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Abstract
Estimation of people’s home locations using location-based services data from
smartphones is a common task in human mobility assessment. However, commonly
used home detection algorithms (HDAs) are often arbitrary and unexamined. In this
study, we review existing HDAs and examine five HDAs using eight high-quality
mobile phone geolocation datasets. These include four commonly used HDAs as well
as an HDA proposed in this work. To make quantitative comparisons, we propose
three novel metrics to assess the quality of detected home locations and test them
on eight datasets across four U.S. cities. We find that all three metrics show a
consistent rank of HDAs’ performances, with the proposed HDA outperforming the
others. We infer that the temporal and spatial continuity of the geolocation data
points matters more than the overall size of the data for accurate home detection. We
also find that HDAs with high (and similar) performance metrics tend to create results
with better consistency and closer to common expectations. Further, the
performance deteriorates with decreasing data quality of the devices, though the
patterns of relative performance persist. Finally, we show how the differences in
home detection can lead to substantial differences in subsequent inferences using
two case studies—(i) hurricane evacuation estimation, and (ii) correlation of mobility
patterns with socioeconomic status. Our work contributes to improving the
transparency of large-scale human mobility assessment applications.
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1 Introduction
Home location detection is an important step in several fields of human mobility analysis
such as transportation planning [1], migration and evacuation studies [2, 3], accessibility
analysis [4], and the theory of human mobility [5, 6]. This task involves predicting people’s
‘home location’ based on geolocation data, often collected passively by their devices via
location-based services, call detailed records, social media activity, smart-card transac-
tions, and in-vehicle location trackers [7]. Home detection plays an essential role in un-
derstanding large-scale human mobility patterns. For instance, in the event of a hurricane,
one needs the home locations both before and after the disaster to identify their evacua-
tion status [8]. In urban planning, identifying home locations serves as the foundational
data for vital information including home-based trips [9] and human mobility metrics
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[10], and this forms the basis for optimizing existing infrastructure [11]. It is consequently
important to have a robust understanding of home detection approaches.

Despite its significance, existing studies using home detection algorithms (HDAs) have
paid little attention to the effectiveness of their algorithms. Researchers have developed
several HDAs for geolocation data of different kinds whose assumptions, methods, and
parameters are not necessarily consistent with one another [12]. This raises doubts about
the validity of their findings as the error in home detection may propagate to the down-
stream calculation of home-related metrics such as evacuation counts [3], home-based
trip rates [13], and data representativeness figures for accessibility analysis [14].

This issue stems primarily from a lack of ground truth home locations associated with
large geolocation datasets. The collection of accurate home location collection on a large
scale poses significant risks to privacy [15]. Mobility data vendors provide anonymized
device identifiers and modify sensitive trajectories to prevent an accurate tracking of peo-
ple’s trip origins and destinations [3]. In the absence of ground truth data, it becomes
difficult to compare the accuracy of different HDAs using supervised learning methods.
Researchers have largely relied on unsupervised methods for home detection, such as rule-
and clustering-based HDAs. Small-scale studies such as [12] and [16] have sought to com-
pare the effectiveness of HDAs but have focused only on the parameters of a few HDAs.
Further, their small experiments do not provide insights about the impact of study region
and period and data quality on the performance of the HDAs.

In this study, we tackle this issue of a lack of a systematic comparative assessment of
commonly used HDAs. In doing so, we contribute to the literature on the home location
detection problem in the following ways:

1. We review the state-of-the-art HDAs that use large-scale mobility data, including
their benefits, assumptions, and limitations.

2. We propose three intuitive metrics to quantify the quality of the home-location
detection results in the absence of ground truth home location information.

3. We develop a comprehensive experiment where a set of HDAs are quantitatively
compared in terms of the introduced performance metrics and their sensitivity to the
data quality.

4. We propose a new HDA that overcomes some of the limitations of the above
methods and shows superior performance.

The framework and experiment design of this study is shown in Fig. 1 and described
in detail in the following sections. The main objective is to compare the performance of
different HDAs across different input datasets. On the basis of the review of research lit-
erature on HDAs, we have selected four popular and unique HDAs, and additionally pro-
posed an HDA for comparison in this study. The testing is done on eight input samples
of passively collected smartphone GPS data covering four U.S. metropolitan areas of dif-
ferent data qualities and different time periods spawned by mobility-influencing events.
Once home locations are estimated for each combination of the sample dataset and HDA,
they are compared using three approximate accuracy metrics proposed in Sect. 3.2. The
performance of the HDAs under the different dataset conditions is discussed in Sect. 4.1.
In the subsequent sensitivity analysis Sect. 4.2, the performance metrics are recomputed
for different subsamples of the datasets by changing the quality of the users in the input
dataset. Finally, the impacts of these HDAs on subsequent applications, such as hurricane
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Figure 1 Framework of the study. The figure shows the key components of the experiment—HDAs, datasets,
and metrics. The cross symbol denotes Cartesian product

evacuation assessment and analysis of mobility change during COVID-19, are shown in
Sect. 4.3.

2 Home detection algorithms
2.1 Literature review
HDAs from mobility data can be categorized on the basis of several characteristics, such as
the type of input geolocation data (such as social media and passively collected GPS data),
the modeling paradigm (supervised vs. unsupervised and rule-based vs. data-driven), and
constraints for filtering the input data. Based on these classifications, some prominent
HDAs are reviewed and summarized in Table 1.

