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Abstract
Accurately forecasting patient arrivals at Urgent Care Clinics (UCCs) and Emergency
Departments (EDs) is important for effective resourcing and patient care. However,
correctly estimating patient flows is not straightforward since it depends on many
drivers. The predictability of patient arrivals has recently been further complicated by
the COVID-19 pandemic conditions and the resulting lockdowns.
This study investigates how a suite of novel quasi-real-time variables like Google

search terms, pedestrian traffic, the prevailing incidence levels of influenza, as well as
the COVID-19 Alert Level indicators can both generally improve the forecasting
models of patient flows and effectively adapt the models to the unfolding disruptions
of pandemic conditions. This research also uniquely contributes to the body of work
in this domain by employing tools from the eXplainable AI field to investigate more
deeply the internal mechanics of the models than has previously been done.
The Voting ensemble-based method combining machine learning and statistical

techniques was the most reliable in our experiments. Our study showed that the
prevailing COVID-19 Alert Level feature together with Google search terms and
pedestrian traffic were effective at producing generalisable forecasts. The implications
of this study are that proxy variables can effectively augment standard autoregressive
features to ensure accurate forecasting of patient flows. The experiments showed that
the proposed features are potentially effective model inputs for preserving forecast
accuracies in the event of future pandemic outbreaks.

Keywords: Forecasting; Patient flows; Machine learning; Explainable AI;
Interpretable machine learning; Concept drift

1 Introduction
Urgent Care Clinics (UCCs) and Emergency Departments (EDs) are frontline healthcare
providers, provisioning continuous care for a range of acute medical presentations. For a
significant proportion of patients, UCCs and EDs are the initial pathways en route towards
subsequent healthcare services and are thus prone to significant periodic congestion. The
effects of delayed treatments at EDs due to overcrowding have been well investigated and
research shows that these delays have been associated with negative clinical outcomes
[42]. Although UCCs typically cater to less acute medical conditions, studies have also
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noted that insufficient staff availability at these facilities could lead to serious conditions
being overlooked [2] in the presence of overcrowding.

Therefore it is important to implement strategies which assist with planning and the ef-
fective allocation of human resources to manage patient flows. Forecasting patient arrivals
is one such strategy which can enable a greater optimisation of medical-service resourcing
at facilities situated beyond primary care providers. Recently, there has been an increased
academic interest in developing forecasting models for solving this problem. Forecasting
of this kind can operate at different levels of granularity, such as estimating total daily pa-
tient volumes or even higher frequencies, like hourly patient arrivals. The purpose of this
study is to develop daily patient-flow forecasting models using machine learning for two
large UCCs providing services to patients experiencing sudden illness or accident-related
injury.

Forecasting patient arrival volumes to a level of accuracy which makes the models useful
is non-trivial due to numerous influencing factors as well as underlying stochastic pro-
cesses. Producing reliable patient flow estimates has also been further complicated re-
cently with the outbreak of the COVID-19 pandemic which has contributed an additional
level of complexity due to the disruption to usual patient flow patterns [25, 53]. These dis-
locations from otherwise stationary patterns in the dependent variable are termed concept
drift. This phenomenon is encountered when the variable being forecasted no longer cor-
responds to the original data used for creating the model, ultimately resulting in the dete-
rioration of accuracies. While these drifts can be sudden or gradual, ultimately a successful
adaptive strategy depends on the ability to formulate an approach that captures the gen-
erative factors of the drifts as much as possible [43]. To date, no studies have yet emerged
providing an analysis of how the concept drift arising from the COVID-19 pandemic and
the resulting lockdown mandates have affected the patient-flow forecasting models, nor
how the mitigation strategies can help adapt the forecasting models to increased volatility.

The current body of literature has primarily focused on forecasting solutions for EDs,
with UCCs being largely overlooked; though the same drivers of patient demand and chal-
lenges apply to both UCCs and EDs. Most of the studies have concentrated on estimating
total daily patient arrivals for the following day [5, 21, 32, 39, 49, 51, 53]. A few studies have
investigated the feasibility of generating accurate forecasts as far as 30 days ahead [7, 29]
and some 90 days ahead [28], which entails an even greater level of uncertainty and chal-
lenge due to compounding errors. For the most part, earlier studies relied on standard
statistical methods for this type of modelling [2, 5, 9, 26]. Over time, machine learning
approaches emerged [51, 53], including deep learning techniques [21, 39, 42]. As the so-
phistication of the underlying algorithms has increased motivated by the attainment of
high accuracies, the side effect has been a decrease in the interpretability of models. Little
emphasis has been placed on clarifying the internal mechanics of the models. Examples of
studies eliciting explanations of the models’ reasoning underpinning their forecasts do not
yet exist. Traditional time-series and simple regression methods have produced reason-
able accuracies in previous studies. These approaches are still used and they continue to
produce competitive results for forecasting patient flows. Research has shown that these
techniques have excelled particularly in cases when the underlying data possessed consis-
tent variations; however, it has been noticed that their accuracies become compromised
when sporadic fluctuations are encountered [21]. Approaches that combine the advan-



Susnjak and Maddigan EPJ Data Science           (2023) 12:11 Page 3 of 31

tages of traditional approaches with those of machine learning have not yet emerged in
this domain.

The features used for the forecasting models in the prior works have chiefly relied on
autoregressive (previous or lagged values) and various calendar variables [5, 26, 48] with
some studies using variables indicating school holidays as well. There has been a recent
trend to also incorporate weather-related variables [7, 37, 42, 53], while air quality and
pollution information have been a subject of some studies [32, 40].

The aim of this study is to present a machine learning solution to forecasting total daily
patient flows 7-days ahead in order to facilitate resource planning strategies at UCC facil-
ities. This work particularly aims to investigate the feasibility of a range of real-time proxy
variables to contribute to improving the overall model accuracies, as well as to employ a
range of eXplainable Artificial Intelligence (XAI) techniques to both bring interpretabil-
ity into the model behaviour and to extract additional insights. Additionally, this research
seeks to develop mechanisms for enabling the models to adapt to the disruptive conditions
of the recent COVID-19 pandemic, with learnings that can be applied to similar scenarios
in future.

1.1 Contribution
The principal contribution of this study lies in the integration of novel, near real-time1

proxy features aimed at maintaining the precision of patient-flow forecasts during periods
of instability, such as the COVID-19 pandemic. The value of these proxy variables within
the broader context of concept drift is highlighted as a crucial takeaway for practition-
ers. Additionally, the study also makes secondary contributions through the utilisation of
previously unexplored machine learning models and the large number of algorithms used
in experiments. A further contribution of this study is the combination of traditional and
machine learning approaches in order to leverage the advantages of both. Furthermore,
the study also presents the introduction of XAI techniques for the inspection of models’
behaviour in this domain, providing an understanding of both the high-level characteris-
tics of the models and their reasoning for individual forecasts.

