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Abstract
The gravity model of human mobility has successfully described the deterrence of
travels with distance in urban mobility patterns. While a broad spectrum of
deterrence was found across different cities, yet it is not empirically clear if movement
patterns in a single city could also have a spectrum of distance exponents denoting a
varying deterrence depending on the origin and destination regions in the city. By
analyzing the travel data in the twelve most populated cities of the United States of
America, we empirically find that the distance exponent governing the deterrence of
travels significantly varies within a city depending on the traffic volumes of the origin
and destination regions. Despite the diverse traffic landscape of the cities analyzed, a
common pattern is observed for the distance exponents; the exponent value tends to
be higher between regions with larger traffic volumes, while it tends to be lower
between regions with smaller traffic volumes. This indicates that our method indeed
reveals the hidden diversity of gravity laws that would be overlooked otherwise.
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Distance exponent

1 Introduction
Mobility as the fabric of human societies has been studied for understanding the mech-
anism of movements [1–7], diffusive processes [8, 9], and its association with socioeco-
nomic attributes [10–15] at both individual and population levels. Taking advantage of
rich data, several population-level mobility models were developed to describe travel pat-
terns as a function of geographical factors, e.g., population distribution and travel distance.
The gravity model [16–18], intervening opportunities model [19, 20], and radiation model
[4, 21–23] have been the leading concepts for the population-level mobility models [24].

Among such mobility models, the gravity model has remained the representative
population-level model, capturing the traffic in a simple form resembling Newton’s gravity
law; the traffic volume from one region to the other is proportional to the product of pop-
ulation sizes of origin and destination regions and inversely proportional to the distance
between those regions [16, 17]. Precisely, its generalization is written as follows:

Tij = G
mimj

rγ

ij
, (1)
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where Tij is the traffic volume between the origin region i and the destination region j,
and rij is the geographical distance between regions i and j. mi and mj are their popula-
tion sizes or traffic volumes, while G is a coefficient. The distance exponent γ is to denote
the deterrence of mobility on distance, and it usually takes a value ranging from 0.5 to 3
[25]. Note that the deterrence function of the gravity model has been observed in mul-
tiple forms, such as an exponential function [26], a combination of the exponential and
power-law forms [24], and the Hill function [27], besides the common power-law form.
The gravity model has been applied to systems of various spatial interactions, including
urban mobility [28–33], intercity mobility [18, 34, 35], and general inter-regional interac-
tions [36–43].

For most applications of the gravity model, the entire set of data for a given geographi-
cal unit, e.g., cities or countries, has been analyzed to result in a single distance exponent,
effectively ignoring the heterogeneities within the unit. Such heterogeneities can be ac-
counted for by grouping the regions within the unit and then by separately estimating the
distance exponent for each pair of origin and destination groups. This possibility of having
multiple values of the distance exponent within the same unit has recently been suggested
in a theoretical study considering heterogeneous population landscapes [44].

In our work, we test the validity of such “multiple” gravity laws on the commuting data
in the twelve largest cities of the United States of America (USA) only using their traffic
volumes, not the population data. For each city, we first divide urban areas into 10 groups
by their traffic volumes and estimate the value of the distance exponent between each pair
of groups. We find the varying patterns of the distance exponent for all cities analyzed
and their commonality across different cities. Then, we compare the accountability of the
multiple gravity laws to that of the conventional gravity model concerning only a single
distance exponent for the entire city. We also discuss the origin of the multiple exponents
in terms of the core-periphery structure of the city and travel costs. Our findings suggest
that the gravity model on urban landscapes could be fine-tuned to incorporate the broad
spectrum of urban movements for better understanding, estimation, and prediction.

