and due to their
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high-dimensional dynamical systems, they are widely used in complex spatiotemporal dy-
namics modeling. Generally, their form is:

x[κ]
t+1 = (1 – ζ )f

(
x[κ]

t
)

+ ζh[κ]
t , (11)

where x[κ]
t can be understood as the value of the κth series at time t (κ = 1, 2, . . . , M; M

is the dimension of the multidimensional time series), and hκ
t represents the interaction

generated by the elements of other time series on the element of the κth series at time t.
The first term on the right side of the equation represents the internal chaotic dynamics
mechanism determined by the nonlinear mapping function f (x), while the second term
represents the mutual coupling effect produced by the coupling parameter ζ (0 < ζ < 1).
Generally, CMLs have three types of coupling: local or direct-neighbor coupling, where
h[κ]

t = f (x[κ+1]
t ) or h[κ]

t = f (x[κ–1]
t ); globally coupling mapping, where h[κ]

t = 1
M

∑M
κ f (x[κ]

t );
and intermediate-range coupling, where h[κ]

t = 1
2K+1

∑K
k=–K f (x[κ+k]

t ). In this experiment,
following the practice of Lacasa et al. [45], Eroglu et al. [46], and [71], we treat the M-
dimensional time series as M points on a ring model. As such, the dynamic evolution of
the state of each site x[κ] is determined by the internal chaotic evolution and the average
coupling effect between external neighboring sites, which is a form of direct-neighbor
coupling, given by:

x[κ]
t+1 = (1 – ζ )f

(
x[κ]

t
)

+
ζ

2
[
f
(
x[κ–1]

t
)

+ f
(
x[κ+1]

t
)]

(κ = 1, . . . , M). (12)

As ζ varies, the system is trapped in different attractors, thereby delineating the system’s
various dynamical phases. Hence, we can observe whether the indicators of the MRNs es-
tablished based on multidimensional simulated series can identify these distinct phases.
We select the classic logistic mapping function f (x) = 4x(1 – x) as the internal chaotic dy-
namic mechanism, assuming the system has a dimension of M = 5. The coupling param-
eter ζ is set within the range [0, 0.4] and varies in increments of � = 0.005. By iterating
1000 times, we obtain a simulation series with a dimension of 5 and a length of 1000.
In each experiment, Gaussian white noise (with a mean of 0 and a standard deviation of
0.05, to ensure the magnitude of noise standard deviation is consistent with that of the
standard deviation in the CML sequences) with the same signal-to-noise ratio (SNR) is
added to the five simulated series of the CML system. The signal-to-noise ratios are set
at 2, 10, and 20, respectively, meaning that 50%, 10%, and 5% noise are added. MRNs are
established for the CML systems with and without noise, yielding the indicator values of
MRNs under different coupling parameters. Figure 2 presents the results of state iden-
tification of the coupled system with varying noise levels in one experiment, using the
average mutual information and average edge overlap. It is observed from the figure that
the changes in the indicator series can effectively distinguish the different states of the
system, such as Fully Developed Turbulence (FDT, a phase with incoherent spatiotem-
poral chaos and high-dimensional attractors, where ζ ∈ [0, 0.15] and ζ ∈ [0.19, 0.285]),
periodic pattern selection (PPS, a sharp suppression of chaos conducive to randomly se-
lected periodic attractors, ζ ∈ [0.15, 0.19], and different forms of spatio-temporal inter-
mittency (STI, a chaotic phase with low-dimensional attractors, actually a pseudo-phase
interpolation between FDT and PS, ζ ∈ [0.285, 0.4]) [46, 65, 66]. Subsequently, we employ
the Kruskal-Wallis Rank Sum test to verify the mean values of the indicators within the
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Figure 2 Identification results of the indicators of MRNs for the CML systems with varying degree of noise. Different
colored blocks correspond to the different states of the system determined by the coupling parameters

Table 1 P-values of Kruskal Wallis Rank Sum Test based on simulated coupled systems. The first
column is the number of the experiment. Columns 2-5 correspond to the identification results of the
average mutual information for systems with varying degrees of noise. Columns 6-9 correspond to
the identification results of the average edge overlap for systems with varying degrees of noise

No. Average mutual information Average edge overlap

50 % noise 10 % noise 2 % noise Without
noise

50 % noise 10 % noise 2 % noise Without
noise

Sim 1 7.11 E-05 8.38 E-05 1.02 E-04 5.98 E-04 6.34 E-14 7.63 E-11 4.41 E-12 2.29 E-13
Sim 2 1.68 E-05 5.05 E-04 8.44 E-05 5.98 E-04 9.74 E-14 1.39 E-10 5.86 E-12 2.29 E-13
Sim 3 2.33 E-04 8.87 E-05 8.95 E-05 5.98 E-04 1.33 E-13 8.76 E-11 6.76 E-12 2.29 E-13
Sim 4 2.21 E-06 1.28 E-03 7.94 E-05 5.98 E-04 1.10 E-13 1.48 E-10 3.06 E-12 2.29 E-13
Sim 5 6.06 E-05 8.54 E-05 8.16 E-05 5.98 E-04 1.21 E-13 6.92 E-11 6.13 E-12 2.29 E-13
Sim 6 1.81 E-05 5.27 E-04 4.23 E-05 5.98 E-04 9.62 E-14 9.27 E-11 3.85 E-12 2.29 E-13
Sim 7 6.73 E-05 3.56 E-04 3.82 E-06 5.98 E-04 1.07 E-13 1.62 E-10 5.79 E-12 2.29 E-13
Sim 8 6.73 E-05 1.01 E-03 1.64 E-04 5.98 E-04 9.17 E-14 1.31 E-10 5.45 E-12 2.29 E-13
Sim 9 1.50 E-05 3.83 E-05 3.11 E-05 5.98 E-04 7.40 E-14 1.46 E-10 5.59 E-12 2.29 E-13
Sim 10 1.93 E-04 8.40 E-05 4.21 E-06 5.98 E-04 1.09 E-13 8.01 E-11 5.11 E-12 2.29 E-13