2 Related work
The vast majority of prior research in forecasting patient flows has focused on EDs. Prior
studies [10, 13, 48] have used patient flow forecasting and analysis literature from EDs and
UCCs interchangeably and thus we follow the same pattern with the understanding that
approaches that have been effective in the ED domain are transferable to the UCC con-
text, and vice versa since the underlying mechanisms of demand overlap. Indeed, in their
systematic literature review, Coster et al. [10] identify six key drivers of patient flow de-
mand common to both EDs and UCCs. These included limited access to or confidence in
primary care, patient-perceived urgency, convenience, recommendations by family and
friends, or other healthcare professionals, and the belief that their condition required
the resources and facilities offered by a particular healthcare provider. While theoreti-
cally valuable, none of these variables are generally available for use in forecasting patient
demand. He et al. [22] also add to this list, population growth and ageing which carry a

1The term real-time has different meanings depending on a domain. Real-time in this context is defined by data that has
been updated within a 24-hour window.
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Table 1 Summary of literature predicting total daily patient flows in EDs, highlighting forecasting
horizons, best algorithms and the accuracies achieved

Study Year Forecast
periods
(days)

Features Best algorithm MAPE

Boyle et al. [5] 2012 1 4 ARIMA, ES, OLS 7.0%
Xu et al. [51] 2013 1 7 ANN 6.8%–7.3%
Marcilio et al. [29] 2013 7 15 GLM 7.6%

30 GLM 9.7%
Xu et al. [52] 2016 1 31 ARIMA-LR 6.5%

7 ARIMA-LR 9.6%
Calegari et al. [7] 2016 1 5 SES 2.9%

7 SES 10.7%
14 SES 10.7%
21 SES 11.4%
30 SES 11.7%

Navares et al. [32] 2018 1 13 ARIMA 8.1%–12.3%
Whitt and Zhang [49] 2019 1 57 SARIMAX 8.4%
Rocha and Rodrigues [39] 2021 1 15 LSTM 4.2%
Sudarshan et al. [42] 2021 3 10 CNN 9.2%

7 LSTM 8.9%
Vollmer et al. [47] 2021 1 30 Stacking 6.8%–8.6%
Harrou et al. [21] 2022 1 7 DBN 4.1%
Zhang et al. [53] 2022 1 29 SVR 8.8%
Petsis et al. [37] 2022 1 38 XGBoost 6.5%

2 XGBoost 6.9%

greater utility for forecasting long-term patient demand trends. More general causal fac-
tors for UCCs patient demand are discussed by DeLurgio et al. [13], where the authors
list increasing trends in certain diseases like the prevalence of diabetes, seasonal influ-
ences like holidays as well as cyclical and irregular factors like flu epidemics and natural
disasters, which also broadly align with those EDs [16].

We review published literature which is most comparable to our work in terms of stud-
ies that have predominately investigated the forecasting of total daily volumes of patient
arrivals. We also focused on studies which reported their forecasting accuracies in terms
of the Mean Absolute Percentage Error (defined in Equation (1)) which to some degree
enables comparisons across different studies. Forecast horizons in terms of the number of
days ahead being estimated are relevant for this study, and these are also highlighted and
summarised where possible in Table 1.

Traditional regression and autoregressive modelling dominated the earliest research
into forecasting patient demand at EDs. Batal et al. [2] successfully used multiple linear re-
gression (MLR) to predict patient flows by incorporating a selection of calendar variables
like the day of the week, month, season, and holiday flags. Jones et al. [26] subsequently
used the same set of variables together with MLR as a benchmark model against compar-
isons with autoregressive ARIMA and SARIMA models for predicting daily patient pre-
sentations. Their work fundamentally differed in that they extended their forecast horizon
to 30 days ahead. Meanwhile, Boyle et al. [5] focused on next-day ED patient flow fore-
casting, while using MLR, ARIMA and Exponential Smoothing (ES) models. In contrast,
both Champion et al. [9] and Aboagye-Sarfo et al. [1] altered the frequency from daily,
to predicting the total monthly patient demand. Both studies relied on ES with ARIMA
modelling methods, while Aboagye-Sarfo et al. [1] also integrated these algorithms with
experiments using VARMA.



Susnjak and Maddigan EPJ Data Science           (2023) 12:11 Page 5 of 31

The focus of subsequent works explored the viability of forecasting at differing frequen-
cies together with longer forecasting horizons. One-step-ahead hourly, daily and monthly
ED patient flow forecasting models with the use of calendar information (day of week,
month and holidays) were developed by Boyle et al. [5]. Their work also experimented
with standard approaches like ES, ARIMA and MLR, concluding that the errors increased
and thus the forecasting became less reliable as the forecast granularity became finer. Mar-
cilio et al. [29] returned to forecasting daily patient flows, exploring 7 and 30-day ahead
predictions with the help of calendar as well as climatic variables. They expanded the
range of techniques used to Generalized Linear Models (GLM), Generalized Estimating
Equations (GEE) and Seasonal ARIMA (SARIMA). Whilst recognising the importance of
forecasting further out into the future, Calegari et al. [7] addressed predicting total daily
ED patient flows over 1, 7, 14, 21 and 30-days ahead, while also relying on the calendar
(day of week, month and holidays) and climatic data. They also used standard SARIMA
as in previous studies, but also included Seasonal ES (SES), Seasonal Multivariate Holt
Winter’s ES (HWES) and Multivariate SARIMA. Xu et al. [52] proposed a method that
combined ARIMA and Linear Regression (ARIMA-LR) to predict daily ED patient flows
for both the next day as well as 7-days ahead forecasting. Given the effectiveness of tra-
ditional approaches in this domain, more recent studies have continued to leverage these
techniques like Carvalho-Silva et al. [8], who experimented with forecasting at different
levels of granularity. They forecasted total patient flows on a next-week and next-month
basis using ARIMA and ES, while Whitt and Zhang [49] forecasted next-day total patient
flows using SARIMAX using also calendar and climatic variables.

Though traditional time-series and regression approaches possess more assumptions
and stricter requirements that are harder to satisfy, they do continue to generate effective
solutions for forecasting patient flows. In contrast, non-parametric machine learning ap-
proaches avoid many of the rigid assumptions required by traditional statistical methods
and therefore have some added flexibility accompanied by a proclivity to overfit. Over the
past decade machine learning solutions in this domain have started to emerge and have
consistently produced competitive accuracies, while also exceeding those of traditional
approaches in some cases [39, 51]. Machine learning methods generally have the ability to
capture non-linear relationships in the data and thus hold the potential to produce mod-
els which arguably better represent the complex and dynamic nature of patterns in this
domain [53].

Xu et al. [51] was one of the earliest works using machine learning in this domain where
they applied Artificial Neural Networks (ANN) in conjunction with variables describing
seasonal influenza epidemics, as well as calendar and climatic data in order to forecast one-
day ahead total daily patient flows. We see the emergence of ensemble-based techniques
like Random Forest (RF) and Gradient Boosting Machines (GBM), together with ANN for
forecasting daily respiratory and circulatory-related ED admissions in work by Navares
et al. [32]. In this study, the authors incorporated environmental and bio-meteorological
variables into the models that captured air quality indicators, and ultimately concluded
that machine learning methods did outperform ARIMA when the models were combined
using Stacking.

We are now beginning to see an emergence of a broader range of proxy variables be-
ing used, together with deep learning approaches and some early signs of XAI techniques
entering this domain. Vollmer et al. [47] proposed patient flow models forecasting 1, 3
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and 7-days ahead while also using RF and GBM, together with a k-Nearest Neighbours
(kNN) regressor and stacked generalisation combining machine learning and statistical
approaches. They expanded the range of proxy variables used in their models and included
weather, school and public holidays, and seasonal pattern data, alongside large scheduled
events which tended to see an influx of patients. Additionally, they also utilised Google
search data for the keyword “flu”. Long Short-Term Memory (LSTM) was used by Rocha
and Rodrigues [39] where they performed a wide range of comparative experiments with
those of traditional ES and SARIMA approaches and other machine techniques like Au-
toregressive Neural Networks (AR-NN) and XGBoost (incorporating calendar variables
like day of week, month and holidays). The authors concluded that LSTM produced the
best accuracies for next-day forecasts of total daily patient flows. Sudarshan et al. [42] like-
wise used LSTM for predicting 3 and 7-day ahead total daily patient flows. They included
Convolutional Neural Networks (CNN) into their suite of algorithms and compared the
results against RF. The authors also confirmed the effectiveness of deep learning methods
in this domain by demonstrating that LSTM was most accurate for the 7-day forecasting,
while CNN was more suited for 3-day ahead forecasting in their setting.