2 Data and methods
We analyze the commuting dataset processed from the LEHD Origin-Destination Em-
ployment Statistics (LODES) data in 2018 [45], where LEHD stands for the Longitudinal
Employer-Household Dynamics project of the United States Census Bureau. The LODES
data is a census survey connecting homes (origins) and workplaces (destinations) at a cen-
sus block group (CBG) level. Here, census blocks are the smallest geographical unit for
sampling the data, and a CBG consists of clusters of blocks, typically containing a few
thousand people [46]. We use the Python module geopandas to derive geometric cen-
troids of CBGs from geographical boundaries of CBGs in 2018 [47]. The LODES data
includes the number of trips between such CBGs.

In our work, we choose the twelve most populated Metropolitan Statistical Areas
(MSAs) in the USA, which we call cities hereafter. For each city, we divide the entire city
into 1 km × 1 km square cells within the MSA boundary in 2018 [48] on the Universal
Transverse Mercator (UTM) coordinate system. Then each cell may contain several CBGs;
the CBGs whose centroids are located in the same cell are merged to represent the traf-
fic volume of the cell. Cells containing no CBGs’ centroids are ignored for the analysis.
Table 1 shows the number of cells and the total number of trips between cells for each
city.
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Table 1 Twelve most populated USA cities for the analysis with information on the number of cells
and the number of trips within each city

City Number of cells Number of trips

New York City 23,642 35,217,720
Los Angeles 6324 18,822,540
Chicago 12,777 15,185,472
Dallas 12,976 11,158,472
Houston 9488 9,222,488
Washington, D.C. 10,875 9,454,492
Miami 3957 8,323,512
Philadelphia 10,162 9,939,204
Atlanta 14,691 8,383,040
Phoenix 5951 7,028,940
Boston 8077 8,237,372
San Francisco 3225 6,530,276

Figure 1 Data analysis framework (a–c) and its application to the case of Chicago (d,e). (a) For a given city,
cells in a square grid are grouped into 10 groups according to their traffic volumes Ti in Eq. (3). The traffic
volume Tij and geographic distance rij between a cell i of group k (red) and a cell j of group k′ (blue) are
identified. (b) Then, the distance exponent γkk′ is estimated using the gravity model in Eq. (5). (c) Estimated
values of the distance exponent, i.e., γkk′ for k, k′ ∈ {1, . . . , 10}, form the exponent matrix � . (d) Conventional
estimation of the distance exponent using the whole set of data for Chicago, resulting in a single distance
exponent γs ≈ 0.53 (dashed line) in Eq. (4). (e) Empirical confirmation of multiple gravity laws within Chicago
with different values of γkk′ for some cases with k = k′ (dashed lines)

We describe the data analysis framework [see also Fig. 1(a–c)]. Each city has N cells, and
the numbers of trips, Ti→j, from the ith cell to the jth cell for the pair of i, j ∈ {1, . . . , N}
are given. Note that Ti→j �= Tj→i in general, since the commuting dataset only describes
one-way trips from homes to workplaces. To illustrate the bidirectional traffic flow, we
symmetrize the traffic volume between two cells as follows:

Tij ≡ Ti→j + Tj→i. (2)
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Note that Tii = 2Ti→i by definition. The total number of trips for the ith cell is obtained by
summing Tij over all js:

Ti ≡
N∑

j=1

Tij. (3)

The conventional gravity model assumes that the rescaled traffic volume between cells i
and j, defined as Tij/(TiTj), decays with the geographical distance between those cells, rij,
as

Tij

TiTj
∝ r–γs

ij for i, j ∈ {1, . . . , N}, (4)

where γs is the distance exponent for the entire set of pairs of cells in the city. Here we have
rescaled Tij by the multiplication of traffic volumes of cells i and j, i.e., TiTj, not by their
populations as mentioned for Eq. (1). We estimate the value of γs by means of the ordinary
least squares linear regression using the equation: log(Tij/TiTj) = A – γs log(rij) + ε with a
constant A and an error term ε. The fitting range of rij is limited to that showing the scaling
behavior. Throughout the paper, we set the lower and upper bounds of the fitting range to
1 km and 50 km, respectively. We also calculate the R2 value to quantify the quality of the
fitting. For the case of Chicago we estimate γs ≈ 0.53 (R2 ≈ 0.17) [Fig. 1(d)].

