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Abstract
The prevalence of teamwork in contemporary science has raised new questions
about collaboration networks and the potential impact on research outcomes.
Previous studies primarily focused on pairwise interactions between scientists when
constructing collaboration networks, potentially overlooking group interactions
among scientists. In this study, we introduce a higher-order network representation
using algebraic topology to capture multi-agent interactions, i.e., simplicial
complexes. Our main objective is to investigate the influence of higher-order
structures in local collaboration networks on the productivity of the focal scientist.
Leveraging a dataset comprising more than 3.7 million scientists from the Microsoft
Academic Graph, we uncover several intriguing findings. Firstly, we observe an
inverted U-shaped relationship between the number of disconnected components in
the local collaboration network and scientific productivity. Secondly, there is a
positive association between the presence of higher-order loops and individual
scientific productivity, indicating the intriguing role of higher-order structures in
advancing science. Thirdly, these effects hold across various scientific domains and
scientists with different impacts, suggesting strong generalizability of our findings.
The findings highlight the role of higher-order loops in shaping the development of
individual scientists, thus may have implications for nurturing scientific talent and
promoting innovative breakthroughs.

Keywords: Higher-order structures; Local collaboration networks; Disconnected
components; Higher-order loops; Productivity

1 Introduction
The advancement of modern science has led to an increase in the complexity of scientific
problems, and a rise in the cost of scientific instruments, resulting in the emergence of
big science [1–5]. This paradigm shift has led to the accumulation of knowledge, making
it almost impossible for a single scientist to possess comprehensive expertise required for
one scientific project, known as the burden of knowledge [6]. Therefore, scientists have in-
creasingly formed scientific teams to address these challenges [3, 4, 7, 8]. Previous research
has demonstrated that teams dominate knowledge creation in contemporary science, op-
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erating across institutional and national boundaries [8–10]. Collaboration networks have
thus become a powerful tool for studying team structures and scientific collaborations [7].

Past two decades have witnessed numerous studies on the properties of collaboration
networks, suggesting that collaboration networks exhibit scale-free, small-world, assorta-
tivity and strong community structures [7, 11–13]. Recent studies expanded the scope of
collaboration networks from binary to weighted [14, 15], temporal [16–18] and multilayer
networks [19]. The availability of large-scale bibliometric datasets as well as quantitative
tools enables the study of the relationship between collaboration network structure and
scientific performance. From the macroscopic point of view, previous studies showed that
macroscopic network properties significantly affect scientists’ academic performance, in-
cluding productivity and citation impact [20–28]. From the individual paper’s point of
view, empirical studies explored microscopic team formation, examining the association
between team diversity, team structures and paper citation, novelty, disruption and multi-
disciplinarity [9, 28–39]. However, existing studies mainly constructed collaboration net-
works at a dyadic level, potentially overlooking valuable information, as scientific collab-
oration now is dominated by group interactions beyond dyadic levels.

In recent years, researchers have made substantial progress in network science and com-
putational topology, leading to the emergence of higher-order representations that cap-
ture multi-agent relationships beyond conventional dyadic interactions. Notable examples
include simplicial complexes [40, 41] and hypergraphs [42, 43], which have been widely
applied in analyzing various types of networks across social systems [44], neuroscience
[45, 46], ecology [47, 48], and other biological systems [49, 50]. Despite of similar frame-
works in the field of science of science [51–55], to the best of our knowledge, there is
limited research exploring the association between higher-order properties and individ-
ual scientific productivity. In fact, prior research demonstrated that higher-order holes
play necessary roles in biological systems especially the brain functioning [56, 57]. This
highlights an encouraging and promising direction in the collaboration system, i.e., in-
vestigating how these higher-order characteristics affect scientific outcomes. This calls
for a further analysis into translating the original co-authorship data into structures that
preserve group interactions. Additionally, existing studies have drawn conclusions from
specific scientific domains, raising questions regarding the generalizability of the findings.

In this paper, we fill this gap by leveraging the Microsoft Academic Graph data (MAG),
a large-scale scholarly dataset. We utilize a simplicial complex framework to construct lo-
cal collaboration networks for a cohort of more than 3.7 million scientists. Our primary
objective is to investigate the association between higher-order structural properties of lo-
cal collaboration networks and scientists’ productivity. Specifically, we delve into two key
higher-order characteristics: the 0th Betti number (β0), representing the number of dis-
connected components, and the 1st Betti number (β1), indicating the presence of higher-
order loops. There are three key findings. Firstly, we find that there is an intriguing inverted
U-shaped relationship between the number of disconnected components and individual
productivity. Secondly, we observe that the presence of higher-order loops within local
co-authorship networks is positively associated with scientists’ productivity, suggesting
interesting underlying forces related to group interactions. Thirdly, the uncovered rela-
tionship can be generalizable to major scientific domains, indicating strong generalizabil-
ity of our results. This study has several contributions. First, we use a simplicial complex
approach to depict scientific collaboration networks, which helps to capture group inter-
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actions and higher-order structural properties that cannot be obtained in the conventional
dyadic view. Second, our work encompasses scientists from diverse scientific disciplines,
offering insights that extend beyond specific scientific domains. These results may help us
better understand individual careers and have policy implications for nurturing scientists
towards high academic performance.