time windows of different states determined by the coupling parameter, to demonstrate
that there is a significant difference in the means of the indicators during different states,
thereby statistically substantiating the role of the indicators in identifying the state tran-
sition of systems with noise. We repeated the above experiment 10 times, and each test
confirms the significant role of the indicators in identification, proving that this result is
insensitive to the initial values in the CML system. Table 1 lists the p-values from the tests
based on simulated systems with different noise, all of which are far less than 0.05. Thus,
this simulation experiment demonstrates that the indicators of the multiplex recurrence
networks are still applicable to complex systems with noise, laying a theoretical foundation
for their application to financial time series.
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5 Empirical analysis
5.1 Data
This study furnishes empirical substantiation derived from the Chinese and American eq-
uity markets, examining the applicability of the suggested methodology for detecting Early
Warning Signals (EWS) within financial systems. The Shanghai Stock Exchange (SSE)
Composite Index, chosen for its comprehensive representation of diverse industries and
company sizes, serves as the empirical subject for China’s market. This index’s trajectory is
perceived as the market’s prevailing weathervane, signifying investor sentiment and mar-
ket volatility. The Standard & Poor’s 500 Index is employed for the United States market,
given its significance as a gauge of economic well-being, with its fluctuations widely ac-
knowledged as a measure of the overall American equity market. This study considers
the returns of individual stocks in the index as variables of different dimensions of the
market. When selecting stocks, it is essential to ensure that they are all constituents of
the corresponding index within a predetermined historical time window and have data of
the same length. The top constituent stocks are selected based on their market capitaliza-
tion ranking to ensure a high degree of representativeness, while ensuring data integrity.
Adhering to these criteria, 56 equities with relatively exhaustive data are designated to
exemplify China’s market across 56 dimensions, with their historical closing price data
spanning January 3, 2014, to October 30, 2020. Conversely, 44 equities represent the U.S.
market across 44 dimensions, with observed closing price values ranging from January 4,
2016, to December 30, 2022. The Appendix (see Additional file 1) contains Tables A1 and
A2, which specify the constituent stocks. All the data are obtained from Wind. Returns
within this study are characterized as the logarithmic disparity between the closing prices
of two successive observations, expressed as rt = log pt – log pt–1. To account for market
micro-noise and the “often but not too often” sampling criterion, this study employs the
commonly used 5-minute sampling frequency for returns.

5.2 RQA’s limitation for identifying phase transition
Prior to the construction of MRNs for the stock market, it is crucial to distinguish the
differences between MRNs and recurrence quantification analysis (RQA) of multidimen-
sional time series. This study assumes that the underlying dynamical system of individ-
ual stock returns is unidimensional, thereby negating the necessity for phase space re-
construction of the original return series when establishing MRNs or conducting multi-
dimensional RQA. This assumption aims to guarantee equal data length across various
dimensions, as the parameters involved in phase space reconstruction, specifically em-
bedding dimensions and time delay, diverge for each dimensional series. Additionally, the
number of individual stocks is sufficiently large to partially restore the dynamic space of
the system.

For instance, during the RQA of multidimensional time series for China’s stock market,
each temporal point within the system is epitomized by 56-dimensional returns derived
from its 56 constituent stocks. Given a time series length of N , an N × N distance matrix
is computed, with each Euclidean distance predicated on the data from M = 56 dimen-
sions. After setting the threshold ε to achieve a recurrence rate of 0.05, Fig. 3 shows the
recurrence networks with a spiral layout [67] constructed by the daily returns for each year
from 2014 to 2020 and all daily returns from 2014 to 2020, respectively, which reveals the
order of the date nodes and their connectivity. Based on the definition of recurrence, the
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Figure 3 The Recurrence Networks in spiral layout based on the distancematrix of 56 return series of China’s stock
markets in different time horizons. The phase transition can be indicated by the different colors of the vertices,
which are displayed in time order. The vertices in red represent the “no recurrence” condition, the light blue
vertices represent phase 1, and the dark blue vertices represent phase 2. Other conditions are marked by
orange vertices

coordinates in the state space can be considered as the attractor region of the system when
they are close in distance, and the nodes with higher degree in the recurrence network are
likely to be the so-called attractors. Phase extraction, referring to the identification of at-
tractor regions in phase space, is carried out on the created weighted recurrence network.
This process involves locating the node with the highest degree, then finding the node
connected to the initially identified node and continuing to identify the highest degree
node among those not connected to the first identified node. The predetermined number
of phases dictates when this procedure concludes. An isolated node signifies the absence
of state recurrence, while nodes failing to satisfy the phase extraction procedure are la-
beled as “others.” To simplify the differentiation of financial periods, it is presumed that
the system experiences only two phases during its evolution. Consequently, the nodes in
all subgraphs in Fig. 3 are categorized into four groups: “no recurrence,” “phase 1,” “phase
2,” and “others,” each represented by distinct colors. Nevertheless, these four states can-
not correspond to the actual periods of financial system evolution, as no specific variable
defines market evolution. Moreover, when extensive historical data is present, the Recur-
rence Network (RN) plot struggles to clearly depict phase shifts, as illustrated in the 8th
subplot. As a result, Recurrence Quantification Analysis (RQA) findings are challenging
to interpret and are subject to uncertainties contingent upon the number of pre-defined
phases and the time series length. Therefore, despite RQA’s relative maturity and capacity
to describe system dynamics to some extent, it remains arduous to detect extreme finan-
cial crises or provide early warnings effectively.