To investigate the possible variation of the gravity law within the city, we sort the cells
according to their traffic volumes, Ti, and then sequentially group them into 10 groups
with an equal size of N/10. These groups are denoted by Gk for k = 1, . . . , 10, in ascending
order of traffic volumes. The group of k = 1 is for cells with the smallest traffic volumes,
while the group of k = 10 is for cells with the largest traffic volumes. Here we have grouped
cells with respect to their traffic volumes in accordance with the previous theoretical work
[44] that has shown the possibility of multiple gravity laws. We remark that there are al-
ternative grouping methods, e.g., in Refs. [11, 49]. Now we estimate the distance exponent
for each pair of groups, say k and k′, assuming the following functional form:

Tij

TiTj
∝ r–γkk′

ij for i ∈ Gk and j ∈ Gk′ . (5)

This functional form leads to the equation for the linear regression as log(Tij/TiTj) = A –
γkk′ log(rij) + ε. Using the estimated values of γkk′ for all possible pairs of k, k′ ∈ {1, . . . , 10},
we obtain the exponent matrix � = [γkk′ ], as depicted in Fig. 1(c). Note that γkk′ = γk′k as
we have symmetrized the traffic volumes between cells such that Tij = Tji, leaving us with
55 distinct values of γkk′ . In the case of Chicago, different scaling behaviors are observed
with different values of γkk′ . The results for several cases with k = k′ are shown in Fig. 1(e);
e.g., γ1,1 ≈ 0.10 (R2 ≈ 0.014) and γ10,10 ≈ 0.94 (R2 ≈ 0.37) among others. Our data analysis
framework can be applied to any mobility datasets as long as both Tij and rij are available.

3 Results
We apply the data analysis framework described in the previous Section to the twelve most
populated cities in the USA as listed in Table 1. We first observe in Fig. 2 that cells with the
largest traffic volumes are concentrated at one or more centers of the cities. For example,
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Figure 2 Traffic landscapes and exponent matrices for the twelve most populated cities in the USA. Each
panel consists of the traffic landscape of the city on the map (top) and the exponent matrix derived from the
traffic volumes between cells in the city (bottom). In the landscapes, each cell is colored according to the
group it belongs to, following the color bar at the bottom of the figure. A higher value of k indicates the larger
traffic volume of the group. For comparison, we mark the estimated distance exponent using the whole data
of the city by a white bar in the color bar for exponent values

cities such as Dallas and Houston have a single center, while cities like Los Angeles appar-
ently have more than one center and those centers are distributed over the cities. On the
other hand, cells with smaller traffic volumes are scattered over the cities.
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The exponent matrices visualized in Fig. 2 show that for each city the distance exponent
γkk′ has various values according to the group indices k and k′, which clearly evidence the
multiple gravity laws within the city. For comparison, we mark as a white bar the value of
the distance exponent, γs, i.e., when using the whole set of pairs of cells in the city, in the
color bar for the exponent values in Fig. 2. The finding of various values of γkk′ is consistent
with our expectation that various scaling behaviors can be observed within the same city,
depending on the populations or traffic volumes of both origin and destination cells [44].
Thus, our method can indeed reveal the hidden diversity of gravity laws that would be
overlooked otherwise. In addition, one can say that the distance exponent γs might show
an average behavior of the multiple gravity laws.

Interestingly, we find a common pattern in the exponent matrices of different cities,
despite the huge diversity of the population, geographical constraints, and travel patterns
of those cities; e.g., one can see a variety of geographical constraints such as sea, lakes,
mountains, and/or neighboring cities in Fig. 2. To be precise, the value of the distance
exponent γkk′ tends to be higher between groups of larger traffic volumes. The pairs of
groups with large traffic volume and small traffic volume also tend to show higher values
of γkk′ than those between groups with small traffic volumes. A possible explanation for
such observations will be discussed later.