2.1.1 Supervised methods
Supervised methods predominantly rely on GPS-based travel surveys that involve the sub-
jects carrying GPS-enabled devices that track movements. In addition to individual-level
information such as actual (ground truth) home locations, demographic characteristics,
and personal preferences, the devices provide detailed travel entries such as the origin
and destination, the departure and arrival time, the trip purpose, and the travel mode.
Such mixed methods have been used in many pilot studies [12, 18, 19]. In some cases, it is
also possible to obtain CDR data of specific groups for whom individual-level data is also
available, such as employees of a telephone carrier [12]. In other cases, such as in stan-
dalone travel diaries like the National Household Travel Survey, the respondents’ street
addresses are geocoded to coordinates, though other large-scale information is not ob-
tained for them [38]. With true home locations of the small survey sample, it is possible
to create sophisticated supervised machine learning models, such as random forests and
AdaBoost [21] or artificial neural networks [29].

Although supervised HDAs are powerful, they suffer from a major limitation of training
data availability due to privacy reasons. In the recent past, growing pressure from human
rights organizations and the subsequent government regulations has made it difficult to
obtain actual home locations of individuals at a large scale [39]. GPS surveys and CDR
samples used in supervised HDAs are usually very small, often with fewer than 100 sub-
jects [12, 18]. Samples also typically form specialized volunteer subjects such as students
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Table 1 Summary of commonly used HDAs for different data and algorithm types

Kind Algorithm
class

Dataset type Sources Definition of home location

Supervised Clustering CDR [17] Most popular important cluster (Hartigan clustering
of cell towers) using a logistic regression model

GPS Survey /
Tracking

[18] Density-based spatial clustering of points with noise
(DBSCAN)

[19] Most popular of the clusters based on DJ-cluster
algorithm (modified DBSCAN clustering)

[20] Most popular of the ‘locations’ (obtained using
modified k-means clustering of “places”)

Clustering
and heuristic

CDR [21] Binary classification algorithms; logistic regression,
random forest, adaboosting and neural network
models

Heuristic CDR [12, 16, 22] Most active tower for several data filter criteria such
as nighttime constraints, weekday/weekend, and
distinct days

Unsupervised Clustering CDR [23] Most frequent stay place (determined based on
mean-shift clustering of sequenced cell tower
locations)

Passive GPS [24] Largest hierarchical cluster of stay points (detected
based on Liu et al. (2008))

[3, 25] Largest cluster of nighttime records using mean-shift
clustering

Heuristic CDR [26] Location of the more popular of the two cell towers
with the most records during non-work time

[27] Most frequently communicated tower during nights
of weekdays, and weekends over the study period

[28] Most frequent location during night time

[29] Most common visited locations during night time

[30] Anchor point determination model (cell tower
location satisfying specific rules of call count)

Passive GPS [31] The centroid of the most visited 20 × 20 m cell
during night hours

Smart card [32] Center point-based HDA (iteratively updated
centroid between pairs of subway stations)

[33] Most visited transit station

[34] Most popular transaction place (overall and active
days); place with most nighttime activity

Social media [35, 36] Place with the most check-ins on 3 social networks

[37] Place with the most check-ins during midnight

[17] and older patients [40], raising concerns about sample representativeness [16]. In ad-
dition, GPS travel surveys do not represent longitudinal data. These issues make super-
vised HDAs much less popular in the research literature.

2.1.2 Unsupervised methods
Basic assumptions
Due to the difficulty in obtaining high-quality home location data at a large scale, re-
searchers have relied heavily on unsupervised HDAs. These methods necessarily depend
on a set of assumptions about people’s home locations that are found throughout the re-
search literature [3, 29, 37]. These include:
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• People are more likely to stay at their homes during the off-work period. This
normally includes nighttime, but in some cases, can be extended to weekends or even
the office after-hours.

• The most observed place for an individual, especially at night, is usually their home.
These assumptions intuitively make sense, although there are several exceptions, such as
people who work from home or who work night shifts. However, since these assumptions
are almost always used in unsupervised HDAs, we consider these assumptions to be ax-
iomatic.

Dataset types
The input datasets for unsupervised HDAs are abundantly available on scale, including
longitudinal data [31, 41], although they lack the demographics and travel preferences of
the subjects [27, 42, 43]. Some of the most prominent dataset kinds include the following:

• Social media location data include posts on websites such as Twitter, Foursquare, and
Flickr that a user tags with the location of the mentioned place [41]. They are usually
available at large scales and in several time periods but are usually spatiotemporally
sparse and biased toward certain demographics for effective home location detection,
and access to the data can disappear quickly [44–46].

• Smart card data include transactions at payment booths such as at subway stations
and inside public transit buses [32]. These are usually anonymized and frequent, but
they can only be used to infer public transit mobility patterns adequately as opposed
to home locations.

• Call detailed records (CDRs) provide geolocation data at the cell tower level. Such
datasets are characterized by large spatiotemporal density and coverage, but the
quality of the detected homes is subject to the spatial distribution of the cell towers
rather than the users’ activity patterns [26]. Nonetheless, they have been used
extensively to understand people’s travel and activity patterns during the recording
period [26–28].

• Passively collected GPS data are usually obtained from mobile devices such as
smartphones and tablets and automobiles that have location-based services (LBS)
enabled [43]. GPS data overcomes the main problem with CDRs by providing the
exact locations and overcomes geotagged posts by providing continuous and
high-frequency records. Further, GPS can provide more detailed information about
the movements of individuals, including their speed, direction, and stop durations
along the way. Therefore, it has seen a substantial increase in availability and use in
the last decade. In this study, we use this data kind for our analysis.

Method types
Density-based clustering methods are commonly used in the literature to estimate home
locations, such as DBSCAN [47] (used in [48]) and mean shift clustering [49] for home
detection (used in [50]).