2 Related work
2.1 The impact of macroscopic collaboration structure on scientific output
Recently, there has been significant interest in the science of team science [8, 9, 37, 38,
58, 59]. Previous studies documented several fundamental characteristics of collabora-
tion networks [7, 11–13]. The availability of computational tools also pushes scientists
to extend conventional binary collaboration networks to weighted, temporal, multilayer
and higher-order networks, enabling a more nuanced analysis of collaboration patterns
[14–19, 51–55]. Numerous studies demonstrate the impact of collaboration networks on
individual scientist’s academic performance. For example, prior studies focus on the asso-
ciation between centrality, tie strength and its configuration, structural hole and scientific
productivity and citation impact [20–28, 60]. Recent research has also explored the rela-
tionship between collaboration networks and innovative research. Using patent datasets,
Wang et al. showed that inventors with a high degree centrality in patent collaboration
networks often exhibit low exploratory innovation, whereas inventors spanning structural
holes produce more innovative outputs [61]. Using the American Physical Society data,
Wang et al. observed that scientists spanning over structural holes in scientific collabora-
tion networks produced more novel and disruptive research and had a higher chance to
publish novel/disruptive papers [60].

2.2 The impact of microscopic team structure on scientific output
Recent studies delved into the relationship between microscopic team structures and sci-
entific outputs. For example, Zeng et al. proposed the concept of team freshness, and
found that team freshness strongly predicts multidisciplinarity and disruption of indi-
vidual papers [38]. Liu et al. focused on link freshness and demonstrated an inverted U-
shaped relationship between link freshness and citation impact [34]. Xu et al. discovered
that author contribution within a team is associated with long-term citations, novelty and
disruption [36]. Furthermore, Chen et al. explored new author combinations within sci-
entific teams, revealing that new author combinations positively inspire the emergence
of new knowledge units and combinations of knowledge elements [33]. Recent studies
also focused on team diversity. Yang et al. demonstrated that gender-diverse teams pro-
duce novel and impactful papers [37]. In addition to gender diversity, researchers have
examined other dimensions of diversity, including ethnicity, nationality, affiliations, disci-
pline and academic age, finding consistently that diverse teams produce impactful papers
[9, 29–32]. Finally, Lin et al. studied the association between collaboration distance and
disruption, revealing that remote teams were less likely to produce disruptive research
compared with onsite teams [39].

2.3 Higher-order network representations in science of science
Conventional research primarily focused on pairwise interactions in collaboration net-
works, overlooking higher-order interactions involving three or more researchers [51–54].
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To fill this gap, algebraic topologists and network scientists have introduced higher-
order network representations such as simplicial complexes [40, 41] and hypergraphs
[42, 43]. These advancements have enabled the application of higher-order networks in
various fields, including social systems, neuroscience, ecology, and other biological sys-
tems [44–50]. In science of science domain, there are a few studies exploring higher-order
network representations. For example, Carstens and Horadam were among the first to
introduce persistent homology to analyze Betti numbers in weighted collaboration net-
works, distinguishing them from random networks [51]. Patania et al. studied topologi-
cal structures by analyzing the distribution of facet size, simplicial degrees, homological
hole lengths, and community sizes [54]. Similarly, Salnikov et al. constructed sequential
knowledge networks using simplicial complexes, and analyzed the persistence of homo-
logical holes [55]. Gebhart and Funk used simplicial complexes to study the evolution of
homological holes and their correlations with traditional network properties, as well as
their impact on the novelty and impact of papers and patents [52]. Juul et al. investigated
the frequency of different hypergraph patterns in random models and empirical data, and
explored the relationship between citations and hypergraph patterns [53].

In summary, previous research has explored the relationships between the structural at-
tributes of macroscopic collaboration networks and microscopic team structures and how
these factors impact scientists’ academic performance. Nonetheless, significant gaps re-
main within the current body of literature. Firstly, there has been limited emphasis on local
collaboration networks, despite their potential role in knowledge spillovers and individual
outcomes. Furthermore, while earlier studies have indeed investigated higher-order struc-
tural features, the precise influence of these structures on scientists’ performance remains
an open question. To add to this complexity, the generalizability of these findings across
a wide array of scientific domains has yet to be fully addressed. In this paper, we seek to
address these gaps by examining the impact of higher-order structural properties within
local collaboration networks on the productivity of scientists from diverse academic fields.
Our study aims to contribute valuable insights and extend the understanding of these in-
tricate relationships.

3 Data
In this paper, we leverage the Microsoft Academic Graph dataset (MAG), which comprises
more than 260 million digital publications spanning from 1800 to 2021. MAG offers com-
prehensive information regarding each publication, including publication year, scientific
field(s), and author name(s). It has emerged as a pivotal data source for research on indi-
vidual careers [62–68]. MAG employs cutting-edge techniques for distinguishing author
identities. In addition to machine learning algorithms that leverage publication records for
author disambiguation, MAG goes further by harnessing the power of web search engines
to access public information such as personal websites and public curricula vitae [69].
Recent studies have established a gold standard dataset for author name disambiguation
based on ORCID, finding that MAG author IDs achieve an impressive 81.87% accuracy,
78.13% F1 score, and 98.49% precision, underscoring the reliability of MAG’s author iden-
tification methods [34, 70].

In this study, we focus on journal articles and conference papers published prior to 2011.
Our analysis includes papers with scientific field information as well as venue informa-
tion, resulting in a dataset of 56,895,201 papers. Furthermore, we focus on scientists who
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published at least 5 papers and no more than 500 papers during their entire career. This
approach helps us mitigate potential errors related to author name disambiguation within
the Microsoft Academic Graph (MAG), including instances of author under-conflation,
where an author’s publication count may be erroneously lower than the actual number,
or over-conflation, which involves wrongly assigning additional publication records to an
author. This method also allows us to reduce the influence of outliers, which could include
authors with very few or exceptionally high numbers of publications. This selection cri-
terion aligns with recent research practices [38, 60]. Moreover, we exclude scientists who
have collaborated with more than 36 distinct partners in any given year. The reason for this
exclusion is rooted in the considerable computational complexities associated with high-
order network analyses. In particular, the computation of homology necessitates enumer-
ating all conceivable combinations of simplices, with computational complexity growing
exponentially with the dimension of the simplicial complex [54]. This threshold helps us
manage these computational challenges, balancing the need for accuracy with the con-
straints of available computational resources. Additionally, we focus on scientists who
published his/her first paper later than 1960 in order to reduce the noise derived from
the relatively small number of publications before.