We examine the quality of the distance exponent estimation in terms of R2 values. In
Fig. 3(a), we show the R2 value distribution for γkk′ [Eq. (5)] of each city in a box-and-
whisker plot. The distribution is compared to the R2 value for γs [Eq. (4)] of the same city,
depicted as a black thick vertical line. We observe that the R2 value for γs is not always
better or worse than those for γkk′ . To look at more details, we group 55 exponent values
into two subsets of roughly the same number of pairs; one subset includes 25 cases with
k + k′ > 11 (i.e., pairs for relatively large traffic volumes), and the other subset is for 30
cases with k + k′ ≤ 11 (i.e., pairs for relatively small traffic volumes). As shown in Fig. 3(b),
it turns out that the R2 values for γkk′ with k + k′ > 11 tend to be much larger than that
for γs in most cities, while the R2 values for γkk′ with k + k′ ≤ 11 show the opposite ten-
dency. The larger R2 values for cases with larger k and/or k′ indicate that multiple gravity
laws can explain the mobility pattern for high-traffic regions better than the conventional
gravity model characterized by a single distance exponent. On the other hand, the smaller
R2 values for cases with smaller k and/or k′ might be due to the fact that cells with rela-
tively small traffic volumes are scattered over the cities and mostly located at the periph-
ery.

In order to understand the observed common pattern in the exponent matrices, we con-
sider two main factors, namely, the traffic landscape and the travel cost. We find that the
effects due to the traffic landscape seem to explain the observed exponent matrices to
some extent, which can also be argued in terms of the travel cost. As evident in the traffic
landscapes of Fig. 2, all the cities analyzed might be considered to have a so-called “core-
periphery” structure whether the number of central areas or centers is one or more [50].
We remark that in contrast to cells with large traffic volumes, comprising the center(s),
cells with small traffic volumes are scattered over the cities; see a schematic diagram for
the core-periphery structure in Fig. 4. It implies that travel distances between cells in the
periphery tend to be more diverse than those between cells in the center, thus possibly
weakening the distance dependence of traffic volumes between cells in the periphery. In-
deed, as shown in Fig. 2, the distance exponent γkk′ tends to have smaller values (e.g.,
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Figure 3 R2 values in the distance exponent estimation for the twelve most populated cities in the USA. (a)
The box-and-whisker plot for each city describes a distribution of R2 values for 55 distance exponents in the
exponent matrix, � = [γkk′ ]. The black thick vertical line indicates the R2 value for the distance exponent, γs ,
when using the whole set of data for each city. (b) The same results as in (a) are presented but by separating
the cases with k + k′ > 11 (pink plots) from the other cases with k + k′ ≤ 11 (blue plots)

Figure 4 Schematic diagram for multiple gravity laws in a
centralized urban landscape. The dark shaded circle at the
center and the bright shaded ring at the periphery denote
groups of k = 1 and k = 10, respectively. Distance
exponents γ10,10, γ1,1 , and γ1,10 characterize the distance
dependence of traffic volumes between or within groups.
Arrows visualize some possible trips between or within
groups

� 0.2) for smaller k and k′, while γkk′ has an overall higher value when either k or k′ gets
larger.

Just because the possible travel distances are diverse does not necessarily mean that the
real travel distances are diverse. To examine this issue, we calculate the standard deviation
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Figure 5 Standard deviations of travel distances between groups [Eq. (6)] for the twelve most populated
cities in the USA. The color bar for the distance is in km. Note that cities have different ranges of distance in
the color bar. Standard deviations of travel distances between groups of relatively small traffic volumes are
overall larger than those of relatively large traffic volumes

of travel distances between cells in two groups of k and k′ which is defined as

σkk′ ≡
[∑

i∈Gk ,j∈Gk′ Tij(rij – 〈r〉kk′ )2

∑
i∈Gk ,j∈Gk′ Tij

]1/2

, (6)

where 〈r〉kk′ is an average travel distance between cells in two groups of k and k′:

〈r〉kk′ ≡
∑

i∈Gk ,j∈Gk′ Tijrij
∑

i∈Gk ,j∈Gk′ Tij
. (7)

As shown in Fig. 5, σkk′ tends to have higher values for smaller k and/or k′ in all cities
but Miami. This implies that the diversity of the travel distances between groups seems
to be anti-correlated with the distance exponent values, as expected. As for the average
travel distance 〈r〉kk′ , we find in Fig. 6 that the values of 〈r〉kk′ for small k and k′ are overall
comparable to those for large k and k′, both of which are shorter than those between
groups of small traffic volumes and large traffic volumes. This tendency is denoted by long
and short arrows in Fig. 4. Considering the fact that the dataset analyzed is for commuting
between homes and workplaces, people living in the periphery do not travel so far from
their homes, while people going to work to the center from the periphery (or the other
way around) need to travel farther than others.

Next, we argue the effect of the travel cost for understanding the observed exponent ma-
trices. The larger value of the distance exponent implies the stronger effect of the distance
on the traffic volume, e.g., due to the higher travel cost per distance traveled. Here the
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Figure 6 Average travel distances between groups [Eq. (7)] for the twelve most populated cities in the USA.
The color bar for the distance is in km. Note that cities have different ranges of distance in the color bar.
Average travel distances between groups tend to be the largest between groups with the largest traffic
volumes and the smallest traffic volumes than other pairs

travel cost can be measured in terms of elapsed time or transportation cost. In this sense,
the larger values of the distance exponent within central areas or between central and pe-
ripheral areas could be due to the higher travel cost per distance. On the other hand, the
smaller values of the distance exponent between peripheral areas could be partly due to
the lower travel cost per distance. These arguments might be the case considering various
factors in the central areas such as congestion, traffic signs, and speed limits that tend to
increase the travel cost [51]. On the other hand, travels between peripheral areas tend to
suffer from such factors less often, e.g., by taking highways. Yet our explanation is specu-
lative at most, calling for more detailed empirical analyses in the future.

4 Discussion
In summary, we have devised the data analysis framework for urban mobility patterns and
applied it to the dataset of the twelve most populated cities in the USA. We have found
that the intra-city mobility patterns can be successfully characterized by multiple gravity
laws, which means that the distance exponent value depends on the traffic volumes of
the origin and destination regions within the same city. These findings are in contrast to
the conventional gravity model characterized by a single distance exponent for a given
dataset or area of interest. The common pattern in the distance matrices of different cities
is observed, implying some common mechanisms behind such observations.

The dataset we have analyzed has some limits. First, it includes only trips for commuting,
but not other kinds of mobility such as shopping or tourism. Second, the dataset does not
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provide detailed information on the travel trajectory and cost, hampering further analysis
to study the mechanisms for the multiple gravity laws.

In particular, information on travel trajectories within city centers and peripheral ar-
eas as well as between centers and peripheral areas must be relevant to understanding
microscopic mechanisms behind the observed common pattern in exponent matrices.
For example, with such information, one could study in more detail the impact of traf-
fic conditions along trajectories between regions on their traffic volumes. Also, different
geographical features, such as mountains and lakes, among cities might affect the travel
trajectories in such cities, hence help us better understand the variation in our empirical
findings. This approach will be complementary to the typical framework of gravity models
only considering Euclidean distances between regions in the city.

Our findings suggest that the variation of distance exponent values can be used as an
indicator to measure the appropriate dispersion of travel costs, as city centers with high
traffic volumes tend to have large values of the exponent. For example, the difference in
the exponent values before and after introducing new public transportation, e.g., subway
or high-speed train, may be used to infer whether the new transportation has improved
or redistributed the travel costs across the city.