Harrou et al. [21] expanded the range of deep learning techniques in their work by in-
cluding Deep Belief Networks (DBN), Restricted Boltzmann machines (RBM), Gated Re-
current Unit (GRU), a combination of GRU and Convolutional Neural Networks (CNN-
GRU), CNN-LSTM, as well as the Generative Adversarial Network based on Recurrent
Neural Networks (GAN-RNN). They designed their models to predict total daily patient
flows one-day ahead, finding that the best accuracy was achieved using DBN. However,
research also demonstrated that deep learning methods do not always deliver the best
accuracies.

The study by Zhang et al. [53], contrasted LSTM with standard machine learning meth-
ods like kNN, Support Vector Regression (SVR), XGBoost, RF, AdaBoost, GBM and Bag-
ging, in addition to traditional methods like OLS and Ridge Regression. This study found
that it was SVR which outperformed all other algorithms based on models predicting next-
day patient flows while using calendar and meteorological variables.

Ensemble-based techniques leveraging GBM such as XGBoost and LightGBM continue
to increase in prominence. Guyeux and Bahi [20] used both algorithms together with RF
and Lasso for hourly forecasting of patient flows. Similar to our study, the authors ex-
panded the use of variables for forecasting beyond using standard calendar and meteoro-
logical variables. Instead, the study augmented these variables with road traffic informa-
tion and epidemiological data reporting the current number of cases of influenza, chicken
pox and acute diarrhoea. All in all, the study used 712 explanatory variables for forecast-
ing and concluded that XGBoost was best performing in their setting. Meanwhile, another
recent study bearing parallels with our research was conducted by Petsis et al. [37], who
focused on predicting daily patient flows 1 and 2 time periods ahead. This work is reported
to be the first study that has started to incorporate XAI techniques into illuminating the
behaviour of the underlying models. This work primarily considered the high-level in-
terpretability of the models which included the analysis of feature interactions, but the
reasoning behind the forecasts for specific days was not considered. The study again used
Gradient Boosting in the form of XGboost, relying on standard calendar and weather vari-
ables which amounted to a total of 38 variables.
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2.1 Summary
It is natural to see that traditional techniques for forecasting patient flows were the most
prominent approaches in earlier research. The emerging trend within the existing litera-
ture points in the direction of increasing use of machine learning algorithms, particularly
those with more inherent complexity. Though machine learning approaches are achiev-
ing a widespread uptake, traditional methods continue to be used as well and generate
competitive accuracies; however, they are now more often used as benchmarking models.
This can be explained by the fact that machine learning algorithms tend to be a prefer-
able choice over traditional statistical methods in forecasting, as they can handle large
and complex data, adapt to changing environments and more easily handle missing and
high dimensionality data which can be seen in features increasing over time (Fig. 1a).2

Thus far, the literature indicates that amongst the researchers autoregressive, calen-
dar and holiday variables, together with weather and bio-meteorological features remain
popular model inputs for forecasting. Some recent investigations into the usefulness of
the proxy variables like internet search terms and live influenza tracking indicators are
emerging. Due to this and an increasing number of features being used, the suitability of
non-parametric algorithms becomes evident. Traditional approaches possess advantages
which can still be leveraged. However, studies predominately focus on exploring either
traditional or machine learning approaches instead of attempting to combine both into a
single model that is able to leverage the advantages that both techniques offer. To that end,
this study seeks to fill this gap. Additionally, the literature shows that there is an emergence
of an ever more diverse range of machine algorithms being used in this domain; however,
there is no clear algorithm which stands out as the best-performing.

Achieving high accuracy in forecasting patient flows has been a central focus of most
prior studies. Figure 1b depicts the trend in the reported forecasting accuracy over time.
The figure reveals a gentle downward slope indicating a gradual reduction in error (re-
ported as the Mean Absolute Percentage Error—MAPE) values over time.3 It should be
noted that only a single study used datasets covering the COVID-19 period which exhib-
ited sudden and recurring concept drifts in the underlying data patterns, which result in
deteriorations of accuracy. Given this gap, this study aims to explore the effectiveness of
a larger set of novel proxy variables to mitigate the negative effects of concept drifts, such
as the most recent one during the pandemic period.

Figure 1 Trend in the reported accuracy of forecasting patient flows over time according to MAPE

2The trend lines do not represent a statistically significant line of fit.
3The overall picture presented in the figure is arguably optimistic until newer studies emerge and are published which
include results from this period.
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Finally, the increased usage of more complex machine learning algorithms is accompa-
nied by the generation of uninterpretable “black box” models. A clear gap in the literature
for patient flow forecasting exists in the absence of analyses which consider both the high-
level mechanics of model behaviour as well as the interrogation of the models’ reasoning
into specific forecasts. No study as yet using machine learning has explored the internals
of the models to the fullest extent, which this study attempts to address.

In view of the existing literature, the research questions (RQ) addressed in this study are:
• (RQ1) Which machine learning models attain the highest improvements over the

benchmark strategies for short-term forecasting of daily patient arrivals at UCCs?
Can machine learning and traditional statistical approaches be combined to produce
higher accuracies?

• (RQ2) Can proxy variables improve forecast accuracies and adapt the models to the
concept drift caused by the COVID-19 conditions? Which variables are most effective
at generally improving the forecasting accuracies of daily patient demand seven days
ahead?

• (RQ3) How can greater interpretability and explainability of forecasting models be
achieved?

3 Methodology
3.1 Setting
The data were sourced from Shorecare4 which owns and operates the clinics in this study
located in Auckland, New Zealand. The Smales Farm clinic provides 24-hour care services,
while the Northcross clinic is reduced to after-hours care. The clinics treat standard low
acuity cases and provide x-ray and fracture clinics as well as facilities for complex wound
management. The Smales Farm clinic is the sole 24-hour UCC servicing a population of
approximately one-quarter of a million and is situated within one kilometre of a major
hospital whose ED treats ∼46,000 patients annually.

3.2 Patient flow dataset
Models were designed for predicting daily arrivals seven days ahead. The dataset recorded
patient presentations spanning 11 years from 2011 through to 2022. Figure 2 shows the
characteristics of the patient flows on a selection of the dataset for both clinics. Seasonal
patterns indicating increases in patient arrivals are visible during the winter months of
the Southern Hemisphere (June-August). This can be explained by increased presenta-
tions of Influenza and other respiratory-related illnesses. The beginning of the period af-
fected by strong concept drifts is highlighted and deviations from the prior patterns can
be observed. Additionally, the exact points corresponding to the most stringent mandates
concerning COVID-19 pandemic lockdowns are highlighted, as well as periodic partial
closures of the smaller clinic during portions of this period.

An aggregation of the data by week number across all years can be seen in Fig. 3. There is
generally a reduction in demand during the school holidays, with peaks in patient arrivals
coinciding with the Winter months (mid-year), and the end of the year when the local
general practitioners (GPs) are closed for holidays.