Our final sample comprises a total of 3,785,807 scientists. For each scientist, we con-
struct his/her yearly local collaboration networks by considering interactions among col-
laborators (see details in Methodology), resulting in a total of 27,786,774 scientist-year
observations till 2011 (see the data frame of “scientist-year observations” in the Appendix,
Table A1). Note that scientists with less than a 3-year publication history were excluded
to ensure the consistency of the number of samples included into the regression analysis
of the panel data.

4 Methodology
4.1 Simplicial complexes
Basic notations and definitions We provide several basic notations and definitions re-
lated to simplicial complexes. First, a d-simplex α represents a set of interacting nodes,
where d denotes the dimensionality of the simplex. For example, a single node is a 0-
simplex, a link between two nodes is a 1-simplex, and a (filled) triangle is a 2-simplex,
and so on. Second, a face of a d-simplex α is a lower-dimensional simplex α′ formed by a
proper subset of nodes of α, i.e., α′ ⊂ α. For instance, in the case of a 2-simplex, its faces
include three 0-simplices and three 1-simplices. Third, a simplicial complex γ is a collec-
tion of simplices that satisfies closure under the inclusion of faces, indicating that for every
simplex α belonging to γ , all of its faces α′ also belong to γ . For more details, please refer
to [71, 72].

Why using simplicial complexes? The use of simplicial complexes can be justified for
several reasons. First, it is a natural approach when investigating scientific collaborations,
considering that it allows to model multi-agent interactions. Over recent decades, sci-
ence has witnessed a remarkable increase in complexity and scale, with most knowledge
creation by teamwork, or group interactions [8]. When studying collaboration networks
through dyadic aspects that originated from scientist-paper bipartite networks, we risk
losing crucial information regarding these group interactions. In response to this, recent
advancements have been made in higher-order network representations, and such frame-
works have found widespread application in the analysis of various network types [44–50].
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Second, the use of a simplicial framework is advantageous because it explicitly preserves
group interactions that involve more than two scientists. One key benefit of this approach
is its ability to encode higher-order “holes” within the collaboration network [54]. To il-
lustrate this, consider two cases: in the first case, three scientists have never co-authored a
paper together, but any two of them have collaborated on at least one paper. In the second
case, all three scientists have indeed published a paper together previously. When using
conventional methods, both situations might be represented as triangles. However, we
recognize that only the former case is accurately depicted by an empty triangle, while the
latter should be represented by a filled triangle. Similarly, conventional methods cannot
distinguish whether quadrilaterals or pentagons are empty or filled. Lastly, the application
of higher-order structures empowers us to delve deeper into understanding the functions
of these topological features within scientific collaboration networks. Significantly, prior
research has illuminated the crucial roles played by higher-order holes in the functioning
of the human brain [56, 57]. Nonetheless, it remains unclear how these higher-order holes
within collaboration networks are linked to individual scientific careers. This underscores
the need to translate original co-authorship data into structures that accurately represent
and preserve these group interactions.

4.2 Local collaboration networks
We construct yearly local collaboration networks for each scientist at year t, by extracting
his/her collaboration records from preceding year t-5 to t-1 among his/her collaborators.
Figure 1 shows an illustrative example of a selected scientist. At year t, the focal scientist
collaborated with six scientists (see Fig. 1a). We then identify collaboration relationships
among collaborators using publication data between t-5 and t-1 (see Fig. 1b). For exam-
ple, [1, 5] indicates that scientists 1 and 5 have co-authored a paper during this period,
while [1, 2, 6] suggests that scientists 1, 2, and 6 have published a paper together. Using
these collaboration records, we obtain the local collaboration network for the selected sci-
entist at year t (see Fig. 1d). It is important to note that we construct this network using
higher-order interactions, which differs markedly from the conventional bipartite network
projection (see Fig. 1c).

4.3 Betti numbers
In this study, we characterize higher-order structural properties of local collaboration net-
works using the Betti number, which is a topological measure to quantify the presence of
holes in higher-order networks. Each Betti number corresponds to a specific dimension
of holes within the network. We provide several related notations below. For details, we
refer to these references [73–75].

Boundary operation, d-chain, d-cycles and d-boundary Here, we provide a brief descrip-
tion of key definitions. The boundary of a d-simplex is defined as the sum of its (d – 1)-
dimensional faces, denoted as ∂d . A d-chain is defined as the sum of d-simplices in a sim-
plicial complex. The group of d-chains is defined as the d-chains with the addition modulo
2, denoted as Cd . A d-cycle is defined as a d-chain with a boundary of zero. The group of d-
cycles is defined as the d-cycles with the addition modulo 2, denoted as Zd . A d-boundary
refers to a d-chain that is the boundary of a (d +1)-chain. The group of d-boundaries refers
to the d-boundaries with the addition modulo 2, denoted as Bd . Note that Bd ⊂ Zd ⊂ Cd .
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Figure 1 An illustration of constructing higher-order local collaboration networks. (a) shows the individual
scientist’s egocentric network at year t. The links indicate that two scientists collaborated at year t. (b) shows
the publication records and collaboration relationships among collaborators between t-5 and t-1. Note that
grey person represents scientists who did not collaborate with the focal scientist at year t. (c) depicts the
individual scientist’s local collaboration network based on conventional bipartite network projections. Solid
lines suggest that connected two scientists have collaborated at least once between t-5 and t-1. (d) depicts
the higher-order local collaboration network with a simplicial description. Solid lines represent that two
scientists have collaborated at least once between t-5 and t-1. Filled triangles indicate that the connected
three scientists have at least one joint publication during this period. The empty triangle means the
connected three scientists have not collaborated together, whereas any two of them have a pairwise
collaboration