5.3 Revealing unstable financial periods through MRN indicators
In the empirical analysis, a fixed time window of 5 trading days is used to investigate
whether the MRN indicators can provide insights into financial extreme events (both pos-
itive and negative) or periods of financial instability. MRN is built based on the 5-minute
multidimensional return series within each time window, and the corresponding average
mutual information and average edge overlap are calculated using Eq. (4) and Eq. (5) to
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Figure 4 The time course of the indicators calculated for the Multiplex Recurrence Network based on returns in
China’s stockmarket using a sliding window of 5 trading days: averagemutual information and average edge
overlap. The local peaks are marked in different colors, and the legend on the right lists in detail the time
intervals corresponding to the local peaks and the financial extreme events that occurred in the China’s stock
market during these intervals

obtain the indicator series {Ii}φi=1 and {ωi}φi=1, respectively. Here, φ = � l
5�, where l is the

length of the historical window, and φ denotes the number of non-overlapping unit time
windows that can be derived from the historical window. The segmentation unit of 5 trad-
ing days or 22 trading days is typically used in such studies, corresponding to the trading
length of one week and one month, respectively. Given that shorter time windows pro-
vide higher accuracy when testing whether sudden changes in indicators correspond to
financial extreme events, this study finally adopts a unit time window of 5 trading days. In
Fig. 4, the time course of MRN indicators based on stock returns in China’s stock market is
presented. It is evident from the figure that the average mutual information series exhibits
more volatility than the average edge overlap series, as it has more peaks, but these peaks
are not as pronounced as those of the average edge overlap. The average edge overlap,
on the other hand, has a relatively stable trend, with visible spikes during its peaks. In this
study, the nine unique peaks in the average mutual information and the four distinct peaks
in the average edge overlap are labeled and further examined to confirm whether extreme
financial events occurred in the corresponding time windows. The findings indicate that
all the peaks in the series of average mutual information correspond to periods of financial
instability or crises within the historical window, and these events are not ordinary mar-
ket fluctuations but rather significant shocks that have had far-reaching and wide-ranging
impacts on the market and are etched in the history of China’s stock market. The negative
events revealed by the indicators include the stock market crashes in mid-to-late June and
mid-to-late August 2015, the market collapse caused by the outbreak of the COVID-19
in China in early February 2020, and the linkage effect on China’s stock market caused by
the successive circuit breakers triggered by the U.S. stock market in mid-March 2020. The
positive event revealed by the indicators includes the new high of the SSE Composite In-
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Figure 5 The time course of the indicators calculated for the Multiplex Recurrence Network based on returns in U.S.
stock market using a sliding window of 5 trading days: averagemutual information and average edge overlap. The
local peaks are marked in different colors, and the legend on the right lists in detail the time intervals
corresponding to the local peaks and the financial extreme events that occurred in the U.S. stock market
during these intervals

dex at the end of 2014. Among the peaks of the average edge overlap, three are the same as
those of the average mutual information, revealing the same three periods of financial in-
stability, but ignoring other equally significant financial extreme events. The unique peak
in the average edge overlap corresponds to mid-to-late July 2015, when China’s stock mar-
ket experienced a thousand-stock limit-down, marking the second stage of the so-called
“stock market disaster” in 2015.

Performing the same analysis on the historical returns of the U.S. stock market, Fig. 5 il-
lustrates the correspondence between local peaks in the indicators and historical extreme
financial events in the US. Similarly, most of the local peaks in the average mutual infor-
mation correspond to extreme market shocks, such as the negative impact of Brexit on the
US stock market in late June 2016, the huge rebound in the market after Trump’s inaugu-
ration in early November 2016, and the multiple circuit breakers triggered by the outbreak
of COVID-19 in the US stock market in mid-March 2020. However, compared to the trend
of the average edge overlap in Fig. 4, the time course of average edge overlap in Fig. 5 has
more sharp local peaks and flatter values in other periods. Only two of these local peaks
actually correspond to periods of extreme financial events, which are also revealed by the
average mutual information. The remaining local peaks correspond to periods where ei-
ther no significant financial events occurred or only normal market fluctuations caused
by the uncertainty of Brexit and the new presidential election in 2016, which were not ex-
treme. Interestingly, the average edge overlap also fails to identify the rare financial event
of the U.S. stock market experiencing four circuit breakers in mid-March 2020.

