
Shekhtman et al. EPJ Data Science           (2023) 12:16 
https://doi.org/10.1140/epjds/s13688-023-00392-8

R E G U L A R A R T I C L E Open Access

Percolation framework reveals limits of
privacy in conspiracy, dark web, and
blockchain networks
Louis M. Shekhtman1* , Alon Sela2 and Shlomo Havlin3

*Correspondence:
lsheks@gmail.com
1Network Science Institute,
Northeastern University, Boston,
USA
Full list of author information is
available at the end of the article

Abstract
We consider the limits of privacy based on the knowledge of interactions in
anonymous networks. In many anonymous networks, such as blockchain
cryptocurrencies, dark web message boards, and other illicit networks, nodes are
anonymous to outsiders, however the existence of a link between individuals is
observable. For example, in blockchains, transactions between anonymous accounts
are published openly. Here we consider what happens if one or more individuals in
such a network are deanonymized by an outside investigator. These compromised
individuals could then potentially leak information about others with whom they
interacted, leading to a cascade of nodes’ identities being revealed. We map this
scenario to percolation and analyze its consequences on three real anonymous
networks—(1) a blockchain transaction network, (2) interactions on the dark web,
and (3) a political conspiracy network. We quantify, for different likelihoods of
individuals possessing information on their neighbors, p, the fraction of accounts that
can be identified in each network. We then estimate the minimum and most
probable number of steps to a desired anonymous node, a measure of the effort to
deanonymize that node. In all three networks, we find that it is possible to
deanonymize a significant fraction of the network (> 50%) within less than 5 steps for
values of p > 0.4. We show how existing measures and approaches from percolation
theory can help investigators quantify the chances of deanonymizing individuals, as
well as how users can maintain privacy.
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1 Introduction
For many forms of modern communication it is difficult for an individual to avoid partic-
ipating in an open network where interactions can be observed by others [1–5]. This is
also true for many networks where individuals carry out illicit interactions such as trans-
actions through blockchain-based cryptocurrencies, communications on the dark web,
and communications via anonymous email accounts or pre-paid cell phones. In all of
these cases, the network itself is visible or can be obtained by authorities. Thus, the main
method through which individuals, especially those carrying out illicit dealings, maintain
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anonymity is by ensuring that authorities cannot link them to their accounts in the anony-
mous observed network [6–8]. At the same time, in many of these networks the very act
of interacting with another party via a network link will require the two individuals at the
ends of the link to exchange some information that could enable them to identify each
other [9]. Thus, if one individual is identified, it may, with some probability, be possible to
obtain information on some of her neighbors with whom she interacted [10].

For example, if a physical item is purchased via an anonymous transaction network e.g.,
blockchain cryptocurrencies [11, 12], then the buyer must provide a shipping address to
receive the item, sharing information that can reveal their location and therefore iden-
tity. Likewise, if two individuals communicate via phone or text messages, then it is likely
that they possess some knowledge of the person on the other end of the line. Finally, in
the case of online interactions, if user A’s computer is hacked, then A’s identity might be-
come known to the hacker. The hacker could then search for additional information on A’s
computer e.g., email correspondence or private messages through online forums, to learn
the identities of other individuals who interacted with A. After doing so, the hacker could
then attempt to hack into the computers of these individuals (e.g., via a Trojan horse email)
and potentially traverse the network of A’s contacts. Furthermore, the very fact that A was
hacked could also be useful in hacking the neighbors of A, as individuals are more likely
to trust emails from a known source [13]. Similarly, in the context of criminal [14, 15], ter-
rorist [16, 17] or conspiracy networks [18], if a set of individuals interact via anonymous
communications, should one member of the group be identified, they could potentially be
followed or interrogated leading to information on other individuals, who could then also
be monitored to identify additional members of the network, and so on. Other motivating
cases are users of burner phones who do not provide their names, but whose calls can be
tracked; anonymous email accounts where a name is not provided, but a user’s messages
may be saved by the email provider; Telegram messenger, where anonymous users interact
in public groups; and other criminal or conspiracy networks.