4https://www.shorecare.co.nz/

https://www.shorecare.co.nz/
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Figure 2 Daily patient demand at both UCC clinics ranging from 2015–2021

Figure 3 Average patient demand across both UCCs for all years by week number

Figure 4 shows average patient arrival patterns across both clinics by day of the week.
A peak in patient presentations tends to occur during the weekend when GPs are closed,
which is followed by a decrease in patient flows at the start of the working week, which
then reaches minima by mid-week.
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Figure 4 Average daily patient demand by day of the week across both UCCs

3.3 Proxy data and features
The models use a mixture of autoregressive and proxy features. Since the data exhibits
pronounced seasonal and weekly cyclical patterns, we used autoregressive features rep-
resenting previous patient arrival values from 7, 14, 364, 728 and 1092 days before as
predictors. Additionally, the week number in the year was used to provide information
describing the seasonal trends as well as recurring school holiday patterns. A public hol-
iday flag was devised which ensured that the elevated demand driven by these days was
represented.

A strategy was devised to handle the pandemic-related concept drift by using a set of
variables which had the ability to capture the changes in the underlying conditions. Pri-
marily, we created a variable that represented the severity of the legally mandated COVID-
19 restrictions5 prevailing within the clinics’ locality.

Other variables were used with the assumption that they would capture both the signal
indicating that concept drift was occurring, and that they would also contribute to the
general improvement of the overall models by being effective proxies for patient demand.
In order to qualify for consideration and be useful for real-time forecasting, these variables
had to satisfy three constraints. The first being that the data needed to be measured in real-
time and thus be up-to-date, secondly, the data had to be publicly available in real-time,
and finally a sufficient amount of historic values of this data had to be available for model
training.

Google Trends [18] data provides information on the frequency of Google search key-
words over a given time period and region and satisfies the above constraints. We used
this data as a proxy variable with the assumption that it could capture potential increases
in various symptoms which may trigger higher patient arrivals. The selected keywords
were flu, headache, sick, chest pain and cough being both generic as well as relevant to
the COVID-19 pandemic. Google Trends data is accessible at weekly aggregate results
provided that the search criteria fall within 5 years.

We considered the possibility of including pedestrian foot traffic as an additional proxy
variable in our models, based on the underlying assumption that higher levels of pedes-
trian activity would indicate higher public activity levels and, therefore, an increase in

5This expressed either the COVID-19 Alert Level system [33] or subsequent Traffic Light mappings [34] defined by the
New Zealand Government which were later introduced.
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Table 2 Feature names as they appear in figures and their descriptions

Feature name Description

lag7d Autoregressive 7-day lag, the value from one week prior
lag14d Autoregressive 14-day lag, the value from two weeks prior
lag1 Autoregressive 364-day lag, the value from one year prior
lag2 Autoregressive 728-day lag, the value from two years prior
lag3 Autoregressive 1092-day lag, the value from three years prior
public_holiday Public Holiday Indicator (0/1)
week Week Number ranging from 1–53
ped_count Auckland CBD foot traffic
flu_percent weekly reports on Influenza prevalence in New Zealand
covid_level 1–4. Prior to 3/12/2021: COVID-19 Alert Level ranging from 1–4; After 3/12/2021: Traffic

Light Mappings (Green = 1; Orange/Red = 2; No mappings to 3 or 4)
trends Google Trends normalised frequency of term searches of flu, headache, sick, chest pain

and cough as a single signal
feels_like A combination of temperature, wind chill and heat index values

patient arrivals. For this, we used data from Heart of the City Auckland [23], which pro-
vides information on the number of pedestrians walking past approximately 20 cameras
in the Central Business District (CBD) of Auckland each day, with data stretching back to
2012.

Similar to previous studies, we also integrated information on the prevailing weather
conditions. We sourced the data using APIs from Visual Crossings [46]. Our exploratory
analysis indicated that the most effective feature from the suite of possible weather vari-
ables was the ‘feels like’ indicator that combines temperature, wind chill and heat index
values.

Guided by the advice of domain knowledge of the UCC staff, we also incorporated
the data from FluTracker [17]. FluTracker monitors prevailing levels of Influenza in New
Zealand using surveys. Approximately 30,000 people report weekly symptoms of fever or
cough being experienced. The New Zealand FluTracker data is available only from 2018
onwards, with weekly reports provided online. The data also has missing values which
coincide with the summer months when the prevalence of the illness is usually low. The
data is presented as the percentage of respondents exhibiting symptoms each week.

Table 2 lists the names of all the variables used in various figures together with their
descriptions. Appendix B shows end example of the proxy feature values versus patient
flows in Fig. 11 to Fig. 14.

3.4 Benchmark models
We evaluated the efficacy of the proposed models against several benchmark models.
The primary benchmark model replicated the current in-house strategy employed by the
clinics’ administrators to estimate patient arrivals. This approach used the patient arrival
numbers from the same period in the previous year plus an additional 5% to account for
an increasing trend in total volumes.

The second benchmark model is a Persistence Model. It is essentially a Random Walk
technique [35] which makes the forecasted value the same as that of the identical day in
the previous year. The third benchmark model was ARIMA [4], created with auto-tuning.
The final benchmark model consisted of an enhanced version of the Persistence Model
which forecasted a value for a given day at a point in time t to be a mean of weighted
autoregressive features consisting of values from t-7, t-14, t-364, t-728 and t-1092 days.
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3.5 Algorithms
We used ten statistical and machine learning algorithms in order to generate candidate
models. These consisted of: Random Forest (RF) [6], Voting [36], Stacking [50], Ridge Re-
gression [24], Support Vector Machines Regression (SVR) [15], Kernel Ridge Regression
(KRR) [12], K-Nearest Neighbour Regression (kNN) [11] as implemented in Scikit-learn
[36], CatBoost [38], Prophet [44] and an Averaging Model. Table 3 lists all the algorithms
as well as the benchmark models with their brief descriptions, together with their hyper-
parameter values where relevant.

3.6 Testing approach
The models were tested on data covering five and a half years from 2017 through to mid-
2022. A modified version of the expanding window approach was used for estimating the
generalisability of the models. Up to a maximum of 5 previous years of training data were
used for creating each model.6 Following each training phase, the models were then tested
on forecasting 7 days ahead. There were in total of 286 test sets in this hold-out approach.
The models were initially trained on data from 2014–20167 and the forecasts were then
made starting from 1 January 2017 up to 7 days ahead. Figure 5 visually depicts our train-
ing/testing methodology. The whole testing process was performed three times; once for
models containing all the proposed features. The second time for models using only au-
toregressive features to establish the efficacy of the proxy features. Finally, the models were
trained using only proxy features in order to both assess their utility and extract additional
insights.

3.7 Model error measurements
The models were evaluated using several metrics with each one providing a slightly dif-
ferent perspective.

Mean Absolute Percentage Error (MAPE) is frequently used in literature and is recom-
mended as the primary evaluation metric for forecasts [3]. We therefore followed this rec-
ommendation. MAPE is scale-independent and can be used to compare forecasts across
datasets and studies with different ranges of values for the dependent variable. The calcu-
lation of MAPE is as follows:

MAPE =
100
T

T∑

t=1

∣∣∣∣
ŷt – yt

yt

∣∣∣∣, (1)

where T is the number of forecasts under evaluation and ŷt – yt is the error or residual
term arising from the difference between the observed y value and the forecast value ŷt at
time point t. MAPE is a useful measure because it is able to express deviations between
the observation and the forecasted values in terms of percentages, and as such, it is easy
to interpret.