By examining the performance of these two indicators in two typical stock markets, it
can be concluded that both the average mutual information and the average edge over-
lap can reveal to some extent the periods of financial instability in history. This is because
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sudden changes in indicators indicate that the global similarity between multidimensional
returns in the market has reached a maximum within a period, and the system is likely to
experience emergence due to the convergent behavior of individual stocks, leading to a
market crash or strong rebound. Furthermore, the average mutual information is a more
accurate measure than the average edge overlap in capturing extreme events. This is be-
cause edge overlap measures the overlap of edges between any two RNs with the same
nodes, which is essentially similar to linear measures such as correlation coefficients, while
mutual information involves the degree distribution of RNs and is a non-linear measure,
more suitable for capturing the non-linear dependence between inter-layer RNs. More-
over, compared to mature stock markets such as the U.S. stock market, the average mutual
information and average edge overlap perform better in indicating periods of financial in-
stability in emerging markets such as China’s stock market. This is evidenced by the fact
that the local peaks of the average mutual information are more obvious in China’s stock
market and the accuracy of the indication of the peaks of these two indicators is higher.
This may be due to the relatively weaker long-memory and stronger randomness of re-
turns in the U.S. stock market, which weakens the difference in the topological structure
of RNs between periods of financial stability and instability. Finally, it can be found that the
frequency of negative extreme events is higher than that of positive extreme events, which
is consistent with previous research results [68, 69]. It is also worth noting that the time
course of the average mutual information in Fig. 5 raises an important question: is it too
subjective to rely solely on the visual identification of local peaks? This question echoes
one of the motivations of this paper, which is to propose a quantification too to systemat-
ically identify the local peaks of indicators. This will be explained in detail in Sect. 5.5.

5.4 Revealing unstable financial periods through MRN topology
The introduction highlighted one of the benefits of MRN, which is avoiding the rough
aggregation of original multidimensional series for dimensionality reduction. Addition-
ally, the topological structure of MRN enables more in-depth analysis by reverting to the
original dimensions. To investigate differences in the topological structures of MRNs cor-
responding to various periods, this study seeks to employ the maximum spanning tree
(MST) algorithm. Although the minimum spanning tree algorithm is a common algo-
rithm for analyzing network topology, its goal is to find a tree with the minimum sum of
edge weights in a weighted undirected connected network, where a tree in a graph con-
tains υ vertices of the network but only includes υ – 1 edges to connect all vertices. This
algorithm is typically used to allocate resources under a fixed budget, where the weight of
the edges emphasizes loss or cost. Conversely, the maximum spanning tree algorithm aims
to find a tree that generates the maximum sum of edge weights, which is more relevant
to the focus of this study. In this paper, the weight of the MRN is determined by the value
of inter-layer mutual information. The larger the weight between two vertices, the closer
the connection between layers. By implementing the maximum spanning tree algorithm
on the MRN, the structure of the tree can determine the relative importance of vertices
when the mutual information value reaches its local maximum, reflecting clues to finding
the “central” stocks that have high similarity with most individual stocks. The evolution
of this “central” structure is believed to have some connection with the dynamics of the
financial system.

In the previous section, the peaks of the series of average mutual information revealed
9 unstable financial periods in China’s stock market and 8 unstable financial periods in
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Figure 6 The Maximum Spanning Trees (MSTs) of the corresponding MRNs in China’s stock market. The MSTs on
the left of the time horizon belong to the so-called period of financial instability, while those on the right
belong to the period of financial stability. Each constituent stock is assigned the same color in all the
networks, while the size of a node is proportional to its degree

Figure 7 The Maximum Spanning Trees (MSTs) of the corresponding MRNs in the U.S. stock market. The MSTs on
the left of the time horizon belong to the so-called period of financial instability, while the MSTs on the right
belong to the period of financial stability. Each constituent stock is assigned the same color in all the
networks, while the size of a node is proportional to its degree

the U.S. stock market. Figures 6 and 7 respectively show the maximum spanning trees of
the MRNs corresponding to unstable and stable periods in these two markets, where the
stable periods were randomly selected from the timeline with the same number as unsta-
ble periods. Figure 6 shows that the maximum spanning tree of the 9 MRNs on the left
exhibits a multi-hub structure, with several (greater than or equal to 3) vertices having
high degrees. This also implies that the degree of the maximum-degree vertex is unlikely
to exceed one-third of the total degree, and the maximum-degree vertex during unstable
periods changes over time. In contrast, the maximum spanning tree of the MRN corre-
sponding to the relatively stable periods on the right usually has only 1-2 hubs, indicating
that the degree of the maximum-degree vertex is likely to exceed one-third of the total
degree, and the hubs are relatively stable and do not change over time. Observing the
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structures of the maximum spanning tree from all sliding time windows, it is notable that
sh500109 (Guizhou Maotai) is the vertex with the maximum degree in most trees, while
in some periods, sh603288 (Haitian Flavoring) holds this position. Few other stocks act
as the “central” nodes. As the company with the highest stock price in the Shanghai Stock
Exchange during 2014-2020, the influence of the price fluctuations of Guizhou Maotai is
more extensive than that of other stocks. Similarly, Haitian Flavoring ranks among the top
three in the weighting of the Shanghai Consumer Index, with extensive brand recognition
and market share. Therefore, it is understandable that these two stocks are connected
to most other stocks as the largest hub in most periods of market evolution. However,
when the system enters an unstable period, the topological structure determined by mar-
ket capitalization or market influence breaks down, and more hubs emerge. During these
periods, the vertex with the maximum degree is no longer Guizhou Maotai or Haitian Fla-
voring, but is replaced by sh600808 (China Petroleum & Chemical Corporation Guizhou
Branch), sh601179 (China Western Power), sh601808 (China Oilfield Services Ltd.), and
other stocks that do not have outstanding market capitalization or market share. This
phenomenon indicates that when extreme financial events occur, the original order of
the market is disrupted, leading to a disorderly state within the system. At this time, the
similarity distribution between different stock returns is more uniform, which can be un-
derstood as the emergence of irrational behavior induced by extreme financial events in
the group. The market shows a large number of similar investment behaviors and prefer-
ences, thereby intensifying market price fluctuations and providing a theoretical basis for
emergent behaviors in the system.