Mean-shift clustering [49] is a popular density-based clustering method that has been
used in several studies [3, 20, 50, 51], probably owing to its simplicity in having just one
main parameter—the radius of flat kernel for kernel density estimation (KDE). DBSCAN
[47] and its variants (e.g., [48, 52]), on the other hand, have two main parameters – the
maximum intra-cluster distance at each iteration and the minimum number of points in
an acceptable neighborhood. In both these methods, the results of the clustering can be
substantially sensitive to the choice of these parameters [53].
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Heuristic algorithms are widely applied to detect home locations, which rely on various
decision rules on the time and frequencies of user records in specific areas during ob-
servations [12, 16, 22, 43]. The most intuitive assumption is that users have the highest
records at home, and their home locations are identified based on the density of the data.
Different variants are proposed by shifting the rules, such as determining their home as
locations with the highest number of nighttime records or the most distinct days.

Li et al. (2008) [54] developed a rule-based method for detecting ‘stay points’ which rep-
resent spatiotemporal regions of low movement and are thus helpful in trip segmentation.
These stay points are computed by identifying the breaks in the time gap and distance
between the first and last point of a sequential set of points based on given thresholds of
time gap (30 min) and distance (200 m). This method was further modified by Sadeghi-
nasr et al. (2019) [43] who clustered these stay points using hierarchical clustering into
stay regions and identified home locations as the most visited stay regions during night-
time. Other methods, such as the center-point algorithm by Zou et al. (2018) [32], which
uses one’s middle point of the first to-subway trip’s origin and the last from-subway trip’s
destination to represent the home location, are easy to compute but have been shown to
perform fairly well up to a large radius of tolerance (e.g., [32, 44]).

Current studies that compared different HDAs already demonstrated that the results
are sensitive to criteria choice, such as night time periods. For instance, Vanhoof et al.
[22] primarily focused on assessing the effects of different night periods on the home de-
tection results while ignoring the limitations of the HDA. Pappalardo et al. [12] compared
five similar HDAs and validated the results with multiple small-scale datasets, yet they ne-
glected to consider factors such as data quality and period. In contrast, this study concerns
comparing the HDAs, with a particular emphasis on testing across scenarios spanning dif-
ferent regions, data periods, and data quality.

2.2 Algorithms used in this study
Five HDAs are compared in this study, including a simple baseline algorithm, three al-
gorithms listed in the ‘Passive GPS data’ section of Table 1, and a derivative of one of
those algorithms as proposed in this study. The steps involved in these algorithms, la-
beled as A1, . . . , A5, are illustrated in Fig. 2. The same input dataset is used for each of
these HDAs. For clustering-based methods, the implementations of scikit-learn, a
popular Python-based machine learning library, are used. The common set of users re-
sulting from each of these HDAs is used for subsequent performance assessment.

2.2.1 A1: centroid method
This is the simplest of all the considered HDAs and is meant to serve as the baseline for
comparison with the other algorithms. In this case, a user’s home location is simply com-
puted as the centroid (or alternatively the medoid) of all their nighttime ping locations
over the entire study period, following the assumption that a person’s most probable lo-
cation during the night is their home. This is similar to, but not exactly the same as, most
popular cell tower-based algorithms in the case of CDR data [27–29].

2.2.2 A2: grid frequency method
This HDA was used in Zhao et al. (2022) [31]. They first divided the study region into
a square grid with cells of 20 × 20 meters. They considered the home location as the



Verma et al. EPJ Data Science            (2024) 13:6 Page 7 of 22

Figure 2 Flowchart of the steps of the HDAs compared in this study. The values shaded in grey depict the
algorithms’ parameters. The dashed lines between two HDAs depict the same or equivalent step between the
two HDAs

mean location of the pings of the cell with the most nighttime pings over the study dura-
tion.

2.2.3 A3: all-time clustering method
This method involves finding the most popular cluster of all the pings in the nighttime data
taken together without distinguishing the temporal variation in locations during this night
time. Though several clustering methods exist as explained in Sect. 2.1.2, this method par-
ticularly uses mean-shift clustering with the same parameters as in [3, 23, 50]. All these
studies use a flat kernel with a radius of 250 m for KDE. In this study, other parameters in
this method such as the sampling strategy for the KDE process and the number of itera-
tions in the hill climb process are controlled to prefer accuracy over runtime speed.

2.2.4 A4: binned clustering method
HDA A3 uses clustering of all the nighttime points at once, meaning it does not distin-
guish between the following cases: (i) a scenario where most of the nighttime points are
concentrated in a small time period (e.g., 10:00–10:20 PM) where the user might possibly
be in movement and thus more likely to enable LBS, and (ii) a scenario where the same
number of nighttime points as in case (i) are distributed evenly across the night. It can be
argued that the latter case provides more confidence in the inferred home location since
it relies on better-sampled data.

To overcome this limitation of A3, we propose an adaptation in the form of A4 where the
nighttime points are collected at fixed time intervals over the study period. The centroids
of these locations are computed and used as inputs in mean-shift clustering. Similar to
A3, the centroid of the largest cluster is labeled the home location. This HDA introduces
a parameter in addition to those of A3—the binning period, which is taken as 30 minutes
in this study.
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2.2.5 A5: stay-point method
This HDA was proposed by Sadeghinasr et al. (2019) [24] where they used the stay point
detection algorithm proposed by Li et al. (2008) [54] to first identify stay points and then
cluster the stay points using hierarchical clustering into stay regions by setting a threshold
of a maximum intra-cluster distance of 250 m. Then, they considered the home locations
as the most visited stay regions during nighttime (8 PM–5 AM) which had a visit duration
of at least 3 hours during the nighttime or a total duration of at least 24 hours.