6The models were trained on a maximum of five years of historic data in part due to the preference of more recent data for
modelling, and due to a limitation in the acquisition of the Google Trends search terms data. Google Trends data can only
be extracted for up to five years at a weekly granularity and beyond this, the data is aggregated at a monthly granularity.
Since Google Trends data is scaled and provided as a relative index, it made it unsuitable to concatenate different periods
together.
7Data prior to 2014 could not be used for training due to the autoregressive values which created missing values in the
initial few years.
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Table 3 Summary of the benchmark models and algorithms used in this study, together with
hyperparameter settings where applicable

Method Description

Benchmark Current estimation method used in-house by the clinics which forecasts patient
demand for a given day to be 5% higher than that of the same day in the previous
year.

Persistence Model A benchmark model implemented as a RandomWalk [35] method with the
forecast being the same as the value for the same period of the previous year

Enhanced Persistence
Model

An optimised benchmark model that made forecasts based on the weighted mean
value of autoregressive values in respect to time t with time lags of t-7, t-14, t-364,
t-728 and t-1092. The weightings were optimised through an empirical approach
and set as [5, 4, 3, 2, 1] respectively for each autoregressive feature, with features
representing recency being allocated greater importance.

ARIMA Traditional autoregressive statistical technique, predicting future values based on
past values.

kNN Regression A non-parametric algorithm that bases its predictions on the principle of proximity,
producing a forecast that is an aggregation of k nearest observations with respect
to the characteristics of the data point in question.

Ridge Regression A technique that creates a parsimonious model which shrinks the coefficients
towards zero using L2 regularization. The resulting models generally reduce the
variance resulting in an improved mean-squared error.

Support Vector Machines
Regression

SVR is an extension of SVMs. It uses a pre-defined kernel function to transform the
data from a non-linear space to a higher dimension in order to find an approximate
fit that satisfies a pre-determined error margin. To that end, the objective function
of SVR is to reduce the coefficients rather than the error term (epsilon). SVRs are
particularly effective on smaller datasets and are more robust to outliers.

Kernel Ridge Regression Kernel ridge regression extends Ridge Regression with the integration of the kernel
trick technique from SVR. It differs to SVR in that it uses the squared error loss as
opposed to the epsilon-insensitive loss in SVR, combined with l2 regularization.

Prophet Auto-tunable, additive forecasting model with the ability to handle non-linear
trends using yearly, weekly, and daily seasonality with capabilities to integrate
effects from holidays, having robustness to dislocations in trend.

Random Forest Regression Ensemble-based algorithm consisting of decision trees whose outputs are
combined. Each decision tree is induced based on random feature subsets,
resulting in an uncorrelated forest of trees. The combined accuracy of the forest
results in a higher fidelity than that of any individual tree.

CatBoost CatBoost is an ensemble-based algorithm that generates gradient-boosted
decision trees. During training, successive trees are induced with a reduction in loss.
The size of the ensemble is preset by defining the maximum number of trees as a
parameter.

Voting Regressor Ensemble-based meta-estimator. Combines machine learning and traditional
time-series approaches. Initially generates models for the underlying base
regressors: Prophet, CatBoost, Random Forest and ARIMA. It then combines the
outputs of these algorithms for the final forecast using a weighted combination
scheme.

Averaging Model This algorithm was a customised version of the Voting Regressor which combined
the outputs of five algorithms (Prophet, CatBoost, Random Forest, Voting and
Stacking) but discarded the highest and lowest predictions in the calculation of
each prediction.

Stacking An ensemble-based meta-estimator which models the forecast outputs of the
underlying base estimators (Prophet, CatBoost and Random Forest) using an
overarching regressor whose output constitutes the final forecast.

We also note the Root Mean Square Error (RMSE) for each model as defined below:

RMSE =

√√√√ 1
T

T∑

t=1

(ŷt – yt)2. (2)

RMSE is instructive since it describes the dispersion of the errors while being scaled to
the dependent variable, therefore smaller RMSE values are preferred.
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Figure 5 The expanding window testing approach used in this study. Each testing window represents a
one-week period. In total 286 training and testing cycles were performed for each model covering the
periods between 2017 and July 2022

For completeness, we also report the Mean Absolute Error for all models, which in con-
junction with the previous two metrics is also used by some more recent studies in this
field [53]. MAE is the average absolute difference between the observation and the fore-
casted values. Given this property, it is to some degree conceptually easier to interpret
and due to the squaring of the differences, it is less sensitive to large errors, unlike RMSE.
Therefore, several significant errors will influence RMSE to a larger extent than MAE. The
calculation for MAE is:

MAE =
1
T

T∑

t=1

|ŷt – yt|. (3)

Lastly, we extensively use mean ranks in order to concisely summarise the performance
of all the algorithms across every test dataset. For each forecast period of 7-days, every
algorithm was ranked from 1 to 15 with respect to its MAPE value, with the best perform-
ing algorithm achieving the rank of 1. This was performed across all 52 testing periods
per year and across each of the 5.5 years of testing, and from this, the mean ranking was
calculated.

3.8 Statistical measurements
In addition to the evaluation metrics, we also use Theil’s U statistic [45] in order to assess
the model accuracy relative to the persistence model where the forecast value is equal
to the previous value. Since the method squares the errors, it gives more weight to large
deviations and exaggerated them, which can serve as a useful method for identifying sub-
optimal models. The Theil’s U statistic value is calculated below as:

U =

√√√√
1
T

∑T–1
t=1 ( ŷt+1–yt+1

yt
)2

1
T

∑T–1
t=1 ( yt+1–yt

yt
)2

, (4)
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where y again is the observed value and ŷt is the forecast value at a given time step t.
When interpreting this statistic, values lower than 1 indicate that the model is performing
better than the persistence model, while values of 1 and beyond indicate that the forecast
accuracy is equivalent to the persistence model and is in fact worse as the values increase.

Finally, we report the Diebold and Mariano [14] statistical test to establish whether the
sequences of forecasts of the models are meaningfully different from those of the bench-
mark. In order to determine this, we use this test to compare the outputs of the competing
model with those of the benchmark estimation models, with respect to the observed val-
ues.

3.9 Model interpretability and explainability
The emerging field of XAI, spurred on by increasing regulatory requirements [30], ad-
dresses the challenge posed by uninterpretable models and attempts to answer both the
“how” and the “why” of their decision-making in approximate terms. A set of approaches
called post-modelling explainability tools, aim to answer “how” an algorithm behaves in
the construction of a model during the training process, resulting in model interpretabil-
ity, as well as “why” the generated model has made a specific prediction/forecast, resulting
in model explainability [31]. One of the techniques that currently stands out as state-of-
the-art for extracting the interpretability and explainability of predictive models [19], is
SHAP [27], which is used in this study.

We employ SHAP to examine the internal mechanics of the predictive models at both
the global and local levels. At a global level of analysis, we seek to understand the overall
effects that each feature exerts on the model outputs. We primarily use feature importance
plots to gain this insight which typically ranks as well as depicts the relative impacts of
each feature. We also examine the effects that changing feature values have on the final
forecast. Additionally we use feature dependence plots in order to shed light on how pairs
of features interact in order to affect the final forecast. These plots together offer a degree
of high-level interpretability of the main drivers for a given model. In considering model
behaviour at a local level, we attempt to extract a model’s reasoning as to precisely why
exactly it has produced a given forecast for a specific data point.