Figure 7 illustrates the corresponding results for the U.S. stock market, exhibiting a sim-
ilar phenomenon to Fig. 6 where the MST of the unstable period mostly displays a multi-
hub structure, while the MST of the stable period mainly has 1-2 hubs. In contrast to Fig. 6,
the degree distribution in the MST of the unstable period is more dispersed, which sug-
gests that the sudden changes in the entire system are not driven by the behavior of a few
individual stocks, but by the similar behavior of most constituent stocks in the system. The
hubs in the MST of the stable period also change over time: from March to August 2016,
the hubs were WEC Energy Group, Inc. (WEC) and PPL Corporation (PPL), indicating
the energy industry’s significant position in the system during this period. From Febru-
ary 2017 to July 2019, the hubs were W.W. Grainger, Inc. (GWW) and Stanley Black &
Decker, Inc. (SWK), both of which are renowned industrial supply companies in the U.S.,
signifying that the industry was the primary direction of the U.S. stock market during this
period. In February 2020, before the COVID-19 outbreak in the U.S., Coca-Cola Com-
pany had a strong dependence relationship with most S&P 500 constituent stocks, but
in October, after the outbreak, the constituent stock that had a significant impact on the
market was Humana Inc. (HUM), a company that provides medical insurance and health
management services primarily for people aged 65 and older. This indicates that in the
absence of extreme financial events, the MST topology of the MRN can roughly describe
the evolution process of the U.S. stock market. Furthermore, it reveals that compared to
emerging markets, the maturity of the U.S. stock market is reflected in the fact that the
constituent stocks that dominate market behavior are time-varying.

Based on the analysis above, a straightforward rule is devised to roughly categorize the
MSTs according to their topology and infer the unstable periods of the financial system.
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Figure 8 Market instability periods inferred from the topology of the MRN. The points of different colors indicate
the different classifications of the MSTs of the corresponding MRNs during each unit time window, while the
rectangles of different colors indicate the inferred different risk periods

Specifically, vertices with degrees surpassing one-third of the total degrees in the max-
imum spanning tree are deemed central vertices. For China’s stock market, if: a) one
or more central vertices exist in the MST, and the central vertex is either sh500109 or
sh603288, the corresponding period is considered financially stable without extreme risks;
b) one or more central vertices exist in the MST, and the central vertex is neither sh500109
nor sh603288, the corresponding period is considered uncertain, with potential risks; c)
no central vertices exist in the MST, the corresponding period is considered financially
unstable, with heightened risks. Since the frequency of stocks becoming central vertices
is not markedly distinct during stable periods of the U.S. stock market, the rule for the
market is as follows: a) if one or more central vertices exist in the MST, the correspond-
ing period is considered financially stable without extreme risks; b) if no central vertex
is present, the corresponding period is deemed a period of financial instability with sub-
stantial risk. Figure 8 presents the results of the MST classification of MRNs in different
periods based on the aforementioned rules, as well as the inference results of financially
unstable periods. This extrapolation categorizes periods of uncertainty and risk as being
clustered as periods of financial instability. Most of these periods contain moments when
the average mutual information peaks, which demonstrates that the topology of the MRN
is capable of describing the dynamical evolution of the financial system to a certain ex-
tent. However, this study only proposes a rough classification scheme based on the MST
structure of most MRNs, and its accuracy in revealing real financial extreme events still
needs to be improved compared to the peaks of average mutual information. For example,
under this rule, the period corresponding to the first MST in Fig. 7 is considered to have
no extreme risks, but it actually experienced extreme events. Therefore, when considering
tools that may serve as EWS, this study focuses on the primary MRN indicators.
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5.5 Early warning signals indicated by changepoints of MRN indicators
Based on the first question proposed in this article, Sects. 5.3 and 5.4 provide affirmative
answers from two perspectives, respectively. That is, during financial extreme events, the
indicators or topological structure of the MRN undergo changes, and the indicators of
the MRN, especially the average mutual information, provide clearer and more accurate
indications for periods of financial instability. However, the purpose of this study is not
limited to this, as the present work is more like the result of an in-sample test, and the
practical application of the MRN has not been realized yet. The second question proposed
focuses on whether these MRN indicators can be employed as potential EWSs to timely
warn against future risks. This section will analyze and discuss this question.

The analysis in the previous section indicates a one-to-one correspondence between
sudden changes in MRN indicators and financial extreme events. However, the so-called
peaks are obtained from observation rather than through some quantitative standards.
Additionally, because the unit time window used is 5 trading days, even if it can be demon-
strated that an event did occur during this period, it cannot be confirmed whether the sud-
den change of the indicator occurred before or after the occurrence of the events. If it is the
former, the likelihood of using MRN indicators as EWSs is significantly reduced. The key
to verifying whether MRN indicators have EWSs functionality lies in two steps. First, con-
structing MRNs for a smaller time scale, such as one trading day. Considering that there
are fewer high-frequency returns in a day and that the nonlinear correlation changes be-
tween constituent stocks may show signs of change in a previous period, a rolling window
approach with a fixed window length of 5 trading days and a sliding step size of 1 day
will be used. Calculate the MRN indicators for each rolling window and obtain their time
series of {I ′

i}φ
′

i=1 and {ω′
i}φ

′
i=1, where φ′ = l – 4. Using the data from the U.S. stock market

as an example, I ′
1 represents the average mutual information for January 11, 2016, which

is based on the 5-minute returns from January 5, 2016, to January 11, 2016. Secondly, ap-
propriate quantitative tools will be used to detect sudden changes in the obtained series of
indicators. The PELT-CROPS algorithm mentioned in Sect. 2 will be employed to find the
changepoints. The 99.5th percentiles (positive and negative) of the returns of the market
indices (SSE Composite Index and S&P 500 Index) in the historical window are regarded
as the thresholds. When positive returns exceed the threshold or negative returns are less
than the threshold, it is considered that an extreme financial event occurred on that day.
In particular, the timing of a crash in the empirical work is defined as the moment when
negative returns exceed the certain threshold. This study will, therefore, focus on exam-
ining the changepoints of the rolling window MRN indicators to provide early warning of
extreme financial events, particularly those that are negative in nature.