Some approaches have considered deanonymizing the individuals behind nodes in a net-
work, specifically in the context of cryptocurrencies [19]. For example, [20] identified a few
heuristics that can link multiple accounts as belonging to the same individual and others
have noted that by studying the time when a transaction is submitted to the blockchain
network an account’s identity and IP address can be determined [21]. However, users have
often found ways to overcome these issues, such as by using private browsers like Tor to
access the bitcoin network [22]. Outside of cryptocurrencies, several works have consid-
ered how to identify individuals based on their interactions [9, 23–26], though these works
have not presented a quantitative framework to assess the chances of successful identifi-
cation, the fraction of nodes that can be identified, and the effort necessary to do so. Here
we show that the question of anonymity of network actors, and the corresponding ability
of a party seeking to deanonymize the individuals based on information from their neigh-
bors, can be analyzed and quantified using tools and methods from percolation theory
of statistical physics [27–30]. Furthermore, we demonstrate that classical quantities from
percolation theory provide crucial methods to quantify the extent to which anonymity
can be maintained among individuals in real networks. Aside from the giant component,
we also explore path lengths as a proxy of the effort and resources needed to identify an
individual, as well as consider a search process to estimate a ‘realistic’ path length that in-
corporates the fact that investigators are likely to reach dead ends along the way in their
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Figure 1 Giant Component and deanonymization. (a) Illustration of an anonymous network where the
observed layer (blue) represents the network of interactions between anonymous actors; while the
deanonmyizable layer (pink) is the subset of interactions where individuals have knowledge about their
neighbors that an investigator could exploit. Theoretically, based on the observed network an investigator
who knows the identity of node A could use this information to obtain the identity of node E by first
determining the identity of one intermediate node (D). However, in practice, based on the deanonymizable
layer the investigator would need two intermediate nodes (F and D) to identify node E since D did not reveal
their identity to A in their interaction. (b) Demonstration of the process through which deanonymization
could occur. In the initial network (i) no users are known. In (ii) after investigators successfully identify node A,
this node is marked green meaning it is known and investigators can then use information from node A to try
and traverse the network. Initially all links are unknown and thus marked red. Green links represent links
where users have provided information about the neighbor at the other end and green nodes are identified
nodes. In (iii) node B is successfully identified through information obtained via a link from node A. Next, in
(iv) node B provides information about node C, who is also shown as identified in subplot (v). Finally, node C
provides information leading to the identification of node D in (vi)

investigation. In contrast, to previous works, our approach is fundamental to the nature of
privacy interactions when counter-parties must have information about one another and
the network of interactions can be observed.

We demonstrate our general framework in Fig. 1, enabling us to quantify the extent to
which information on the network can be exploited and the likelihood of individuals being
identified by their neighbors. We apply our percolation theory approach on three examples
of real-world anonymous networks: (i) a network of transactions from a blockchain-based
cryptocurrency [31], (ii) a network of interactions related to illegal activities via the dark
web [32], and (iii) a political conspiracy network [18]. In all three of these networks, the
question of anonymity is very important: cryptocurrencies and the dark-web are often
used by criminal organizations [20, 33–35], whereas conspirators depend on not being
uncovered in order to avoid criminal charges.

2 Theoretical framework
As explained above, we seek to understand how investigators could leverage identify-
ing information exchanged between interacting parties to uncover specific individuals.
Nonetheless, in some cases, an individual may not have any identifiable information about
the party with whom they interacted via a link in the network. In this sense, one could con-
sider such a link ‘failed’ in the sense that no deanonymization can be carried out via that
link. Thus, the probability of links exchanging identifying information can be mapped to
the link-occupation probability p from percolation theory [36–40]. In percolation theory,
a key quantity of interest is the fractional size of the largest connected component (giant
component) S as a function of p. In the context of anonymity, the giant component repre-
sents the set of nodes that could all be revealed (given sufficient time and effort) if one of
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them is discovered. Furthermore, the value of p where S grows to a macroscopic size, typ-
ically referred to as the critical point pc [38], can serve as a simple measure for estimating
whether a network is likely to allow for deanonymization or not.