Homomorphism, kernel and image If there is a map f : M → S, which satisfies that
∀a, b ∈ M, f (a ∗ b) = f (a) · f (b) ∈ S, then f is a homomorphism from M to S. Here M
and S are two nonempty sets; ∗ and · are two operations defined on these two sets, re-
spectively. So the boundary operator ∂d is a homomorphism from Cd+1 to Cd . The kernel
of a homomorphism f : M → S is the set of all elements in M that are mapped to zero.
Therefore, Zd is the kernel of ∂d . The image of a homomorphism f : M → S is the set of all
elements in S. As a result, Bd is the image of ∂d+1.

Homology group and Betti numbers The dth homology group is defined as the quotient
between Zd and Bd , denoted as

Hd(γ ) =
Zd

Bd
=

ker(∂d)
im(∂d+1)

.

The elements of Hd(γ ) refers to the d-cycles that are not induced by a d-boundary, namely
the d-dimensional holes of our simplicial complex γ . The rank of Hd(γ ) is defined as the
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dth Betti number of γ , denoted as

βd = rank
(
Hd(γ )

)
= rank(Zd) – rank(Bd),

which indicates the number of different d-dimensional holes. In this study, we only focus
on the effects of β0 and β1. β0 counts the number of disconnected components, and β1

counts the number of higher-order loops, capturing the presence of circular relationships
or cycles within the network.

To illustrate the concept more, let’s consider the local collaboration network shown in
Fig. 1d. In this network, there are two disconnected components, one consists of node 3,
and the other is formed by the rest nodes. Hence, β0 is 2. Additionally, we observe two
empty triangles. One is formed by nodes 1, 5, and 6, while the other is formed by nodes
1, 4, and 5. Therefore, β1 is also 2. It is worth noting that in the dyadic view, there is no
filled triangle within collaboration networks. If the focal scientist has no coauthors at year
t, then β0 and β1 are set to zero.

4.4 Variables in regression analysis
In this study, we consider scientific productivity, which refers to the total number of pa-
pers published at year t as the dependent variable. For independent and control variables,
we utilize the 0th Betti number (β0) and 1st Betti number (β1) to quantify the higher-
order structural properties of local collaboration networks. It is important to note that β0

is a continuous variable, while β1 is transformed into a binary variable as the majority of
observed values are zero. We consider several explanatory variables that may affect the
performance of individual scientists. Specifically, we consider network size, network den-
sity, average tie strength and collaborative strength. Network size refers to the number of
collaborators at year t. Network density is defined as the fraction of real links with respect
to all possible links in conventional collaboration networks [34]. Average tie strength is
the average number of papers coauthored between individual scientist and collaborators
from t-5 to t-1 [22]. The collaborative strength is the ratio of collaborative papers among
all collaborators to the total number of papers published by all collaborators between t-5
and t-1. Prior studies demonstrated that such network properties may be associated with
scientists’ academic performance [20, 22, 24, 25, 34]. Moreover, we also consider career
age at year t [76]. Finally, given that the scientist’s academic performance at year t can be
affected by previous records [22], we control for the productivity at the last year in which
the scientist has publication records. The details of variables are shown in Table 1.

4.5 Regression models
We use Poisson regressions to quantify the relationship between high-order properties
and scientific productivity. The application of a Poisson model in our study is grounded in
its suitability for regressions where the dependent variable is counted and follows a Pois-
son distribution. In our context, productivity is denoted by the number of publications,
which inherently assumes non-negative integer values. While the distribution of publica-
tion counts exhibits characteristics of a fat-tailed distribution [77], it is important to note
that prior research has demonstrated the Poisson estimator’s reliability in panel data mod-
els. This reliability is maintained even when the actual data distribution does not precisely
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Table 1 Variables description

Variable Description

Productivity Total number of papers published at year t.
β0 The number of disconnected components in the local collaboration network.
β1 (binary) The number of higher-order loops in the local collaboration network. β1 = 1 if there

exists at least one loop, otherwise 0.
Network size The number of collaborators at year t.
Network density The fraction of real links with respect to all possible links in conventional collaboration

networks.
Average tie strength The average tie strength between the focal scientist and his/her collaborators between

year t-5 and year t-1.
Collaborative strength The ratio of collaborative papers among collaborators to the total number of papers

published by all collaborators between year t-5 and year t-1.
Career age Career age of the focal scientist.
Productivity←−

t
Total number of papers published at the last year in which the scientist has publication
records.

conform to the Poisson distribution, as long as the mean specification remains accurate
[78]. The regression equations are as follows:

ln(Productivityi,t)

= a0 + a1(βi,�t) + a3(Network densityi,�t) + a4
(
log2(Average tie strengthi,�t + 1)

)

+ a5
(
log2(Collaborative strengthi,�t + 1)

)
+ a6

(
log2(Career agei,t + 1)

)

+ a7
(
log2(Productivity

i,←−t )
)