SHAP generates new models which approximate the forecasting behaviour of the un-
derlying “black-box” models. These models are called surrogate models and are designed
to be more interpretable. SHAP (an abbreviation for SHapley Additive exPlanation) itself
is based on Shapley values [41]. The technique operates on the principles of game the-
ory. It attributes each feature’s marginal contribution to the final predictive outcome in
collaboration with the other features. In this way, SHAP is able to provide both global
interpretability and local explainability.

4 Results
The results are presented in two parts. The first examines the accuracies and the statistical
significance of the forecasting models, together with the efficacy of the proxy features. The
effects of the concept drift on the model accuracies are highlighted from the year 2020
onward. The second part analyses both the interpretability and the explainability aspects
of the models, with a focus on determining the utility of the proxy variables. The second
part also attempts to extract insights concerning the model behaviour and the underlying
features.
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4.1 Forecast modelling
Table 4 shows a high-level summary of all the models across both clinics, displaying the
MAPE values for each candidate model developed with a full set of features. To establish
the utility of the proxy features, each model’s MAPE score is contrasted with the MAPE
values of models developed using only autoregressive features, which are placed adjacently
in parentheses. Both the RMSE and MAE values are also listed, together with the average
rank scores based on MAPE. The table indicates that across both clinics the proposed
models have outperformed those that have not used proxy features. At the bottom of the
table, it can be seen that the best-performing algorithm was Voting which combined ma-
chine learning and standard statistical approaches.

The table combines the rank-ordering of the modelling techniques from worst perform-
ing to most accurate with respect to MAPE across both clinics (seen in the final column
of Table 4). The results indicate that the Voting algorithm has consistently outperformed
all other techniques on this dataset by leveraging the advantages of both machine learning
and statistical approaches. The top three performing techniques are all ensemble-based
meta approaches which have in various ways combined the models from the underlying
algorithms. These approaches were closely followed by standard ensemble-based meth-
ods, with Gradient Boosting-based approaches outperforming Random Forest. The rank-
ordered results also indicate that the existing in-house benchmark approach to patient
forecasting has been significantly improved upon by the best-performing methods.

It is also observable through MAPE scores that the predictability of Clinic 2 patient flows
is generally lower than that of Clinic 1. This is attributable to overall lower patient flows
at Clinic 2 which predisposes it to more variability and thus higher unpredictability. This
result underscores the limitations of blindly using the MAPE measure for comparisons
across different studies without taking volumes into consideration since the magnitude
of the total patient volumes affects variability and consequently, predictability. In saying
that, comparative studies from reported literature cite MAPE accuracies ranging from
7.6% to 10.7% for 7-day forecasts (Table 1) which provides some context for the 9% and

Table 4 Forecast accuracies by algorithm and clinic using all features as well as MAPE accuracies of
models using only autoregressive features in parentheses. Ranks per clinic are based on MAPE and
are also combined across both

Clinic 1 Clinic 2 Combined

MAPE Rank RMSE MAE MAPE Rank RMSE MAE Rank

kNN 17.5± 8.8 (11.3) 12.7 29.8 25.2 21.7 ± 14.7 (15.0) 12.3 15.7 13.2 12.5
SVR (NU) 17.7±11.3 (11.2) 12.4 29.7 25.3 20.4 ± 16.8 (14.5) 11.1 14.6 12.4 11.7
Benchmark 16.7±13.5 (16.7) 11.4 25.6 22.0 21.9 ± 21.1 (21.9) 11.1 14.6 12.4 11.2
Naive 16.3±11.7 (16.3) 11.0 25.7 22.3 19.1 ± 16.6 (19.1) 10.3 13.5 11.4 10.6
Prophet 10.1± 5.3 (11.8) 6.9 16.7 14.2 15.7 ± 14.6 (16.6) 7.9 10.9 9.2 7.4
Naive (Enhanced) 10.7± 6.1 (10.7) 7.6 17.7 14.9 14.1 ± 9.4 (14.1) 7.0 10.1 8.4 7.3
ARIMA 10.5± 5.9 (10.5) 7.4 17.3 14.6 14.4 ± 9.6 (14.1) 7.2 10.1 8.5 7.3
Kernel Ridge 9.9± 4.2 (10.6) 7.0 16.8 14.1 14.1 ± 9.0 (14.3) 7.5 10.1 8.3 7.3
Ridge 9.9± 4.2 (10.6) 6.9 16.8 14.1 14.1 ± 9.2 (14.3) 7.3 10.1 8.3 7.1
Random Forest 10.0± 5.6 (10.5) 7.1 16.7 13.9 13.9 ± 9.1 (14.2) 7.1 10.0 8.3 7.1
CatBoost 9.6± 4.4 (10.4) 6.8 16.3 13.5 13.4 ± 7.0 (14.2) 7.1 9.8 8.1 7.0
Gradient Boosting 9.6± 4.5 (10.3) 6.6 16.3 13.5 13.6 ± 7.6 (14.1) 7.1 9.9 8.2 6.8
Stacking 9.4± 4.8 (10.0) 5.8 15.8 13.2 13.6 ± 10.4 (13.9) 6.2 9.6 8.0 6.0
Averaging 9.2± 4.6 (9.9) 5.1 15.3 12.8 13.3 ± 9.4 (13.7) 5.6 9.5 7.9 5.4
Voting 9.0± 4.6 (9.7) 5.0 15.0 12.6 13.1 ± 9.1 (13.5) 5.4 9.3 7.8 5.2
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Table 5 Accuracies and mean ranks for all models across each year for Clinic 1

2017 2018 2019 2020 2021 2022 Mean R

MAPE R MAPE R MAPE R MAPE R MAPE R MAPE R

kNN 16.8 13.2 16.1 13.3 15.4 13.4 22.7 11.8 16.1 12.2 17.8 12.3 12.7
SVR (NU) 17.2 13.8 15.5 12.9 14.9 13.2 27.2 11.6 15.2 10.9 15.2 11.5 12.4
Benchmark 12.6 10.3 12.9 11.3 11.7 11.8 29.9 12.4 17.5 11.4 14.8 10.8 11.4
Naive 13.4 11.1 12.6 10.9 12.1 11.5 25.6 11.0 18.7 11.1 14.1 9.9 11.0
Naive (Enhanced) 10.0 8.2 9.3 7.5 8.6 7.3 14.9 8.0 11.1 7.7 9.7 6.3 7.6
ARIMA 9.7 7.0 9.7 8.7 9.0 7.7 13.1 7.2 10.8 6.7 10.5 6.8 7.4
Random Forest 9.3 7.7 9.0 7.0 8.1 6.9 13.9 7.3 9.9 7.0 9.8 6.0 7.1
Kernel Ridge 9.0 6.2 9.2 7.1 7.9 5.9 12.5 6.9 10.6 8.2 10.7 8.8 7.0
Ridge 9.0 6.2 9.2 7.2 7.9 6.0 12.4 6.6 10.4 7.7 10.8 8.9 6.9
Prophet 8.4 4.9 8.4 5.8 8.2 7.1 13.5 8.1 10.2 7.3 14.0 9.8 6.9
CatBoost 9.7 8.7 8.7 6.3 8.1 7.0 11.9 5.8 9.7 6.8 9.7 6.0 6.8
Gradient Boosting 9.2 7.5 8.9 6.5 8.0 6.6 12.2 6.1 9.8 6.5 9.7 6.3 6.6
Stacking 8.4 4.9 8.3 5.2 7.8 5.8 12.2 6.5 9.7 6.6 11.1 6.4 5.8
Averaging 8.5 5.5 8.2 4.8 7.6 5.0 11.9 5.4 9.2 5.0 9.9 5.3 5.1
Voting 8.4 4.8 8.2 5.4 7.5 4.8 11.6 5.3 8.9 4.8 9.7 4.8 5.0