Similarly, for smaller connected components, each component is a set of nodes where if
any one of them is deanonymized, then the rest of the set could (with sufficient effort) also
be identified. Therefore the total number of components, ncomp, represents the minimal
number of source nodes (in distinct components) that need to be identified independently
in order to deanonymize the entire network. Similarly if one has a set of source nodes
n1,2,...,k each in a different component, then the total number of nodes that can be identified
is the sum of all k separate components TS = |S1| + |S2| + · · · + |Sk|, where TS is the total
number of nodes that can be identified (see Fig. S2). As we show, in our datasets at a
practical level, the small components tend to be of insignificant size compared to the giant
component for all values of p > 0 (Fig. S3). For example, the giant component S captures
approximately 99.9% of the nodes for the Blockchain network, 100% of the nodes for the
Dark Web network, and 76.5% of the nodes for the Conspiracy network. Also the small
components are only connected to a limited number of other nodes, and thus are less
valuable for investigators.

A key aspect of deanonymization is the effort required to deanonymize a particular
node, which is reflected in the actual number of interrogations that an investigator must
carry out to deanonymize a target node, given the identity of some source node or nodes.
For example, it is possible that investigators might identify one dark web user posting large
amounts of illicit content or a specific account participating in suspicious transactions on
the Blockchain. The investigators could begin by seeking information from an identified
source node about her neighbors and then moving on to the neighbors’ neighbors and
so on along the shortest path, until reaching the desired node of interest. The minimum
number of individuals that must be identified to reach the desired node is thus the short-
est path length, l, from the source node(s) to the target node. This reflects a measure of
effort since each individual that must be identified along the path will require dedication
of resources for monitoring, questioning, etc.

Lastly, we generalize the above shortest path measure to include the fact that some in-
dividuals along the shortest path will not have or supply identifying information on all
of their neighbors. Therefore, we propose a greedy algorithm, described later, where the
investigators first interrogate the nodes along the initial shortest path from their source
node(s) to the target and then update to the next (new) shortest path if the investigation
reaches a dead end i.e., a link where the node on the other end cannot be identified. We
define the number of steps along the paths using this greedy algorithm as �actual as it ap-
proximates what could be a possible ‘actual’ number of inquiries needed to reach a specific
node given that investigators do not know in advance which links are useful and which will
ultimately lead to a dead end. These and other relevant measures from percolation theory
are described in Table 1.

3 Results
We apply the framework described above on three publicly available anonymous net-
works: (i) the flow of funds within the Ethereum blockchain-based cryptocurrency [31],
which is the second largest cryptocurrency by market cap; (ii) A forum of users participat-
ing in sharing of child pornography on the dark web [32]; and (iii) A network of political
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Table 1 Mapping to percolation. We demonstrate and provide brief explanations on the various
measures used and how they relate to the traditional measures from percolation theory

Parameter Percolation Theory Definition Privacy Interpretation

p Fraction of occupied links Probability a node can identify its neighbors
S Giant connected component (GCC) Largest group of mutually vulnerable nodes
SG Second largest component Second largest group of vulnerable nodes
pc Critical point p for which deanonymization is feasible
ncomp Num. Components Min. num. of sources to identify whole network
l Shortest Path Length Optimal number of interrogations
�actual Greedy Algorithm Path Length Realistic number of interrogations

Table 2 Data used and basic real-world network characteristics. The Blockchain network is a network
of transactions between cryptocurrency accounts in Ethereum, the Dark Web network is a network
of users sharing child pornography on the dark web, and the Conspiracy network is a network of
political conspirators in Brazil. N is the number of nodes, V is the number of links, 〈k〉 is the average
degree, c is the clustering coefficient, 〈�〉 is the average shortest path length (which for the
Blockchain network could only be estimated due to the network size), and density is the overall
density of links defined by the number of links in the network divided by the number of all possible
links. ∗Median is listed rather than mean due to fat-tail

Metric/Network Blockchain Dark Web Conspiracy

N 2,291,941 10,407 404
V 5,262,468 820,272 3350
〈k〉 2.8 150 9.7
c 0.21 0.83 0.85
〈l〉 4∗ 2.15 2.98
Density 10–6 0.0076 0.022

conspirators in Brazil [18]. A summary of basic statistics on these datasets is available in
Table 2.

Using the proposed percolation approach we analyze and quantify the sizes of the largest
component in the three real-world networks as a function of p, the likelihood that a node
can identify its neighbor. This largest component corresponds to the mean fraction of
accounts that can be deanonymized, as a function of p, after a single source node is iden-
tified.