+
∑

j

bjσji,t + μi + τt + εi,t ,

where �t refers to the period from t-5 to t-1, ←−t indicates the last year in which the sci-
entist has publication records. μi represents individual fixed effects, which is a vector of
unobserved but fixed confounders depending only on individual i [79]. The rationale for
adding individual fixed effects is to control for individuals’ unobservable characteristics
[80]. τt represents year fixed effects, and the rationale for adding year fixed effects is to
take into account unobserved variables that evolve over time but are constant across enti-
ties [80]. σjit indicates network size fixed effects, and we categorize the network size into
six bins: [0, 6], [7, 12], [13, 18], [19, 24], [25, 30], and [31, 36]. The reason why we consider
fixed effects instead of controlling for its continuous form is that there is collinearity be-
tween β0 and network size, which may influence the precision of estimations [37]. Note
that in the regression model we add quadratic terms of β0 in order to check whether there
is an inverted U-shaped relationship, and we also control for β0 when exploring the effect
of β1. We take logarithms for variables with fat-tail distributions.

We use scientific fields provided by the MAG data to categorize scientists into differ-
ent scientific domains. This categorization is based on scientific domains to which more
than half of a scientist’s papers belong to. The Appendix Table A2 shows the number of
scientists, as well as scientist-year observations across 19 scientific domains.

5 Results
5.1 Descriptive statistics
Table 2 shows the descriptive statistics of the variables used in our analysis. To assess the
presence of multicollinearity, we calculate the variance inflation factor (VIF), and find that
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Table 2 Descriptive statistics of different variables

Variable Mean Std. dev Min Max

Productivity 2.089 1.833 1 312
β0 3.397 3.136 0 36
β1 (binary) 0.083 0.438 0 1
Network size 5.983 5.690 0 36
Network density 0.231 0.303 0 1
Average tie strength 0.929 1.486 0 313
Collaborative strength 0.164 0.218 0 1
Career age 8.304 8.371 0 51
Productivity←−

t
2.112 1.843 1 312

Figure 2 The distribution, evolution and disciplinary variations of β0 and β1.(a-b) The distribution of β0 and
β1. (c) 〈β0〉, and P(β1 = 1) as a function of time. (d) 〈β0〉 and P(β1 = 1) across different scientific domains

the VIFs for β0, β1, network density, average tie strength, collaborative strength, career age
are 1.23, 1.05, 1.71, 1.56, 1.42 and 1.04, respectively. These values suggest that there is no
strong multicollinearity among these variables.

Figures 2a and 2b display the distribution of β0 and β1, respectively. We find that over
90% of local collaboration networks exhibit less than eight disconnected components.
Moreover, the occurrence of higher-order loops in these networks is relatively rare. Specif-
ically, local collaboration networks that contain at least one higher-order loop account for
around 5% of the total networks. Figure 2c illustrates the temporal evolution of β0 and
β1. We observe that the average number of components in local collaboration networks
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steadily increased. Additionally, there is a significant rise in the proportion of local collab-
oration networks that exhibit at least one higher-order loop. Notably, approximately 11%
of the local collaboration networks display the presence of higher-order loop structures
at year 2011, highlighting the growing prevalence of higher-order structures within lo-
cal collaboration networks. Figure 2d illustrates the average value of β0 and probability of
β1 = 1 across different scientific domains, revealing distinct disciplinary variations. Gener-
ally, scientists in medicine, biology, material science and environmental science are more
likely to have local collaboration networks with disconnected components and higher-
order loops. Besides, additional descriptive analyses show that scientists with higher-order
loops are typically more senior, with higher productivity and citation impact than those
without higher-order loops.

5.2 Scientific productivity
Figures 3a and 3b show the relationship between β0, β1, and the number of papers pub-
lished at year t, respectively. We find several noteworthy patterns. First, scientific pro-
ductivity shows an initial increase with each additional component until β0 reaches 22,
beyond which it starts to decline, suggesting that having a moderate number of discon-
nected components in the collaboration network is associated with high productivity. Sec-
ond, scientists whose local collaboration networks contain at least one higher-order loop
tend to publish more papers compared to those without loops, indicating the positive im-
pact of higher-order loops on scientific productivity (2.00 versus 3.65, Two-sided Welch’s
t-test, p-value < 0.001).

To eliminate the effects of potential explanatory factors, we perform fixed effects Pois-
son regressions (see Table 3). The results confirm an inverted U-shaped relationship be-
tween β0 and scientific productivity, with a turning point estimated at 15 (Table 3 model
5). Figure 3c visualizes the estimated scientific productivity as a function of β0 based on
the regression, holding other variables at the sample means. And it demonstrates that the
productivity increases by 645.0% when β0 rises from 0 to 15, but decreases by 94.7% when
β0 increases from 15 to 36. We find that β1 is positively associated with scientific pro-
ductivity (Table 4 model 5). Adjusting for all factors, having at least a higher-order loop

Figure 3 The relationship between β0, β1 and scientific productivity. (a) The scatter plot between β0 and
scientific productivity. The point represents mean value and the error bar represents standard error of the
mean. (b) The bar chart between β1 and scientific productivity. The bar represents mean value and the error
bar represents standard error of the mean. (c) The estimated association between β0 and scientific
productivity based on Table 3 model (5) using the “margins” function of STATA. The red cross mark represents
the turning point. The error bar represents the 95% confidence interval
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Table 3 Fixed-effects Poisson regressions regarding the association between β0 and scientific
productivity

Productivity(ln) (1) (2) (3) (4) (5)

β0 0.094*** 0.164*** 0.157*** 0.139*** 0.116***
(0.00006) (0.00013) (0.00014) (0.00015) (0.00017)