3 Experimental setup
3.1 Data description
3.1.1 Smartphone GPS data
This study uses GPS trace data collected using LBS on smartphones and tablets, ag-
gregated and anonymized by a private vendor. The trace table (illustrated in Table 2)
comprises events (called ‘pings’ here) which include a mobile device’s (called ‘user’ here)
anonymized identifier, latitude and longitude of the point, an estimate of the radius of GPS
recording error for that ping, and the Unix-style timestamp of the event (seconds passed
since Jan 1, 1970 UTC+00:00). More details about the data are provided in the Supple-
mentary Sect. 1 in Additional file 1.

LBS data is usually slightly erroneous due to inaccuracies in the GPS logging system and
thus needs preprocessing for better results. The preliminary data filtering done to create
the dataset samples includes removing pings with an error radius of more than 50 m, those
with segment speed of more than 50 m/s (180 km/h), and those with acceleration outside
the range of –10 to 10 m/s2 (based on works like [55, 56]). For reference, for the ith ping
in the sequence trace with coordinates xi = (xi, yi) and timestamp ti, its speed is given by
vi = d(xi , xi–1)

ti–ti–1
and the acceleration by ai = vi–vi–1

ti–ti–1
, where d is the Haversine distance function.

By definition, v1 = a1 = a2 = 0.

3.1.2 Study regions and periods
Four U.S. metropolitan statistical areas (MSAs) are assessed in this study—(i) Austin, TX,
(ii) Baton Rouge, LA, (iii) Houston, TX, and (iv) Indianapolis. The counties included in
these MSAs, their total area, and their total population (as of the 2020 5-year estimates of
the American Community Survey (ACS)) are shown in Fig. 3.

These regions are chosen from the cities with available land use and smartphone GPS
data so as to cover a diverse set of scales and land use patterns. Baton Rouge has a large
but sparsely populated MSA, whereas Houston has a much larger MSA. Austin and Indi-
anapolis lie in between but represent cities with very different land use distributions and
urban layouts. Houston is known for its sprawling layout, with significant suburban devel-
opment extending into multiple counties. The city is characterized by a lack of zoning laws,

Table 2 A sample of the GPS data used in this study. The coordinates have been fuzzed for
illustration

Row Device ID Longitude Latitude Timestamp (s) Error radius (m)

1 107258c2-c027-41c9-aa4d-166951bd5007 –86.964964 40.064320 1552588288.0 22
2 ad96c788-965d-4074-bf28-306a3cf6cb07 –85.982222 39.848495 1552594937.0 6
. . . . . . . . . . . . . . . . . .
. . . d3286a43-a68c-42cf-ba71-e838e2276b1a –86.514245 41.672555 1552579184.0 7
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Figure 3 Study regions showing themetropolitan statistical area (MSA) counties and bounding boxes. The
population density of the census block groups as per ACS 2020 data is colored in red. The regions covered in
the land use maps are shaded in cyan

which has led to a unique pattern of residential, commercial, and industrial areas often be-
ing interspersed [57]. Austin is characterized by a higher density in the city center, with the
urban core being home to a mix of residential, commercial, and cultural facilities (towards
mixed-use developments) [58]. By conducting analysis for these four cities with different
socio-economic contexts, underlying data characteristics, and scale and complexity, we
ensure that our tests are robust and generalizable across various urban settings.

In addition to spatial variation, the datasets used for testing the HDAs are created so as
to include temporal variation as well. Particularly, two case studies are chosen to represent
the potential temporal difference of HDA outputs before and after two specific events. The
first event is Hurricane Ida which caused damage in southeastern Louisiana upon land-
fall on August 29, 2020, causing waves of evacuation and displacement around the region,
including in Baton Rouge. The periods depicting stability before the landfall, during the
mobilization period around landfall, and long after the event are considered in this anal-
ysis.

The second event is the first government-mandated lockdown in Indiana on March 16,
2020 following the outbreak of COVID-19 in the United States which was known to have
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Table 3 Description of the study datasets (combinations of region and analysis period)

ID Region Period #(Days) #(Users) (k) % of Popu. #(Pings) (M)

D1 Baton Rouge, LA Aug 1–25, 2021 25 165.5 19.8% 245.8
D2 Aug 26–Sep 7, 2021 13 87.7 10.5% 65.5
D3 Sep 8–Nov 30, 2021 84 316.5 37.9% 1120.0

D4 Indianapolis, IN Mar 1–15, 2020 15 273.9 13.4% 101.6
D5 Mar 16–31, 2020 16 251.6 12.3% 127.2
D6 Mar 1–31, 2020 31 445.1 21.7% 241.6

D7 Austin, TX Jul 1–7, 2021 7 166.9 7.7% 97.6

D8 Houston, TX Jul 1–7, 2021 7 538.8 7.7% 331.1

drastically reduced mobility. A before-after comparison of the HDAs of these events is
deemed useful in explaining the robustness of the HDAs. This is explained in Sect. 4.3.

With these two combinations of study regions and periods, a total of 8 datasets are pre-
pared for testing the HDAs. These are shown in Table 3. The number of unique devices
(referred to as ‘users’) obtained after cleaning the GPS data and their ratio to the regional
population are also shown. Similarly, the number of filtered pings is also shown for each
dataset, reflecting the scale of variation in the test datasets. Note that the pings are filtered
within the regions’ bounding boxes (shown in green dashed outlines in Fig. 3) instead of
filtering within the MSA counties for the sake of performance speed.

3.2 Performance metrics
In the absence of ground-truth information on device users’ home locations, the accuracy
of the HDAs is tested using three approximate or pseudo-performance metrics. All these
are based on some assumptions that are generally considered valid intuitively and in the
literature.