In Fig. 2(a)–(c), we show the fractional size of the giant connected component, S, and
the second largest connected component, SG, for each of the three networks. We see that
the largest component S typically constitutes a large fraction of the network, suggesting
that most individuals in the network can be identified via information from others. For
example in the Dark Web and Conspiracy networks, even for p values near 0.1, 90% of
individuals are in the giant component and can be identified. For the Blockchain network
this fraction is lower, but even for p = 0.5 around 75% of accounts are identifiable in the
giant component. The fact that only near p → 0 does S → 0 is typical for networks with
long-tailed or scale-free degree distributions containing hubs, which is true for the degree
distribution of all 3 of the networks shown here (see Fig. S1) [41–43]. Furthermore, the
second largest component is typically quite small (max of 0.07 for the Conspiracy network
and smaller for the others).

It is worth noting that in many networks, the likelihood of uncovering links will not be
homogeneous, and rather that some links are more likely to involve exchanging identifying
information than others. Such effects are already incorporated in our subsequent analysis
of the Blockchain network, where exchanges are assumed to have more knowledge of their
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Figure 2 Fraction of Reachable Nodes andMinimum Effort to reach them. (a)–(c) The fractional size of the
largest, S, and second largest, SG, components in each of our three real networks. Points are averages of 100
realizations and error bars represent one standard deviation. For S the error bars are smaller than the size of
the points. (d)–(f) The fraction of nodes, Fl , reached at l steps (shortest path) for each of our networks. For the
Blockchain Transaction Network we assume that a set of 10 nodes belonging to 5 exchange companies are
sources, whereas for the Dark Web Network and the Conspiracy Network, we randomly select individual
source nodes. For all 3 of our networks, the shortest paths are very short, with most reachable nodes, being
identified within l ≈ 3 or ≈ 4 steps. Values of p ≤ 0.1 are shown only for the Dark Web because online
interactions are less likely to involve identifying information

customers than other nodes. However, it is also worth exploring heterogeneity in the con-
text of the Dark Web network. Prior work on this network [32] found that there are two
groups of nodes, with a small subset of nodes acting as a ‘core’ that shares illicit content
and a larger set of nodes acting only as consumers. We suggest that a core node is more
likely to have information on a regular node, whereas a regular node will have information
on a core node with a much lower probability, as core nodes are likely more careful about
who they share information with i.e., pcore→reg > preg→core. In Fig. 3 we show the size of the
giant component as we vary both of these likelihoods. We find that as both likelihoods
increase up to around 10% there is a considerable increase in the fraction of the network
that can be identified and that when pcore→reg reaches around 20% the fraction of nodes
that can be identified starts to plateau.

3.1 Results—shortest paths
We next consider the shortest path lengths, a proxy for the effort to deanonymize an in-
dividual. For the Blockchain Transaction Network, rather than considering shortest paths
between a randomly selected source and a target, we use a set of 10 nodes belonging to 5
different so-called ‘exchanges,’ that convert cryptocurrency to fiat currency, as our source
nodes. This is because exchanges inherently know the identities of their neighbors due to
legal policies they have in order to prevent money laundering (know-your-customer poli-
cies) [44], and moreover, they are the hubs of the Blockchain Transaction Network mak-
ing them worthwhile targets for investigators [31] (for more on this choice, see Additional
file 1). In Fig. 2(d)–(f ) we show the fraction of nodes found at l steps, Sl , for different values
of p, for each of the three analysed networks. For all 3 networks, the ideal shortest paths
are very short (suggesting they possess the ‘small-world’ property [45]), with most reach-
able nodes, being reached within l ≈ 3 or 4 steps. For the Dark Web network we explore
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Figure 3 Heterogeneous probability of uncovering links.We show the size of the giant component for
heterogeneous likelihoods of nodes knowing their neighbors in the Dark Web network. We segregate nodes
into those who are part of the network ‘core’ and that share illicit content versus the remainder of nodes that
do not share content. We then consider different likelihoods of nodes having information on their neighbors
based on whether the link is from a core node to a non-core node pcore→reg , from a non-core node to a core
node preg→core , or between two core nodes pcore→core . We show the giant component, S as a function of the
likelihood that core nodes can identify regular node neighbors and consider different likelihoods that a
regular node can identify a core node. We find a rapid increase in the fraction of nodes that can be identified
as both preg→core and pcore→reg reach around 10%. We chose a fixed value of the likelihood that core nodes
can identify other core nodes of 10%. Results are averages of 1800 simulations on the Dark Web network

several smaller values of p because interactions in the Dark Web are less likely to involve
individuals having information on one another compared to the case of transferring funds
or cooperating in a conspiracy. These short paths, suggest that deanonymizing individuals
based on their neighbors is feasible in many cases and would not require burdensome lev-
els of investigator resources. It is worth mentioning that given only the observed network
structure, investigators can determine if the network is a small-world based solely on the
structure without carrying out deanonymization efforts, potentially helping to determine
whether such efforts are worthwhile.