β2
0 –0.004*** –0.004*** –0.003*** –0.004***

(0.00001) (0.00001) (0.00001) (0.00001)
Network density –0.255*** –0.198*** –0.026***

(0.00059) (0.00059) (0.00060)
Average tie strength (log) 0.262*** 0.101*** 0.071***

(0.00023) (0.00033) (0.00025)
Collaborative strength 0.128*** 0.240***

(0.00068) (0.00074)
Career age (log) –0.003*** –0.026***

(0.00014) (0.00031)
Productivity←−

t
(log) 0.232*** 0.020***

(0.00035) (0.00018)
Year fixed effects N N N N Y
Individual fixed effects N N N N Y
Network size effects N N N N Y
Log pseudolikelihood –44,919,517 –44,482,073 –43,456,407 –37,342,694 –34,025,920
R2 0.0848 0.0937 0.1146 0.1428 0.2189
Observations 27,786,774 27,786,774 27,786,774 24,000,967 24,000,967
Individuals 3,785,807 3,785,807 3,785,807 3,785,807 3,785,807

Notes: Robust standard errors in parentheses; *** p-value < 0.001, ** p-value < 0.01, * p-value < 0.05; 3,785,807 observations
dropped when we control for Productivity←−

t
.

Table 4 Fixed-effects Poisson regressions regarding the association between β1 and scientific
productivity

Productivity(ln) (1) (2) (3) (4) (5)

β1 0.600*** 0.360*** 0.308*** 0.238*** 0.111***
(0.00064) (0.00062) (0.00055) (0.00052) (0.00046)

β0 0.090*** 0.088*** 0.077*** 0.044***
(0.00006) (0.00006) (0.00006) (0.00007)

Network density –0.401*** –0.332*** –0.168***
(0.00059) (0.00058) (0.00055)

Average tie strength (log) 0.262*** 0.103*** 0.065***
(0.00023) (0.00033) (0.00025)

Collaborative strength 0.166*** 0.207*** 0.284***
(0.00068) (0.00068) (0.00074)

Career age (log) –0.002*** –0.023***
(0.00014) (0.00031)

Productivity←−
t
(log) 0.233*** 0.022***

(0.00034) (0.00019)
Year fixed effects N N N N Y
Individual fixed effects N N N N Y
Network size effects N N N N Y
Log pseudolikelihood –48,324,649 –44,638,277 –43,575,288 –37,461,268 –34,164,091
R2 0.0154 0.0905 0.1122 0.1401 0.2158
Observations 27,786,774 27,786,774 27,786,774 24,000,967 24,000,967
Individuals 3,785,807 3,785,807 3,785,807 3,785,807 3,785,807

Notes: Robust standard errors in parentheses; *** p-value < 0.001, ** p-value < 0.01, * p-value < 0.05; 3,785,807 observations
dropped when we control for Productivity←−

t
.

in local collaboration networks is associated with an increase of 11.7%, on average, more
publications for individual scientists. Overall, these observations highlight the critical role
of higher-order structures of local collaboration networks.
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Figure 4 The regression coefficients of β0, β2
0 and β1 across years. The point represents the coefficient and

the error bar represents the 95% confidence interval. Darker coloring represents significant coefficients
(p-value < 0.05), whereas lighter coloring represents insignificant coefficients (p-value > 0.05)

Moreover, we run the same fixed-effects Poisson regression separately for each scientific
field. Table 5 indicates that the findings are strongly generalizable across various scientific
domains. The 19 scientific domains are sorted according to the number of scientists in
descending order. Specifically, we find that all scientific domains have significantly posi-
tive coefficients of β0 and significantly negative coefficients of β2

0 , indicating that there is
an inverted U-shaped relationship between β0 and scientific productivity. Moreover, we
observe that β1 is significantly and positively associated with scientific productivity for
scientists in 18 out of 19 fields (except for art). For example, forming at least one higher-
order loop is associated with an increase of 8.9% more papers in medicine, 9.1% in biology,
and 12.2% in chemistry.

5.3 Robustness checks
We conduct a series of robustness tests to strengthen the validity of our findings. Initially,
we run Poisson regressions separately for each year. Since each scientist occurs exactly
once in a given year, we thus eliminate the effect of duplicated scientist has in the ag-
gregated regression. In this analysis, we consider the same control variables as the main
regression, while we do not add individual and year fixed effects, as each scientist only has
one row in the dataset. We observe that the inverted U-shaped with β0 and the positive
effects of β1 on productivity remain statistically significant across years (see Fig. 4).
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Figure 5 (a) The distribution of the number of rows per scientist. (b-d) The coefficients β0, β2
0 and β1 in

Poisson regression models across rows. The point represents the coefficient and the error bar represents the
95% confidence interval. The grey line indicates y = 0. Darker coloring represents significant coefficients
(p-value < 0.05), whereas lighter coloring represents insignificant coefficients (p-value > 0.05)

Besides, we separate scientists into subgroups according to their number of “rows” in
the data, and run the Poisson regressions separately for each group. The distribution of
the number of rows is depicted in Fig. 5a, and we find that most scientists show less than
10 years of observations. Figure 5b-d depicts the coefficients of β0, β2

0 and β1 for different
subgroups. We observe that the inverted U-shaped associations induced by β0 and the
positive effects of β1 on productivity remain statistically significant for every subgroup,
indicating that our results are not affected by high-prolific scientists.