3.2.1 M1: residential detection rate
This metric makes use of the idea that a good HDA should detect more homes in a city’s
residential areas as opposed to other land use categories such as commercial, industrial,
and forests. This metric is given by the proportion of homes detected by a given HDA in
the residential area of the region based on its land use distribution (see Supplementary
Sect. 2.1 for more details). To offset some potential mislocation errors due to the nature
of the GPS data and the often convoluted land use maps, tolerance buffers of different
widths are also considered in the calculation. This results in the following definition of
the performance metric:

M1(A) =
rmax∑

r=0

w(r)ρA(r), where w(r) =
rmax – r∑rmax

r=0 rmax – r
. (1)

Here, for buffers of width r, ranging from zero to rmax, ρA(r) is the proportion of homes
detected in the combined buffered residential area detected by HDA A. For instance, a
value of M1(A) = 0.4 can be roughly interpreted as 40% of the users’ home locations de-
tected by HDA A lying within a region of the city classified as ‘residential’. In the subse-
quent experiments, the value of rmax is taken as 50 m, with buffer width increments of 5 m,
the same as the maximum allowed error in GPS spatial accuracy as explained in Sect. 3.1.1.
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3.2.2 M2: proximity to daily data
This metric uses the idea that a home location should be the origin/destination of one’s
daily trips. Given a user’s home location detected by a given HDA, this metric involves
computing its distance to the closest ping in that user’s nighttime pings on each day in the
study period using Haversine distance. Then, the median of these daily shortest distances
is taken for each user. The cumulative density function (CDF) of this median shortest
distance is drawn and the normalized area under the curve is computed. This represents
the proximity performance metric, given by the following:

M2(A) =
1

δmax

∫ δmax

δ=0
F�

A (δ) · dδ, where δA,i = q0.50
t∈1:nT

(
min

xi,t∈Xi,t
‖hA,i – xi,t‖2

)
. (2)

Here, F�
A is the CDF of the median shortest distance of the users detected by HDA A,

δA,i is the median shortest distance for the user i whose home location is given by hA,i, Xi,t

is the set of nighttime pings at night t, q0.50 represents the 0.50 quantile (that is, median)
over all study days up to nT , and δmax is a reasonable upper limit, taken as 5 km.

3.2.3 M3: home stay duration
This metric is based on the idea that people typically spend the majority of their nighttime
at their homes. For a given user, we first identify the locations they visit during nighttime
hours using a stay region detection method similar to Sadeghinasr et al. (2019) [43] but
with an adaptive linkage calculation (details of this method are provided in Supplementary
Sect. 2.2). The stay region closest to each user’s detected home location is assigned as their
‘home region’. With the detected stay regions, the performance metric for each user is
simply the ratio of time outside the home region to the total time spent in all stay regions.
The overall performance metric is given by the area under the curve of the CDF of this
value:

M3(A) =
∫ 1

0
Fτ

A(r) · dr, where rA,i =
τ (ChA,i )∑Ki
k=1 τ (Chk,i )

. (3)

Here, Fτ
A is the CDF of the ratio, rA,i, of time (τ ) spent in the home stay region, ChA,i ,

to the maximum time spent in any stay region Ck,i over all the users i detected by HDA
A, and Ki is the total number of stay regions detected for user i. Similar to M1 and M2, a
higher value of M3 indicates a better HDA.

4 Results
The HDAs listed in Sect. 2.2 are compared on the basis of their precision, as approximated
by the three performance metrics in Sect. 3.2 and their sensitivity to data quality. These
are described in the subsequent sections.

4.1 Performance comparison
The visual comparison of the performance metrics M1, M2, and M3 across the HDAs over
all the datasets is shown in Fig. 4. The generating curves of these metrics are provided
in Supplementary Fig. 2. In Fig. 4, the size of the radar polygons depicts the overall per-
formance of an HDA, while the skewness of the polygons hints at the differences in the
behavior of the HDAs across different datasets.
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Figure 4 Performancemetrics for the HDAs across the study datasets. For M1, the dashed black line represents a
uniform random selection algorithm based on the residential area buffers up to 50 m. The datasets of the
same city are grouped in cyan

4.1.1 Overall differences by HDA
The findings from the plots in Fig. 4 are diverse and vital. First, A1 consistently performs
the worst in these overall results. This is expected, as A1 is a very straightforward HDA
with several key limitations (i) It is difficult to find the most frequent place among GPS
points is not easy due to high data precision; (ii) The centroid may not necessarily be
the most probable location; (iii) The results of this method are heavily susceptible to dis-
turbances due to outliers; (iv) This method does not distinguish between spatiotemporal
regions of stay and movement. For people with high movement during the night, the mean
value of the coordinates can shift the detected home substantially far away from the user’s
trajectory. This explains why A1 performs substantially worse in the case of M2 compared
to the other HDAs, since M2 directly involves computing the distance of the detected
home location with the closest nighttime trajectory point.

The performance of the other algorithms is largely similar, with some exceptions. Algo-
rithm A4 consistently performs better than the others, as is evident from the largest radar
polygons corresponding to A4 in the three metrics. In particular, although A4 requires a
data filtering criterion on its base HDA A3 and thus operates on fewer data points than
A3, it performs better than that. This might be attributed to the focus on data quality over
quantity by discretizing the data temporally, as explained in Sect. 2.2.3. This is important
because it is possible for users to have high LBS activity during traveling (e.g., for navi-
gation services) which may overshadow the location data during stay periods such as at
home. Since traveling generally occurs far from home, all HDAs other than A4 are more
likely to consider these irrelevant points for the home detection process.