Table 6 Accuracies and mean ranks for all models across each year for Clinic 2

2017 2018 2019 2020 2021 2022 Mean R

MAPE R MAPE R MAPE R MAPE R MAPE R MAPE R

kNN 17.4 12.2 20.4 13.0 19.5 12.8 27.9 12.2 24.1 11.5 20.2 11.9 12.3
Benchmark 18.3 11.7 16.8 10.3 17.0 11.4 28.2 9.5 29.9 12.7 20.2 10.9 11.1
SVR (NU) 15.4 11.0 19.1 11.8 18.9 12.7 28.4 10.7 22.1 9.8 16.9 9.6 11.0
Naive 16.4 10.4 17.3 10.2 17.9 11.8 23.6 7.6 20.8 11.5 18.9 10.0 10.3
Prophet 12.4 6.5 13.1 6.9 11.2 6.5 23.8 10.0 16.9 8.2 18.3 10.2 7.9
Kernel Ridge 13.2 8.5 13.7 7.9 11.2 7.3 17.4 7.6 14.9 7.0 13.9 6.2 7.5
Ridge 13.0 7.8 13.7 7.8 11.3 7.3 17.5 7.5 14.9 6.7 13.8 6.0 7.3
ARIMA 12.3 6.3 13.8 7.4 11.0 6.2 17.4 8.3 16.4 7.4 16.1 8.0 7.2
CatBoost 12.6 7.7 13.3 7.4 11.2 7.2 14.6 6.2 14.2 6.7 15.6 7.9 7.1
Gradient Boosting 12.7 7.9 13.4 6.8 11.2 7.0 15.7 7.2 14.8 6.8 14.7 6.6 7.1
Random Forest 12.4 7.4 13.4 6.9 11.3 7.4 16.5 6.6 15.2 6.9 15.1 7.2 7.1
Naive (Enhanced) 12.2 6.5 13.3 7.1 11.6 7.1 17.3 7.6 16.4 7.5 13.4 5.3 7.0
Stacking 12.0 6.2 12.6 5.7 10.3 5.2 17.9 6.8 14.5 6.3 15.5 7.6 6.2
Averaging 11.6 5.2 12.6 5.5 10.2 5.1 16.7 6.1 14.2 5.8 15.1 6.8 5.6
Voting 11.5 4.8 12.6 5.3 10.1 5.1 16.5 6.1 14.3 5.4 14.6 5.8 5.4

13.1% accuracies achieved by Clinics 1 and 2 respectively, taking into account that the
prior studies did not cover the pandemic period.

To highlight the effects of the pandemic-induced concept drift, Tables 5 and 6 examine
the accuracies of the models by each year, across both clinics. Firstly, the tables confirm
that the Voting method has consistently generated higher generalisability across all years
according to the combined mean rank. However, an abrupt pandemic-induced deteriora-
tion in the accuracies can be seen for 2020 onward on both tables. The accuracy declined
by 55% and 63% for the Voting method across Clinic 1 and 2 respectively from 2019 to
2020, before beginning to improve from 2021 onward. The subsequent improvement in
the accuracies after 2020 indicates that the models made some measure of adjustment to
the concept drift and have been able to adapt to the new conditions with the help of the
proxy features. In comparison, the benchmark forecasts deteriorated by 156% and 66%
across Clinic 1 and 2 respectively for the same period. To visually highlight the effects of
the concept drift on the accuracies and the subsequent adaptations by the models, we ren-
der the MAPE values for both clinics, contrasting Voting and benchmark models in Fig. 6.
Sharp deteriorations especially for the benchmark model can be seen in 2020 for both
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Figure 6 Comparison of MAPE accuracies between the benchmark and Voting models across both clinics
and all the years

clinics, together with adjustments which occur faster for the Voting model and thus in-
cur a smaller deterioration in accuracy. Though the benchmark models eventually recover
some of their accuracy, this occurs with a considerable delay.

Returning to the models’ accuracies by year, the overall improvements of the best model
(Voting) over the benchmark are ∼33% and ∼23% for Clinics 1 and 2 respectively. A de-
tailed presentation of the percentage improvement achieved by the proposed models over
the benchmark approach by year as well as overall can be seen in Tables 8 and 9 in Ap-
pendix A. The TheilU statistic comparing the Voting model to the benchmark showed
that values are below 1, indicating an improvement over the benchmark. A full summary
of these values can be seen in Tables 10 and 11 in Appendix A. Finally, in establishing
the advantage of the Voting model over the benchmark, the Diebold-Mariano test across
both clinics and for each year indicated that all Voting model forecasts can be considered
significantly different (at a 1% level) to the benchmark approach.

Next, we depict an example of the Voting model’s forecasting behaviour across three
distinctive years, namely from 2019 to 2021, which cover both the stable (2019) and the
concept-drift periods (2020–2021) in Fig. 7. This figure shows the forecasting results for
estimating patient flows for Clinic 1 while contrasting them with the observed values.
Relatively stable patient flows together with accurate forecasts can be seen for 2019, with
several undetected patient surges occurring in that year (circled) where the discrepancy
between the forecasts and the actuals was 20% or above. Significant COVID-19-related
disruptions and the ensuing concept drift can be seen in the figures depicting 2020 and
2021 when recurring lockdowns and GP closures took place. In the figures, the forecasts
largely demonstrate a high degree of adaptability to the underlying changes aided by the
proposed proxy features which are able to incorporate new information. While the fore-
casts were generally effective, points of interest have been highlighted in the figures where
the observed values exceeded the foretasted values by more than 20%.

To further establish the efficacy of the proxy features, Table 7 contrasts MAPE results of
the benchmark and three versions of the Voting model (using only proxy-features, without
proxy-features and using a full set of features). The table demonstrates an overall improve-
ment in models using a full set of features that includes proxies features compared to those
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Figure 7 Example of forecasts versus observations between 2019 and 2021 with the corresponding
pandemic Alert Levels on the x-axis highlighted

Table 7 Contrasting MAPE accuracies between models using all features versus those generated by
proxy-only features for Clinic 1

2017 2018 2019 2020 2021 2022

Benchmark 12.6 12.9 11.7 29.9 17.5 14.8
Voting (proxy-features only) 11.0 9.7 9.7 12.4 10.0 11.3
Voting (without proxy features) 8.4 8.5 7.7 13.7 10.3 9.2
Voting (all features) 8.4 8.2 7.5 11.6 8.9 9.7

without. The sharp difference between the models is particularly evident for the years 2020
and 2021, which supports the claim that these features are effective in mitigating the effects
of concept drift. The results for 2018 and 2019, which are considered normal patterns, also
show that models using proxy features perform better than those without. The results for
2017 are inconclusive, and for 2022, the models without proxy features performed better,
but it should be noted that the data for 2022 is incomplete, covering only predictions up to
July.8 The contrast between the full-feature model and the one using proxy features only is
of note since the latter demonstrates that it was able to account for a considerable amount
of variation in the patient flows alone. During stable periods (2017–2019) the full-feature

8The impact of proxy variables on model forecasts varies throughout the year, with some variables being more effective at
different times. Since the flu season onset and severity, as well as other unpredictable factors, vary each year, using only a
biased sample of data for the first half of 2022 prevents conclusive findings for the entire year with respect to feature effects.
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model improved over the proxy-only model between ∼18% and ∼31%. However, during
the concept drift period (2020–2022), this was reduced to only a ∼7% to ∼16% improve-
ment. The experiment indicates that a high degree of information is entailed within the
proxy variables and that they are able to explain a significant degree of variation in the
dependent variable, especially during the particular case of the recent pandemic-induced
concept drift.