In addition, we separate scientists according to their citation impact (i.e., average cita-
tions within 10 years after publication, i.e., c10), i.e., less-impact scientists whose average
c10 are in the bottom 25% (949,048 scientists and 5,791,795 observations), median-impact
scientists whose average c10 are between 37.5% and 62.5% (948,860 scientists and 7,547,067
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Figure 6 (a) The coefficients β0, β2
0 and β1 in Poisson regression models across low-impact, median, and

high-impact scientists. (b) The coefficients of β0, β2
0 and β1 in Poisson regression models when adopting

different time window thresholds. (c) The coefficients of β0, β2
0 and β1 in Poisson regression models when

excluding samples with popular surnames. The point represents the coefficient and the error bar represents
the 95% confidence interval. The grey line indicates y = 0. Darker coloring represents significant coefficients
(p-value < 0.05), whereas lighter coloring represents insignificant coefficients (p-value > 0.05)

observations), as well as high-impact scientists whose average c10 are in the top 25 per-
cent (946,512 scientists and 7,165,398 observations). We run Poisson regressions for each
group separately. Figure 6a depicts the coefficients of β0, β2

0 and β1 in Poisson regression
models for each group. We again observe that the inverted U-shaped associations induced
by β0 and the positive effects of β1 on productivity remain statistically significant. This
finding suggests that the main results hold for scientists with different citation impact.

Furthermore, we employ various thresholds to construct local collaboration networks,
from 1 to 4 years. Through these iterations, we perform the same regression analyses as
in our primary investigation. Notably, the inverted U-shaped associations influenced by
β0 and the positive effects of β1 persisted as statistically significant (see Fig. 6b).

To address concerns related to the accuracy of disambiguation methods for common
names, we compile a list of the 1000 most popular surnames worldwide, which encom-
pass commonly occurring surnames from both Asian and Western regions [accessed from
https://forebears.io/earth/surnames]. We repeat the analyses and find the primary find-
ings in our study still hold (see Fig. 6c). Moreover, we repeat our analysis by employing the
conventional Ordinary Least Squares (OLS) regression model. In this model, the depen-
dent variable is the logarithm of productivity. It is noteworthy that the outcomes of these
analyses aligned with the results of our primary Poisson regression approach, providing
further evidence of the robustness of our findings.

6 Conclusions
In an era where scientific knowledge creation is dominated by collaborative teams, it is
of paramount importance to delve into the higher-order structures inherent in scientific
collaboration networks. The conventional approach, which primarily adopts a dyadic per-
spective to construct local collaboration networks, may inadvertently overlook invaluable
information for group interactions. Leveraging a vast dataset encompassing over 56 mil-
lion research articles from 1960 to 2011 from the Microsoft Academic Graph, our objec-
tive is to explore the intricate link between the higher-order structural features charac-
terizing local collaboration networks and their impact on scientific productivity. Further-
more, we endeavor to ascertain the generalizability of these findings across a diverse set

https://forebears.io/earth/surnames


Yang and Wang EPJ Data Science           (2024) 13:15 Page 17 of 22

of scientific domains. Throughout our analysis, a noteworthy trend becomes apparent –
both the number of disconnected components and the prevalence of higher-order holes
exhibit a consistent upward trajectory over time. The fraction of local networks featur-
ing higher-order holes reached 11% in 2011. This surge may be attributed to the remark-
able expansion of the scientific community during this period. While higher-order holes
are indeed evident in various domains, with domains such as medicine and biology shar-
ing common features, the dominance of triatic closure remains a prevailing characteristic
within scientific collaboration networks.

Furthermore, our investigation reveals an intriguing inverted U-shaped association be-
tween the number of disconnected components in local collaboration networks and sci-
entific productivity. These results partly speak to the strength of weak tie theory [81],
which suggests that individuals spanning over structural holes in social networks can gain
significant advantages in accessing new opportunities, fostering innovation [82], and en-
hancing their overall performance [83]. Previous research, largely rooted in macroscopic
collaboration networks, has consistently demonstrated the advantages reaped by scien-
tists who span structural holes. These benefits include paper publication, citation counts,
and a higher likelihood of contributing novel research [20, 25, 60]. However, such stud-
ies have rarely ventured into the intricate realm of scientists’ local networks. Structural
holes [84, 85], which foster diversity within local collaboration networks, are primed to
play a pivotal role [86]. One would expect significant advantages upon scientists in the
realms of productivity. It is plausible that structural diversity acts as a catalyst for resource-
sharing and the seamless transmission of knowledge, empowering scientists to harness a
spectrum of expertise, diverse ideas, and even the valuable lessons extracted from failure
across a heterogeneous pool of collaborators [87–91]. These diverse local collaboration
structures equip scientists to acquire a wide array of skills. Ultimately, this dynamic bol-
sters their productivity. This interpretation aligns with prior findings that suggest novel
and multidisciplinary research flourishes within newly-formed teams [38]. This research
reinforces this perspective by illuminating a positive correlation between the number of
disconnected components within local collaboration networks and scientific productiv-
ity – up to a certain threshold. These empirical results effectively substantiate the tenets
of structural holes and the significance of weak ties.