This bias is reduced to a lesser extent in A3 and A5 that rely on clustering. This pos-
itive impact of discretization is also evident in terms of space. A2, which is a very sim-
ple heuristic that only involves finding the most visited grid cell, i.e., the discretization of
space, performs, with metric values finishing close to A4 in most cases.

The rule-based HDA A5 is generally found to perform slightly worse than A3, although
this pattern reverses in the case of M2. Both A3 and A5 involve clustering, but the order
and kind of clustering are different between the two. It may be argued that the time and
distance-based thresholds involved in the stay point detection step of A5 might hamper
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the performance of the algorithm since those thresholds do not take into account the con-
tinuity of the data.

4.1.2 Differences by dataset
The radar plot in Fig. 4 also shows the significant differences in the performance of the
same HDA in different datasets. Notably, all the metrics are observed to be the highest in
the case of D5. It should be noted that datasets D4, D5, and D6 have the same underlying
urban land use and transportation networks. D5 corresponds to the period of reduced
mobility and high stay-at-home rates during the surge of COVID-19 in the Indianapolis
region. It includes the date of the first death related to COVID-19 recorded in the region
on March 16, 2020, and the imposition of the government-mandated lockdown on March
23 [59]. Since people were more likely to stay at home during the period of D5, the data
quality for the HDAs was substantially better than the other datasets, making it easier for
all the HDAs to perform the best. This is made further prominent in the stark difference
between D4 and D5 in the value of M3 which depends on the time spent at home.

Moreover, the performance metric values for D6 are consistently near the corresponding
values of D4 and D5. This makes sense given that the period of D6 is the union of the
periods of D4 and D5 which are of equal length. This indicates that the better data quality
of D5 does not inordinately skew the performance metrics.

In Baton Rouge, the effect of Hurricane Ian is observed to be small yet important. This is
evident in the higher values of M3 for dataset D2 that corresponds to the period close and
immediately after the hurricane landfall compared to the pre-landfall (D1) and long-term
post-landfall (D3) periods. However, the values of M1 and M2 do not vary significantly
between D1, D2, and D3.

4.1.3 Differences by metric
The ranges and behaviors of the three performance metrics also shed light on the nature
of the analysis of this study. First, M1 has a large range of 0.45 to 0.76. All the tested HDAs
perform substantially better than a random uniform HDA where the residential detection
rate curve is plotted by simply computing the proportion of land use region covered by
residential areas. This is evident in Fig. 4A where the black dashed curve (denoting this
uniform random HDA) is significantly smaller than those of the other HDAs in the plot.
It must be noted, however, that M1 relies on assumptions about home location that might
not always hold true and could have skewed the results. For example, some users may stay
at places other than their homes (such as a hotel or a relative’s residence). Similarly, the
home locations of night-shift workers may be overrepresented in the commercial areas of
a city and thus reduce the value of M1.

The case for M2 is also similar. It has a substantially small range outside of the poorest
performing A1. This could be attributed to the fact that M2 is unidirectional in its utility.
That is, a small shortest distance of trajectory points from home only serves as a necessary
condition for a good HDA, not a sufficient condition. Its computation relies on the distance
to the closest point to the trajectory. Since the home locations are detected based on the
trajectory itself, it is highly probable for an HDA to produce a high value of M2 for a set
of users who do not travel very long distances.
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4.2 Sensitivity to data quality
In the previous sections, we observed the difference in the performance of the test HDAs.
While it was shown that the continuity of data discretized in space and time substantially
influences the goodness of an HDA, there is substantial nuance to the effect of data quality
in terms of overall ping density on this goodness. In this section, we particularly ask the
question: “if an analyst has geolocation data of a specific ping density, which HDA should
they choose for their analysis?”

Building on the notion of ping density, the data quality of a user in this section is defined
as the mean number of pings per night in their data points. Users with more pings on av-
erage are expected to have higher quality data and yield better home location detection
results. At the same time, however, owing to the nature of mobile phone geolocation data,
most users have very few data points, making home detection a difficult task (for refer-
ence, see SM). This means that a good HDA should strike the balance between good data
quantity and quality.

To achieve this, we recomputed the performance of the HDAs on several subsets of the
users by dividing them by their data quality, given by their mean nightly ping count. To
simplify the decision-making for HDA choice, we further computed the mean value of the
three metrics for the subset of users contained in each bin, given by M̄ = 1

3 (M1 + M2 + M3).
The results of these aggregate metrics are shown in Fig. 5.

The findings of this figure are aligned with those in the previous section. First, we see
here that at nearly all levels of data quality, the order of performance is largely consistent
with the overall results shown in Fig. 4. A4 still consistently performs the best, closely
followed by A3 and A2, while A1 and A5 perform considerably worse. When the data quality
is measured in relative terms, i.e., using the ping count distribution of each dataset, the
trends are considerably different (see the Supplementary Fig. 3).

Notably, in Fig. 5A, though A1 performs worse than A5 in the case of M1 and M2, the
trend is reversed for M3. The trends of M3 are also different from those of the other two
metrics in that, unlike them, M3 decreases with increasing data quality. It is likely because
it involves computing the ratio of time spent in the detected stay-at-home region, which
is likely to be exactly the same as the only (or one of the only) stay region detected for
low-quality data users since they do not have enough data, to begin with. In contrast, M1

Figure 5 Impact of data quality on HDA performance. Each value x on the x-axis represents the subset of users
having at least x pings per night on average. (A) Comparison of the mean value (x̄) of each metric across all
the datasets. The shaded regions correspond to the range x̄ ± σ , where σ is the standard deviation across the
datasets (B) Comparison of the mean of the three metrics for one dataset. For reference, the CDF of the users
sorted by the average nightly ping count (x-axis) is shown in the shaded blue curve on the right y-axis
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and M2 rely on the richness of the data in increasing the likelihood of locating a user in a
residential region and closeness to the trajectory respectively.