3.1.1 Analytic approach to shortest paths
Investigators can further leverage an analytic approach, presented next, to estimate the
fraction of nodes that appear to have some given path length � from the source to deter-
mine how likely the node is to actually be reached in � steps. First, we note that one can
naively estimate the likelihood that the path between the source node and some target
node will continue to exist after 1 – p fraction of links are removed. This is simply,

P�(p) = p�, (1)

where P�(p) is the likelihood that the path of length � continues to exist, p is the fraction of
links that involved identifying information, and � is the length of the path. This statement
simply says that the path exists if and only if every link along it exists. This initial estimate
serves as a lower bound on the likelihood that a path of length � exists between the source
and target since there can be other fully or partially non-overlapping paths that are also
of length �. In Fig. 4(a) we see that for the Conspiracy network the difference between the
theory of Eq. (1) is fairly small, while in Fig. 4(b) we see that for the Dark Web Network
there is a larger divergence. It is worth mentioning that for � = 1 the theory is exact in
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Figure 4 Theoretical approach to path lengths. (a) We show our theory for of what fraction of nodes having an
initial path length of � will remain at that path length if only p fraction of links involve identifying information
in the Conspiracy Network. (b) Same for the Dark Web Network. (c) We consider the case where one link
along the original path fails (from S→ I1), but there is a simple ‘detour’ via I2 leading to an increase of 1 in the
path length. (d) We show our theory what fraction of nodes will be at the original path length plus one (based
on the ‘detour’ suggested in c) for the Conspiracy network. (e) Same as (d) but now for the Dark Web Network

all cases since the direct link between the two nodes either exists or doesn’t exist with
probability p.

We next consider a simple case that can be addressed analytically where only a single
link on the path fails, yet a ‘detour’ going around that link via another intermediate node
exists, see Fig. 4(c). To give a naive estimate for the likelihood of this case arising, we first
estimate the likelihood that only a single link on a path of length � fails, which is �p�–1(1–p)
using the binomial expansion. If we assume that the node at the end of the failed link has
〈k〉 links, then we need only know the likelihood that one of the 〈k〉 – 1 other links leads to
a node who connects back to the original path. This likelihood is given by the clustering
coefficient c, thus we can estimate that there are (〈k〉 – 1) · c paths that circumvent the
failed link. Each of these paths are of length 2 and so the likelihood that one survives is p2.
We now want to know the likelihood that at least one of these paths exists, which is given
by one minus the likelihood that none of them exist, or 1 – (1 – p2)c(〈k〉–1). Incorporating
all of the terms leads to

P�+1(p) = �p�–1(1 – p)
[
1 –

(
1 – p2)c(〈k〉–1)], (2)

where P�+1(p) is the likelihood that the actual shortest path is one greater than the initial
shortest path with p = 1. In Fig. 4(d)–(e) we show the theory and actual calculations for
the Conspiracy and Dark Web Networks, finding that while Eq. (2) significantly underes-
timates the likelihood that the path length will increase by one (since there are many other
ways to arrive at a path length of � + 1), it does preserve the same shape of the curve as the
actual results.

3.2 Results—realistic paths
However, the shortest path length is only the minimal number of interrogations an inves-
tigator would need if they had perfect knowledge in advance about which individuals have
information on which neighbors. In practice, investigators will reach individuals who do



Shekhtman et al. EPJ Data Science           (2023) 12:16 Page 9 of 14

not possess identifying information on their neighbors or do not reveal information they
possess. Therefore, we propose a greedy algorithm that investigators could use in order to
carry out their investigation efficiently and estimate the effort required to deanonymize a
particular individual. Essentially, our greedy algorithm begins by investigating along the
initial shortest path between the source node(s) and the target. The investigators then in-
terrogate the nodes along the shortest path until they hit a dead end i.e., reach a node that
does not provide identifying information about the desired neighbor. They then remove
that link from the network, calculate the new shortest path from the source to the target
node in the modified network, and attempt to traverse the new shortest path. This pro-
cess can be done iteratively until the target node is reached or until it is determined that
no other possible paths exist.