This study reveals that as the number of disconnected components reaches a certain
threshold, a negative correlation emerges with regard to productivity. This intriguing dis-
covery propels us to explore the potential underlying forces at play. In the realm of sci-
entific collaborations, where the advantages of structural holes and disconnected team
members are evident, effective communication and coordination between individuals re-
main critical [92, 93]. A key facilitator in this regard is familiarity, which results in positive
outcomes. Earlier research spotlighted the benefits of strong ties between scientists, of-
ten referred to as “super-ties,” underscoring their substantial contributions to productivity
and citations [94]. Furthermore, the diverse structures present within local collaboration
networks can have the unintended consequence of slowing down the assimilation of ideas,
leading to lower consensus and, in some cases, potential conflicts [32, 95, 96]. For example,
international collaborations tend to produce less novel papers [32], and remote collabora-
tions show a negative association with disruptive research [39]. Similarly, Liu et al. found
an inverted-U shaped relationship between team freshness and citations using paper-level
data [34].
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This study makes a pivotal observation: the presence of higher-order loops within lo-
cal collaboration networks is positively correlated with productivity in scientific careers.
These higher-order loops shed light on the dynamic interplay among multiple agents that
goes beyond the typical dyadic interactions. For instance, the phenomena of complex con-
tagion, where an influence requires the involvement of more than two individuals, may ex-
hibit unique characteristics. As highlighted by Iacopini et al. [97], “the simplicial model of
contagion is able to capture the basic mechanisms and effects of higher-order interactions in
social contagion processes.” In scientific collaboration, researchers engage in discussions,
knowledge diffusion, and the adoption of innovative ideas. Describing these intricate in-
teractions through the lens of higher-order networks provides invaluable insights. This
leads to intriguing questions about how resources and knowledge are transmitted within
these higher-order loops, as well as the underlying forces driving the positive correlation
between higher-order loops and scientific performance. As we conclude, these findings
not only provide answers but also raise stimulating questions, paving the way for promis-
ing directions in future research within this domain.

In conclusion, these results remain consistent across a spectrum of scientific domains,
highlighting its generalizability. This work contributes significantly to the understanding
of higher-order collaboration networks by delving into the roles of higher-order holes.
Furthermore, it advances our comprehension of how network structures can influence
the scientific performance of researchers. Of paramount significance is our discovery of
an intriguing inverted U-shaped relationship driven by the number of disconnected com-
ponents within local collaboration networks. This insight offers a nuanced understand-
ing of the interplay between structural complexity and scientific output. Additionally, our
work transcends disciplinary boundaries by encompassing scientists from diverse fields.
The insights gleaned from this study hold the potential to benefit a wide array of research
areas, extending beyond specific scientific domains. Our findings have important policy
implications for nurturing scientific personnel and accelerating innovative breakthroughs.
Scientists need to carefully consider the structure of his/her collaboration network. It is
crucial for scientists to strive for a well-balanced and properly disconnected or loosely
connected local co-authorship network, which is crucial to high productivity.

This study contains several limitations. First, we use publication data to describe col-
laboration patterns, while collaborative work does not always result in written outputs,
and the presence of ghost authors, where individuals contribute to research but are not
acknowledged as authors, cannot be ruled out [34, 98, 99]. This may introduce possible
biases in our findings and limit the generalizability of our results to all forms of scien-
tific collaboration. Secondly, we gauge scientific productivity using the number of publi-
cations. However, the number of publications alone may not be a perfect indicator that
captures scientists’ scientific performance [100]. Prior research proposed various indica-
tors to measure the quality of academic outputs, such as citations [101], novelty indica-
tors [102, 103] aligning with Schumpeter’s innovation economics that “innovation com-
bines components in a new way” [104], disruption index [59, 105], as well as other met-
rics capturing the interdisciplinarity [106]. It is thus interesting to understand the effect of
higher-order structures on scientists’ academic performance taking into account the qual-
ity of works. Thirdly, it is worth noting that despite we control for possible confounding
variables, our study is still of a correlational nature and does not establish causal rela-
tionships. Despite these limitations, our study offers valuable insights into the relation-
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ship between higher-order structural properties and scientific outcomes, contributing to
a growing body of literature in the field of science of science and data science.

Further research is needed to conduct systematic investigations to unravel the underly-
ing mechanisms driving these associations between higher-order properties and produc-
tivity. What are the factors that prompt scientists with higher-order structures to publish
significantly more papers than their counterparts without higher-order structures? In an
era of big science, there are a tremendous number of publications and citations each year,
future work could examine the evolution of the effect of high-order structures on scientific
achievements, which may untangle the effect of the growth of science and higher-order
structures. Finally, future research could go beyond scientific productivity and explore
how higher-order structures affect knowledge recombination, originality and interdisci-
plinarity.

Appendix

Table A1 The data frame of “scientist-year observations”

Author Year Structural properties of
local collaboration network

Academic performance Other control variables

β0 β1

(binary)
. . . Productivity Network size . . .

1 t11 a11 b11 . . . i11 x11 . . .
1 t12 a12 b12 . . . i12 x12 . . .
. . . . . . . . . . . . . . . . . . . . . . . .
1 t1n1 a1n1 b1n1 . . . i1n1 x1n1 . . .
. . . . . . . . . . . . . . . . . . . . . . . .
N tN1 aN1 bN1 . . . iN1 xN1 . . .
N tN2 aN2 bN2 . . . iN2 xN2 . . .
. . . . . . . . . . . . . . . . . . . . . . . .
N tNnn aNnn bNnn . . . iNnn xNnn . . .

Table A2 Number of scientists across 19 fields

Level-0 fields Individuals Scientist-year
observations

Level-0 fields Individuals Scientist-year
observations

Medicine 925,630 6,311,153 Environmental science 33,163 230,966
Biology 617,975 4,628,649 Economics 29,908 265,206
Chemistry 545,615 4,107,767 Sociology 23,342 169,258
Materials science 317,503 2,180,448 Political science 16,914 130,481
Computer science 180,155 1,227,045 Business 14,379 95,820
Physics 132,634 1,010,505 History 13,759 104,225
Psychology 111,025 901,590 Geography 9404 59,661
Mathematics 86,601 767,830 Art 9012 59,621
Engineering 65,940 410,746 Philosophy 8580 66,183
Geology 51,930 445,478 Total 3,193,469 23,172,632
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