For {I ′
i}φ

′
i=1 and {ω′

i}φ
′

i=1, PELT-CROPS traverses a certain range of penalty terms to deter-
mine a relatively optimal segmentation scheme for the series. Figure 9 displays a diagnostic
graph based on different indicator series in two markets. The graph depicts the trend of
penalty values as the number of changepoints increases. When the curve becomes smooth
after a certain point, the number of changepoints corresponding to that point is consid-
ered to be the relatively optimal choice. Therefore, the optimal number of changepoints
for {I ′

i}φ
′

i=1 and {ω′
i}φ

′
i=1 in China’s stock market are 24 and 21, respectively, and the indicator

series are divided into 25 and 22 segments. In the U.S. stock market, the optimal number
of changepoints for {I ′

i}φ
′

i=1 and {ω′
i}φ

′
i=1 are 35 and 10, respectively, and the indicator series

are divided into 36 and 11 segments. The last point of each segment is regarded as the
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Figure 9 Diagnostic plots of the number of changepoints in the one-step rolling indicator series.When the curve
becomes smooth after a certain point, the number of changepoints corresponding to that point is
considered to be the relatively optimal choice

changepoint, indicating that a sudden change will occur after the changepoint, and it is
this change that makes adjacent segments fundamentally different. In terms of the con-
struction of average mutual information and average edge overlap, larger values of them
indicate a higher similarity between layers in the MRN from a global perspective. The re-
sults of the previous two sections also suggest that the sudden increase in similarity corre-
sponds to the emergent behavior of the system. Therefore, for all detected changepoints,
if the mean value of the segments after the changepoint is higher than that of the segment
where the changepoint is located, it is believed that the changepoint releases a signal indi-
cating that the indicator will undergo an upward mutation, and a financial extreme event
is likely to occur in the period after this signal. Such changepoints are considered poten-
tial EWSs in this paper, while the remaining changepoints are not within the scope of the
main analysis.

Figure 10 displays the MRN indicators of rolling windows in China’s stock market. The
red dots in the figure are identified as EWSs, while the blue dots represent actual extreme
returns. The first segment adjacent to the red dot is considered as the predicted period of
financial instability. From the figure, it can be seen that EWSs based on average mutual
information have a good early warning effect on extreme financial events, and only two
extreme events were not predicted in advance: the circuit breaker that occurred on January
4, 2016, the first trading day of 2016 and the first day after the New Year holiday. This may
be because the MRN based on data from the end of 2015 did not capture the evolution
of the system in a timely manner due to the holiday. The second event, caused by the
escalation of the US-China trade war on February 22, 2019, coincided with one of the
changepoints of interest. On the other hand, with regard to the average edge overlap, the
predicted period of instability is short-lived during the time when extreme events occur
frequently. A significant number of extreme events fall outside the predicted period, and
only when the predicted period of instability is longer can sparsely-distributed extreme
events be included.

Figure 11 presents the empirical results in the U.S. market. When the changepoints of
the average mutual information are used as EWSs, there are five extreme events that were
not correctly predicted, while the changepoints of the average edge overlap completely
lost the early warning ability for extreme financial events. Overall, the changepoints of
the average mutual information have higher potential as EWSs for the phase transitions
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Figure 10 EWSs and unstable periods of China’s stock market indicated by changepoints of MRN indicators. The
red dots represent the changepoints of the indicators that are considered as EWSs, while the blue dots
indicate the dates of actual financial extreme events. The color-coded rectangular blocks represent the
different unstable periods predicted by different EWSs. The ellipse on the graph zooms in on the trend of an
indicator at a certain time, serving as a schematic illustration of how the indicator can be used as an EWS in
practical applications. The three colors of the triangle indicate the levels at which the average mutual
information of the latest date may be located, and only the case corresponding to the red triangle indicates
that the average mutual information of the previous day can be considered as a changepoint. Accordingly,
the latest date and a period thereafter will be considered an unstable period with the possibility of extreme
events

Figure 11 EWSs and unstable periods of China’s stock market indicated by changepoints of MRN indicators. The
red dots represent the changepoints of the indicators that are considered as EWSs, while the blue dots
indicate the dates of actual financial extreme events. The color-coded rectangular blocks represent the
different unstable periods predicted by different EWSs
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Table 2 The performance of the EWS indicated by the changepoints of average mutual information.
The first column shows different statistical measures for the prediction results based on the
changepoints of average mutual information, while the second and third columns show the
corresponding results for the China’s stock market and the U.S. stock market, respectively

China’s stock market The U.S. stock market

Actual number of extreme positive events 9 9
Number of events predicted 8 7
Accuracy 88.89% 77.78%
Actual number of extreme negative events 9% 9
Number of events predicted 8 6
Accuracy 88.89% 66.67%
Average lead days of EWSs 36 17

Figure 12 Density plots of the lead days of EWSs in two stock markets

of financial systems, while the average edge overlap does not appear to be a reliable tool.
The possible reasons for the difference in effectiveness between these two indicators have
been discussed in Sect. 5.3.