We formally write out our greedy algorithm in Additional file 1, Algorithm S1, and in
Fig. 5(a)–(c) we demonstrate the process of our algorithm visually. If all of the links on the
original shortest path are indeed identifiable then our algorithm will lead to the minimal
number of interrogations. In contrast, if we hit dead ends along the various paths that
we pursue, then our algorithm will lead to a greater number of interrogations than in the
idealized case where investigators have complete information.

We apply the proposed greedy algorithm to the three datasets. As before, for the
Blockchain Transaction Network, we consider 10 nodes belonging to 5 exchanges as our
source nodes (with all of their links known), whereas for the Dark Web Network and Con-
spiracy Network we choose a single source node randomly. We then choose random target
nodes and assess how many actual steps are required to reach the target for different val-
ues of p. To understand the network effects, we focus on target nodes that are at least l ≥ 2
from the source i.e, not direct neighbors of the source node.

In Fig. 5(d)–(f ) we show the fraction of nodes, FA, reached for a given number of steps
�actual. We find that the investigators’ lack of knowledge about which links can reveal iden-
tifying information on a neighbor can be a significant detriment to their ability to optimally
traverse the network for low values of p. This is observed from the fact that the distribu-
tion shifts significantly to the right (higher values of �actual) compared to the optimal case
in Fig. 2(d)–(f ). For higher levels of p, the detriment is less pronounced as most of the
links involve identifiable information and the original observed shortest path is likely to
be optimal.

Once an investigator has reached k individuals and not identified the target, they face a
sunk-cost problem as they do not know how close, if at all, they are to identifying the target.
To assess this situation, we considered the likelihood that after interrogating k individuals,
continuing to investigate will lead to the identification of the desired target. In Fig. 5(g)–(i)
we show this likelihood, PFind, for differing levels of p on each of our networks. We see
that in all three networks, the likelihood of ultimate success tends to decrease as �actual

increases, suggesting that it would make sense for investigators to place a limit on how
many inquiries they will carry out. For example, in the Dark web network for p = 0.2,
for �actual = 4 there is still an over 90% chance of successfully identifying a node when
continuing, yet for �actual = 15 there is only a 70% of identifying the node. Results for a
scale-free network model are qualitatively similar to those in our real-networks suggesting
that hubs play an important role in the observed results (Fig. 5(j)–(k)). We further see that
when we compare Erdős-Rényi and scale-free networks with γ = 2.5 and γ = 3, that the
distribution of FA and PFind changes considerably with Erdős-Rényi networks tending to
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Figure 5 Realistic effort to identify an anonymous node. (a)–(c) Illustration of the proposed greedy algorithm
for deanonymizing a target node T , given identities of source nodes S1 and S2. In (a) we find the shortest
path, S1 → I1 → T (links of the shortest path outlined in purple) and interrogate the first node I1. (b) After S1
identifies I1, we reach a dead end as node I1 does not provide information on T . We then again calculate the
shortest path to T and find a path S2 → I2 → I3 → T (with its links highlighted). (c) We interrogate I2 and then
I3 (outlined in purple again), who provide information leading to the target. While the optimal path would
have taken only l = 3 steps, the actual path uses �actual = 4 steps due to the extra step from S1 → I1. (d)–(f)
The fraction of nodes reached, FA , for each value of �actual using our algorithm. Results are from at least 20,000
simulated source-target pairs (for different values of p). (g)–(i) For all three networks the likelihood that
continuing to search after �actual steps will lead to successful identification of a given target node, PFind . Note
that less than 100 nodes have �actual > 15 leading to high fluctuations. (j) The mean value of �actual as a
function of the optimal value, �, for the Blockchain Transactions. For lower levels of p, �actual tends to increase
faster with �. In all panels, only target nodes that are not direct neighbors of the source node(s) are considered

have considerably lower values of PFind than a scale-free network, see Fig. S6. Furthermore,
even increasing the exponent from γ = 2.5 to γ = 3 leads to fairly significant changes.
Given that the Dark Web and Blockchain networks have values of γ < 3 it makes sense
that our results are most similar to the case of γ = 2.5. For the Conspiracy network, there
are too few nodes to observe a clear scaling in the tail, however there are clearly some hubs
with degrees much larger than other nodes.