Finally, we discuss possible future works. To investigate the mechanisms for the mul-
tiple gravity laws within the cities, one can study mathematical models considering the
heterogeneous core-periphery structure of urban population and/or different travel costs
depending on the mode of travel, etc. Based on the understanding of the mechanisms, one
is expected to enhance the prediction and optimization of the mobility pattern within the
city.
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39. Palchykov V, Mitrović M, Jo H-H, Saramäki J, Pan RK (2014) Inferring human mobility using communication patterns.
Sci Rep 4:6174. https://doi.org/10.1038/srep06174

40. Lee SH, Ffrancon R, Abrams DM, Kim BJ, Porter MA (2014) Matchmaker, matchmaker, make me a match: migration of
populations via marriages in the past. Phys Rev X 4(4):041009. https://doi.org/10.1103/physrevx.4.041009

41. Prieto Curiel R, Pappalardo L, Gabrielli L, Bishop SR (2018) Gravity and scaling laws of city to city migration. PLoS ONE
13(7):0199892. https://doi.org/10.1371/journal.pone.0199892

42. Park HJ, Jo WS, Lee SH, Kim BJ (2018) Generalized gravity model for human migration. New J Phys 20(9):093018.
https://doi.org/10.1088/1367-2630/aade6b

43. Kim H, Hong I, Jung W-S (2019) Measuring national capability over big science’s multidisciplinarity: a case study of
nuclear fusion research. PLoS ONE 14(2):0211963. https://doi.org/10.1371/journal.pone.0211963

44. Hong I, Jung W-S, Jo H-H (2019) Gravity model explained by the radiation model on a population landscape. PLoS
ONE 14(6):0218028. https://doi.org/10.1371/journal.pone.0218028

45. United States Census Bureau (2018) LODES (LEHD origin-destination employment statistics) dataset.
https://lehd.ces.census.gov/

46. United States Census Bureau (2013) Geographic areas reference manual: census block and block groups.
https://www2.census.gov/geo/pdfs/reference/GARM/Ch11GARM.pdf

47. United States Census Bureau (2018) Tabblock shapefiles in TIGER/line files archive.
https://www.census.gov/geographies/mapping-files/2018/geo/tiger-line-file.html

48. United States Census Bureau (2018) Core based statistical areas in cartographic boundary files.
https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html

49. Prieto Curiel R, Patino JE, Duque JC, O’Clery N (2021) The heartbeat of the city. PLoS ONE 16(2):0246714.
https://doi.org/10.1371/journal.pone.0246714

50. Louf R, Barthelemy M (2013) Modeling the polycentric transition of cities. Phys Rev Lett 111(19):198702.
https://doi.org/10.1103/PhysRevLett.111.198702

51. Çolak S, Lima A, González MC (2016) Understanding congested travel in urban areas. Nat Commun 7(1):10793.
https://doi.org/10.1038/ncomms10793

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.physrep.2023.02.002
https://doi.org/10.1371/journal.pone.0086026
https://doi.org/10.1140/epjds/s13688-019-0216-6
https://doi.org/10.1088/1742-5468/2008/02/p02002
https://doi.org/10.1088/1742-5468/2009/07/l07003
https://doi.org/10.1038/srep00902
https://doi.org/10.1038/srep06174
https://doi.org/10.1103/physrevx.4.041009
https://doi.org/10.1371/journal.pone.0199892
https://doi.org/10.1088/1367-2630/aade6b
https://doi.org/10.1371/journal.pone.0211963
https://doi.org/10.1371/journal.pone.0218028
https://lehd.ces.census.gov/
https://www2.census.gov/geo/pdfs/reference/GARM/Ch11GARM.pdf
https://www.census.gov/geographies/mapping-files/2018/geo/tiger-line-file.html
https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html
https://doi.org/10.1371/journal.pone.0246714
https://doi.org/10.1103/PhysRevLett.111.198702
https://doi.org/10.1038/ncomms10793

	Multiple gravity laws for human mobility within cities
	Abstract
	Keywords

	Introduction
	Data and methods
	Results
	Discussion
	Acknowledgements
	Funding
	Abbreviations
	Data availability
	Declarations
	Competing interests
	Author contributions
	Author details
	References
	Publisher's Note