Table 2 lists the accuracy of predicting extreme events using EWSs, which is the prob-
ability of correctly predicting actual extreme returns, and the average lead time of EWSs
detected in the series of the average mutual information in both China’s and the U.S. stock
markets. The distribution of lead times of EWSs in both markets is illustrated in Fig. 12.
The changepoints of the average mutual information have better performance in predict-
ing extreme events in China’s stock market than in the US stock market, in terms of ac-
curacy. However, the average lead time of the proposed EWSs in China’s stock market is
twice that of the U.S. stock market, and their distribution is more uniform, indicating that
most EWSs occur almost one month before the actual events. In practical scenarios, in-
vestors can measure current and future risk levels by combining current return data with
returns from the previous four days to establish the corresponding MRN and obtain the
corresponding average mutual information. Then, they can re-apply the PELT-CROPS
algorithm to the indicator series containing this new observation for detecting change-
points. The ellipse in Fig. 10 provides a simple illustration, where the triangle represents
the new observation of average mutual information. If the observation is at the level of
the blue or purple triangles, the previous point of the indicator cannot be identified as a
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potential EWS, and it is believed that extreme events are not likely to occur in the current
or subsequent periods. If the observation is at the level of the red triangle, the average
mutual information has undergone a sudden change, and the previous indicator will thus
be identified as an EWS, indicating that extreme events may occur in the current and next
few days. As shown in the density plot of Fig. 12, regardless of the market, the probability
that EWSs will only lead extreme events by one day and the probability of extreme events
occurring immediately at the current moment are both low. Therefore, the EWSs indi-
cated by the changepoints of the average mutual information of MRN do have practical
significance.

5.6 Comparison with benchmark methods
Due to the widely acknowledged empirical results of Guttal et al. on the early warning sig-
nals of financial crashes that may arise from rising volatility [27], we use their method as
a benchmark to compare the strengths and weaknesses of our model from multiple per-
spectives, despite the significant differences between their method and ours in terms of
quantitative techniques and methodology. Guttal et al. mainly identified potential EWS of
financial crashes based on variance, mean power spectrum, and the autocorrelation func-
tion at lag-1, analyzing the price changes of major crashes in the stock market index four
years before their occurrence in history [27]. In order to ensure sufficient data for analysis
before the identified crashes, the construction of the benchmark model is based on the
daily closing prices of the Shanghai Composite Index from January 2, 2008, to October
30, 2020, six years longer than the sample used in previous empirical work. By using the
99.5th percentile of daily returns as the threshold to identify extreme events, we only con-
cerned with whether the crashes that overlap with the negative events identified in the
previous sample were correctly predicted, ensuring the comparability of the results.

Following the methodology mentioned above, we first identify the highest price points
before the crashes and apply a Gaussian kernel smoothing function to remove the long-
term trend of the four-year window (approximately 1000 days) before these highest price
points, obtaining residuals for subsequent analysis. The bandwidth used in the detrend-
ing process is set to bw = 25. The length of the rolling window is set to lrw = 500 and
the corresponding series of the lag-1 autocorrelation, variance, and low-frequency power
spectrum are calculated based on the rolling windows. We then select a segment from the
indicator series and estimate its Kendall’s τ rank correlation coefficient with the sequence
{1, 2, . . . , lkw} to determine whether the indicator exhibited an upward or downward trend
within one year before the crash, where lkw refers to the length of the selected segment.
And we define lkend as the distance from the endpoint of this segment to the highest price
point before the crash. A positive (negative) Kendall’s τ indicates an upward (downward)
trend of the indicator. As this process involves four parameters, detailed sensitivity anal-
ysis is required to ensure the robustness of the conclusions. In the sensitivity analysis, the
selection range of lrw is 375 to 625 with a step size of 10 (26 values), bw ranges from 2.5
to 100 with a step size of 2.5 (40 values), lkw ranges from 175 to 325 days with a step size
of 5 days (31 values), and lkend ranges from 0 to 200 days with a step size of 5 (41 values).
Therefore, for each indicator, a sample distribution of Kendall’s τ can be obtained, which
can indicate whether the selection of parameters directly affects the effectiveness of the
trend of the indicator.

In addition to sensitivity analysis, we are also concerned with whether the estimated
Kendall’s τ before the crash is significant compared to a more distant past. To do this, we
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Figure 13 Early warning signals of SSE for three major crashes of 2015, 2016 and 2020. Each of the two columns
indicates the result corresponding to one of the crashes. The first row presents the price trend of SSE for the 4
years (1000 days) prior to the crash and the corresponding detrended residuals. Autocorrelation at lag 1 does
not show any clear trends, suggesting no EWS for any of these crashes in SSE. However, variance and average
power spectrum show an increasing trend. The kendall-τ histograms for 2016 crash and 2020 crash indicate
that this trend is strong and robust

calculate all indicators and their Kendall’s τ with the same parameter values of lrw, bw, lkw
and lkend for the 1000-day historical window prior to the crash. The p-value determining
the significance of Kendall’s τ is defined as the proportion of values of Kendall’s τ in this
sample that are greater than or equal to the Kendall’s τ of the data within one year before
the crash. If this p-value is less than 0.1, it indicates that the trend of the indicator before
the crash is significant at the 10% confidence level,and has an EWS effect. Otherwise, it
cannot be considered as an effective EWS indicator.