To compare the overall relative performance of the HDAs, we also computed the mean
value of each of the three metrics across all the study datasets. The result of one dataset D1

is shown in Fig. 5B. Similar results for the other datasets are shown in the Supplementary
Fig. 4. It can be seen that the opposite trends of M1 and M2 with M3 are balanced to some
extent when their values are averaged. There is a steady but small increase variation in the
value of M̄ as the user quality increases in D1. This shows that there is merit in choosing
these metrics as their values do not show any abrupt behavior over different data quality
categories.

This comparison is also helpful in making the choice of data filtering required for any
downstream application of home location detection. For example, suppose we decide that
a mean performance value of 0.8 is acceptable in a dataset similar in ping count distribu-
tion to D1 and an urban land use similar to Baton Rouge. Then, we can refer to Fig. 5B
to see that, for example, for HDA A4, users with at least 50 pings per night would be re-
quired for analysis (dotted vertical line). This corresponds to the 13% best quality users of
the dataset since 87% of the users have fewer than 50 pings (right horizontal dotted line).

4.3 Impact on applications
To see how different HDAs would influence applications of human mobility assessment
and how our performance metrics could help improve the results, we conduct two exper-
iments on common tasks where smartphone data is considered superior to other sources.
These are explained in the subsequent sections.

4.3.1 Hurricane evacuation identification
Large-scale GPS data is used to estimate the evacuation/return patterns during natural
disasters [8, 31]. In this task, a crucial factor is the distance between individuals’ post-
disaster stay locations and original home locations before the disaster.

Here, we calculate this factor based on D1 (before landfall) and D3 (aftermath of Hur-
ricane Ida) using the five test HDAs. Then, we estimate the evacuation ratio using the
threshold, i.e., if the distance between an individual’s pre- and post-disaster home loca-
tions exceeds 1 km, we consider them as evacuated.

We observe that among the five HDAs, A1 and A5 produce significantly different distri-
butions of the distance between pre- and post-disaster homes (see Fig. 6). Even for HDAs
with similar CDF curves, it can be seen from Fig. 6B that they can generate a significant
estimation of evacuation ratio in some areas (e.g., the northwestern part and the south-
ern part of the city). When connecting these results with the observations of Sect. 4.1,
we notice that the HDAs with good and similar performance metrics (namely A3, A4, and
A2) tend to create similar results. In contrast, A1 and A5 result in much higher evacuation
rates. Since evacuation rates are essential in assessing policies and equity issues related to
home evacuation, in-place sheltering, and disaster recovery, it can be imaged that adopt-
ing an arbitrary HDA can yield substantial negative impacts on policymaking [60].

4.3.2 COVID-19 policy impacts assessment
GPS-based cell phone location data has been extensively used to evaluate mobility pat-
terns and potential solutions during COVID-19 [61]. These include evaluating alterations
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Figure 6 Evacuation identification results under different HDAs. (A) CDF of the distance between homes
identified before (dataset D1) and after Hurricane Ida (D3) in Baton Rouge MSA. The threshold to classify users
as displaced (1 km) is highlighted. (B) Identified percentage of users classified as evacuated by census tracts

Figure 7 Consistency of home locations in the Indianapolis region before (D4) and after (D5) COVID-19mobility
restrictions. (A) Percentage of users with consistent home inference in the same zone displayed across
different aggregation levels. (B) Percentage of users with income category mismatches in the inferred home
tract. ‘Low → Mid’ indicates a change from ‘Low’ income category in the restricted mobility period (data D5)
to ‘Medium’ category in the pre-COVID normalcy mobility period (data D4)

in population-wide mobility [62], compliance with COVID-19 policies in various demo-
graphic groups [63], and the spread and associated risk of disease from different regions
[64]. However, erroneous home location inference may lead to inaccurate assessment of
mobility changes and policy compliance of regions or demographics, resulting in resource
misallocation and ineffective policies.

To test this concern, we compare the locations of homes inferred from each HDA in
two periods: the pre-COVID-19 normal mobility period (1–15 March 2020; data D4) and
the post-lockdown mobility period (16–31 March 2020; data D5). Ideally, high proximity
between the homes inferred from both datasets for each HDA should be expected. How-
ever, significant inconsistencies are observed in certain HDAs that may lead to inaccurate
inferences.

To demonstrate the consistency of inferred homes, we report the percentage of users
with home locations within the same zone for each HDA (Fig. 7A). We show the results
for both an aggregated administrated boundary (county) and disaggregated one (tract).
With HDA A1, only 47% of the users exhibit a consistent census tract, while with A5, 56%
of such users were observed. For all remaining users, demographic considerations can be
inconsistent and imprecise. For every HDA at the spatially aggregated county level, more
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than 80% of the users are classified within the same county. At both spatial levels, A4 shows
the highest consistency, with A3 and A2 being comparable. Therefore, for reliable analysis,
this suggests using HDAs A2, A3, and A4 rather than A1 and A5, aligning with the findings
presented in Sect. 4.1.

We further investigate its potential impact on realistic applications, and income-based
inequality assessment, which rely on demographic information inferred from home lo-
cation. Income-based inequalities have been extensively examined using cell phone data
in aspects such as access to opportunities [65], the well-being of individuals [66], emis-
sions [67], and evacuation [50]. An inadequate HDA may result in the misclassification of
users into different income groups, compromising the accuracy of assessing inequalities
and characteristics associated with people from specific income groups.