4 Discussion
Our mapping of deanonymization to percolation reveals that hubs, which exist in all three
of the anonymous networks, play an important role in enhancing deanonymization. Hubs
are common in many networks and they exacerbates privacy issues since they can poten-
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tially be identified via their many spokes and can then reveal information on the remainder
of the network. It is also likely that hubs are common in many illicit transactions on the
Dark Web and other criminal networks since only a few individuals are involved in core
criminal activity whereas most people are likely only marginally involved. For example, in
the Dark Web Network based on a child pornography ring, most of the nodes are presum-
ably consumers of such content whereas the hubs are distributors with deeper criminal
involvement. The issue of hubs is also significant for the Blockchain Transaction network
where the hubs are exchanges which collect information on their neighbors due to know-
your-customer policies.

A particularly unique property of the Blockchain network is that very long chains exist
in it of accounts involved in only single transactions with others [20]. This is seen in that
while the average path length in the Blockchain network is 19.3, its median path length is
only 4; and while the 95% percentile of path lengths is only 6, the 99% percentile jumps
to a path length of 474. These long chains were once suggested as a method of potentially
obscuring an individual’s identify by making it harder to track them [20]. However, in the
setting we describe, such links are unlikely to actually improve privacy as they are easy to
identify and only artificially lengthen the shortest path while not actually increasing the
number of parties between the target node and source node since questioning the same
individual would identify many of the intermediate nodes. In fact, these long chains could
be a signal of suspicious activity and the beginning or ends of such chains could serve as
target nodes worth trying to reach.

Some limitations should be noted. First, while estimating p for crypto network is dif-
ficult, we provide some proxies from other domains where computer or other illicit net-
works become comprised. These are described in the Additional file 1 section for areas
regarding hacking success rates, click-through rates for marketing materials (which could
be used to embed trojans), and other areas. Whether these estimates are transferable to
our areas is still unknown, however they do provide some context on possible values of
p and suggest estimates of p from 1–10%. A further limitation arises within the context
of cryptocurrencies, where newer cryptocurrencies like Monero (https://getmonero.org)
might be able to obscure the nature of the network by adding false transactions to the list
of transactions, however in many cases identifying many real transactions is still possible
with simple heuristics [46]. To apply our percolation framework one could then reduce
the network to the known transactions, giving investigators at least some picture of which
users might be identifiable. Furthermore, as individuals are uncovered, the counterparties
to their transactions will become known, providing additional knowledge of the network
structure and how it can be traversed.

Our work has demonstrated the feasibility of using information from particular sources
to identify their associates in multiple anonymous networks. A framework similar to ours
could be applied at the outset of an investigation to predict the likely resources necessary
(number of interrogations/intermediate parties to be followed) in order to identify a par-
ticular anonymous actor in the network. Furthermore, our framework could be applied
to other contexts like terrorist networks and intercepted communications from burner
phones where the individuals behind those numbers are not known. Likewise, it enables
ordinary users to assess their level of anonymity and highlights the importance of users
maintaining anonymity even when interacting with a trusted party.

https://getmonero.org
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Further work could expand our analytic theory in Fig. 4(d)–(e) to also consider the de-
gree specific clustering coefficients and average over the degrees and their prevalence to
obtain a better estimate of how many nodes are reachable at distance �+1. Likewise, future
work could improve upon our greedy algorithm, which is an upper bound on the amount
of effort needed. In particular, it does not use any metadata that may be associated with the
links and incorporating such metadata may suggest that paths other than the shortest path
should be pursued. For example, one could look create a scoring algorithm for links that
includes the frequency that the different links appear e.g. how often transactions are made
or how often two individuals communicate. Incorporating such information could lead to
lower values of �actual than currently found in our algorithm. Finally, our work assumes a
simplified model where only one piece of information is needed from a single other user
to deanonymize an individual, however in some contexts information from multiple users
could be combined to identify an individual. This can be compared to color-avoiding per-
colation where information was sent along different paths to avoid detection [47–49] and
the spreading of complex contagions [50] where multiple nodes have to be activated to
spread to a neighbor leading to complex cascades [51] of identification.
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