Figure 13 shows the revealed trends of three indicators before the 2015 crash in China’s
stock market, the market meltdown in January 2016, and the crash caused by the COVID-
19 pandemic in 2020. The histogram displays the distribution of the Kendall’s τ obtained
under sensitivity analysis. If the histogram shows an obvious peak close to 1, it indicates
that the corresponding indicator’s trend is robust to changes in parameters and shows a
strong upward trend. It can be seen that the lag-1 autocorrelation does not show any obvi-
ous regular trend before the crashes, while the variance and mean power spectrum show
a significant increase before the crashes. However, the histogram in the second column
shows that this result is largely affected by the parameters in predicting the 2015 crash.
The histograms in the fourth and sixth columns show a peak close to 1, indicating that the
Kendall’s τ of the indicators passes the sensitivity test in predicting the crashes in 2016
and 2020. Further, the p-value needs to be used to determine whether this upward trend
has statistical significance, in order to determine whether the trends of variance and mean
power spectrum can effectively predict these two crashes.

Table 3 lists the relevant results of the lag-1 autocorrelation, variance, and mean power
spectrum for the prediction of crashes, i.e., negative extreme events. Since lkw is set to
0, it means that the lead time of these EWSs before a certain crash is the time distance
between the highest price point before this crash and the exact moment of the crash. Ta-
ble 2 shows that the autocorrelation at lag one cannot be regarded as an effective EWS,
which is consistent with the conclusion of [27]. The increasing trend of variance and mean
power spectrum can partially predict crashes, with the mean power spectrum exhibiting a
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Table 3 The performance of the EWS indicated by trends of indicators. The first column shows
different statistical measures on the prediction results of China’s financial crashes based on the
benchmark indicators, and the second, third, and fourth columns show the corresponding results for
the three benchmarks, respectively

Autocorrelation at lag one Variance Mean power spectrum

Actual number of negative extreme events 9 9 9
Number of events predicted 0 3 5
Accuracy null 33.33% 55.56%
Average lead days of EWSs null 52 43

higher rate of accurate prediction, but still lower than that of the recurrence-based method
proposed in this paper. There may be two possible reasons: first, as mentioned in the in-
troduction section, these indicators are all based on univariate time series, and whether
they can capture the complexity of the financial system remains to be considered; second,
in this type of benchmark model, there is a de-trending process for time series, which
may remove the characteristics such as long-term dependence of the time series. Further-
more, the selection of parameters, such as bw, during the data processing stage, greatly
impacts the final results. The recurrence-based method better retains the weak complex-
ity of the original series and considers the relationships between multidimensional time
series, which can better restore the dynamic characteristics of the system. However, from
the perspective of model construction, the benchmark has lower data requirements and
simpler operations, and may be a more convenient tool for macroscopic observation of
systemic risk.

6 Discussion and conclusion
The objective of this study is to investigate the potential application of multiplex recur-
rence-based analytical methods in monitoring early warning signals (EWSs) of extreme
volatility, particularly financial crises occurring in financial markets. A simple simulation
experiment demonstrates that the average mutual information and average edge overlap
of the MRN can clearly distinguish the different states of a coupled system containing
varying degrees of noise. Empirical results indicate that the peaks of average mutual in-
formation and average edge overlap, are effective in distinguishing different phases of the
system, while their changepoints can be utilized as EWSs to forecast extreme financial
volatility. The main contribution of this paper is to provide a general framework for mon-
itoring EWSs before phase transitions in financial markets under strong complexity as-
sumptions, which includes a quantitative method for detecting the changepoints. This
framework retains the stylized facts of time series data, such as non-stationarity and long
memory, and does not require dimensionality reduction, preserving the maximum com-
plexity of the data. The EWSs detected in this study could capture the phase transition of
the financial market more accurately than existing mainstream EWS indicators, providing
new perspectives and tools for financial risk management.

The empirical results reveal two interesting findings. Firstly, changepoints with an up-
ward trend in the average mutual information of MRN can serve as potential EWSs for
financial crises. Some readers may question how financial crises can be forewarned since
they are usually triggered by extreme external events, which occur instantaneously. This
can be explained in two ways. Firstly, the average mutual information of MRN essentially
depicts the global similarity among the constituent stocks within the financial system.
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When this similarity abruptly increases, it indicates that investors’ expectations about the
future of the market are suddenly highly consistent, implying that the system itself is in a
critical state, and the market can easily collapse if a random disturbance, such as a nega-
tive external event, is encountered. In other words, if the system is not in such a critical
state, i.e., if the expectations of different traders are somewhat different, even if the same
disturbance occurs, it may not lead to a collapse. Secondly, Peters, the author of the frac-
tal market hypothesis, argues that trader heterogeneity, limited rationality, and informa-
tion asymmetry lead to a certain response time to important information or events when
traders trade [70]. Considering the limitations of stock market trading hours, the daily
upward and downward price limits, and the trading aggregation mechanism, the stock
market has a response process to the occurrence of major events. Thus, there is a process
from the release of public information to the emergence of extreme losses in the market,
and the peak of homogeneity within the system may still occur before the final collapse,
indicating that early warning is still significant.

The empirical results also reveal that the accuracy of EWSs in China’s stock market is
superior to that of the U.S. stock market. A possible explanation for this finding is the
difference in market maturity between the two. The U.S. market is considered a more ma-
ture and efficient market, with relatively weak cyclicality and long memory between stock
returns. In contrast, China’s stock market is an emerging market that is relatively more
susceptible to government macro manipulation, and hence, the cyclical pattern of the lat-
ter is more pronounced. Under the same set of recurrence rates, recurrence-based MRNs
more accurately capture the properties of China’s stock market, and hence, their indicators
provide a more accurate description of the system dynamics’ evolution. This suggests that
the EWSs proposed in this study may be more suitable for identifying potential financial
crises in emerging markets.
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