We assess the percentage of users exhibiting income group discrepancies based on the
median income of inferred home’s census tract for two datasets for an HDA. Income
groups are categorized from the Longitudinal Employer-Household Dynamics (LEHD)
Origin-Destination Employment Series (LODES) dataset, comprising three categories
based on monthly income: low (less than $1250), mid ($1250–$3333), and high ($3333
and above) [68]. Figure 7B shows the percentage of users with inconsistent income group
classification across the two datasets. A minimal proportion of users experienced misclas-
sification between high and low-income groups. However, a significant number of low-
income users were incorrectly classified as middle-income and vice versa, resulting in a
blending of categories and inaccurate assessment of behavior. Both A1 and A5 exhibit the
highest percentage of misclassified users. The consistent performance of A2, A3, and A4

suggests their suitability for studies involving demographics. These findings underscore
the importance and precision of the inferred metrics, as these findings align with the re-
sults from Sect. 4.1.

5 Discussion and conclusion
In this study, we examine several home detection algorithms (HDAs) for mobile phone
geolocation data, an important source that opens novel opportunities on several crucial
topics. To evaluate the quality of identified home locations, we propose three performance
metrics. Each metric corresponds to a feature that the true home location would likely
hold: most identified homes should be located in residential areas (metric M1), the home
should be close to one’s daily trajectories for every day (M2), and people typically spend
most of the nighttime at their homes (M3). We test four representative HDAs together
with one which we propose and calculate the metrics on eight datasets in four US cities
with different urban layouts and population distributions. We also conduct a sensitivity
analysis against data density to understand the impact of data quality on the relative quality
of the detected home locations.

We find that different HDAs, even well-established in the literature, can lead to sig-
nificantly different home location results. Among the five HDAs tested in this study, we
observe that two of them (A1 and A5) consistently perform worse than other algorithms
in all eight datasets. More than 20% of the homes detected by these two HDAs fall out-
side a 2-mile radius from the home locations estimated by the other three HDAs in the
eight datasets. A1 is a simple centroid-based algorithm that is primarily used in call de-
tailed records (CDR) mobile phone data. Its poor performance can be attributed to its
sensitivity to outlier records and a lack of consideration for other data filtering criteria
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and nuances. A5 is a more sophisticated algorithm that uses both clustering and a rule-
based approach to identify the location of the home. The choice of its many parameters
might be attributed to some or all of its poorer performance. The other three HDAs (A3,
A4, and A2) perform similarly to each other. In addition to this, it is found that all three
metrics agree with each other in terms of the rank of the performance, which supports the
strength of their design.

We also propose a new algorithm (A4), which is based on A3 with an additional process
to bin every 30-minute pings to consider spatial data continuity. Under our metrics, we
report that A4 consistently performs better than other HDAs studied. It is worth noting
that by adding the binning process, we also manage to reduce computational time when
compared with A3. Although computational time is not a big concern for this offline task,
it becomes important if the size of the samples is substantially large.

We perform a sensitivity analysis of the data quality to provide useful suggestions to
researchers who might encounter different data collection frequencies and sample rates. It
is found that the order of relative performance remains largely the same even for different
subsets of mobile phone devices ranked by their data quality.

Further, we explore the implications of different HDAs and their corresponding metrics
subsequent applications in human mobility assessment. We use two tasks to build our ex-
periments: evacuation identification and COVID-19 policy impact assessment. There are
two main takeaways: first, the use of different HDAs could significantly influence down-
stream results; second, by preferring HDAs with high (and similar) performance metrics,
the results are more consistent and closer to expected behavior.

We expect our work can provide the following values to researchers and practitioners
who are using HDAs. First, we hope that this study can shed light on a previously unex-
amined issue: the quality of detected homes and their potential influences on findings in
subsequent applications in human mobility assessment. These findings could be different
for different fields. For example, in evacuation assessment, geolocation data may not be
available for a lot of nights. Using a limited amount of data may impact the quality of the
estimated home locations. Second, we recommend that researchers use these metrics to
compare the performance of the used HDA with others for their use case (geographic lo-
cation, time period, and data quality) before finalizing that HDA. In urban planning, for
example, planners might want to select a different HDA based on the data quality thresh-
old they choose for their planning region to estimate home-based trip rates. Third, we
expect our results to establish general ideas about what makes a good HDA. In the litera-
ture, we observe different researchers tend to adopt or even design different HDAs based
on their available data. In this case, information such as data continuity (across different
times of the day) matters more than the data density and can provide useful guidance for
their methodology design. Moreover, since HDAs are commonly shared in many applica-
tions of passively collected human mobility data, we have created an open-source toolbox
[69] to facilitate access to our proposed metrics and different HDAs.

We also recognize some limitations of our study and some related topics that merit fur-
ther examination. First, due to the absence of large-scale true home locations, our evalua-
tion can only be indirect. Note this is also the motivation for performing home detection,
which suggests that this would be a limitation for all HDAs when they are applied in prac-
tice. Here, we introduce the COVID-19 scenario to alleviate this issue as the impact of the
lockdown influence on human mobility is well studied and accepted. Given that the infor-
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mation about people’s exact home locations is very sensitive, we expect the restrictions to
be unlikely to be fully resolved, but we expect future events to provide opportunities to
create more evidence. Second, we recognize that the datasets used in this study may not
reflect the nature, quality, and quantity of data available to other researchers. Finally, our
proposed metrics are ‘necessary’ conditions in the sense that the detected homes are good,
as they align with our intuition of the features that a real home location would follow. It
would be interesting to establish the ‘sufficient’ conditions for an HDA’s results to be ac-
ceptable. To establish such standards, we posit the need for more and diverse empirical
evidence with our proposed metrics.
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