4.2 Model interpretability and explainability
We now use the SHAP technique in order to extract the Voting model’s interpretability
and the explainability of its forecasts for Clinic 1. Figures 8a and 8b depict the high-level
interpretability of the model behaviour up to the end of 2019 and 2021 respectively. Again,
the two years are selected to highlight the response of the models to the concept drift due
to prevailing pandemic conditions affecting patient flows. The figures show the feature
importance plots as determined by the models from most to least impactful, while also
depicting the relative magnitude of the effect that each feature exerts on the final forecast.
The figures also communicate how changes in the values of each feature drive the model’s
forecast upwards or downwards.

The two figures are in agreement that the most important feature influencing the fore-
cast of patient demand up to the year they represent, are values from seven days prior,

Figure 8 SHAP graphs for 2019 (Left) and 2021 (Right) models. (a) and (b) depict feature importance
summary plots. (c)–(f) show explanations of forecasts for specific dates together with the observed values
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while values from two weeks prior and years are also prominent. However, it is clear that
the prevailing COVID-19 Alert Level has gained a high-ranking position for importance
in 2021. Generally, the importance of autoregressive features has been interpreted as more
important by the models than that of the other proxy variables.

The SHAP summary plots in Figs. 8a and 8b communicate an additional dimension con-
cerning global interpretability. In these figures, one can observe how an increase/decrease
in the values of each underlying feature impacts the final forecast. The colours represent
feature values where red equates to high values and blue to low values. The x-axis conveys
the range of impact on the final forecast. The data points which have a positive SHAP value
and appear to the right of the vertical zero line, have an impact on the forecast value which
drives it towards predicting higher patient flow numbers. Conversely, the data points that
have a negative SHAP value, to the left of the vertical zero line, decrease the forecasted
patient flow numbers. As the points extend further from the zero vertical line, their effect
and contribution to the final forecast correspondingly increase.

From Figs. 8a and 8b, a general pattern can be seen where the higher values of the fea-
tures have a correlated positive effect on pushing the forecasts toward higher totals. In
Fig. 8b, an exception can be seen in the effects of the COVID-19 Alert Level, where higher
levels result in decreasing the forecasted patient flow. The impact of this feature as well
as that of the public holidays is also asymmetrical. In other words, the model responds
more strongly to forecasting lower patient demand if the values for the COVID-19 Alert
Level are high, then it would predict a higher patient flow if the values for these features
were low. The reverse holds for the public holiday feature. Some ambiguity exists in the
effects that the values of ‘feels like’, ‘pedestrian count’ as well as ‘flu percent’ have on the
final prediction.

Figures 8c–f expose the explainability of the models for a selection of specific forecast
dates. These figures depict the top nine features for each forecast and their values on the
y-axis. The features are rank-ordered by their impact on the final prediction. The figure
can be interpreted as a contest of forcing effects between all the features. The expected
value of each figure is denoted as E[f (x)] which is the average value of all the forecasted
data points. A final SHAP value at the top represents the eventual forecasted outcome.
Blue bars represent the forcing effects towards smaller forecast patient flows, while red
indicates the opposite. The size of the bars represents the effect size that each feature and
its corresponding values exert. These graphs are best interpreted from the bottom up.

The forecasts for Figs. 8c and 8e were made in 2019 which explains why the COVID-19
Alert Level did not play a role in the forecasts. In Fig. 8c, the 7 and 14-day autoregressive
features were the most impactful; however, their effects cancelled each other out, while
Google search terms pushed the forecasts towards higher estimates. In contrast, Fig. 8e
shows that the autoregressive value from two years before had a strong effect on higher
forecasts, and pedestrian counts featured more prominently in pushing the final forecast
down. Figures 8d and 8f represent the concept-drift phase. In these figures the strong influ-
ence of the COVID-19 Alert Level can be seen responding to the changes in the dependent
variable, pushing both forecasts down due to the high prevailing pandemic situation. In
both cases, the pandemic level eclipsed the remaining features and successfully rectified
the final forecast toward an accurate estimation.

Here, we revisit the proxy-only models to study their effects and utility, which we con-
duct with the removal of the autoregressive features. Figures 9a–f depict the behaviour of
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Figure 9 SHAP proxy-only model graphs for 2019 (Left) and 2021 (Right). (a) and (b) depict feature
importance summary plots. (c)–(f) show explanations of forecasts for specific dates together with the
observed values)

these models. The same analysis approach is followed as previously by using data up to
2019 and 2021. Again, the first two Figs. 9a and 9b depict the interpretability of the mod-
els. In both years, it can be seen that pedestrian foot traffic is a significant driver of the
forecasts being negatively correlated with the forecasted patient flows. Google trends and
‘feels like’ data similarly exert a positively correlated influence across both years; however,
for 2021 the COVID-19 Alert Level becomes the second most important feature with a
negatively correlated impact on the patient flows.

Figures 9c and 9e depict the explainability of the forecasts for two separate dates in 2019.
Both explanatory figures demonstrate the strong influence of the prevailing influenza con-
ditions as a strong variable for this period, while Google trends searches are the strongest
for the former. For 2021, we observe that Google trends search results, as well as pedes-
trian foot traffic, are influential on both dates in Figs. 9d and 9f; however, the COVID-19
Alert Level is an overwhelmingly influential variable for the latter in driving the forecasts
down due to the highest prevailing pandemic level of 4 occurring in Fig. 9f. The differ-
ent magnitudes of effect that the COVID-19 Alert Level is explained by Fig. 9b, where we
see that high alert levels exert a considerably larger effect on the forecast than lower alert
levels exert on increasing the forecasts.

We conclude with a high-level analysis of the model’s behaviour to draw out further in-
sights, but this time considering how pairs of features interact in order to influence the
final forecasts. We depict a selection of these interactions in Figs. 10a to 10d focusing pri-
marily on proxy features. Each plot contains a horizontal line which indicates the threshold
representing a transition from increasing and decreasing effects that pairs of features have
on the final forecast

Figure 10a shows how the effect on the final forecast changes as the COVID-19 Alert
Level increases (x-axis) and as the value for Google Trends search terms rises (colour gra-
dient on the right y-axis). The interaction of low COVID-19 Alert Level values and high
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Figure 10 SHAP feature dependence plots showing interaction effects between various pairs of proxy
variables

Google Trends search terms exerts the strongest effect on raising the forecasts. The fore-
casts are significantly downgraded as the COVID-19 Alert Level values increase and the
lockdown measures take effect but at the same time, some of the highest Google Trends
search terms regarding respiratory terms are encountered during the highest lockdown
conditions.9

Several insights can be extracted from Fig. 10b depicting the interaction between the
reported increase in influenza prevalence and the weather variable. Firstly, it can be ob-
served that influenza levels between 0.5% and 1% in conjunction with high weather val-
ues tend to correspond with positive effects on the forecasts. This can be explained by
summer conditions where there is an uptick in sport-related injuries and general outdoor
accident-based cases. However, influenza levels below 0.5% tend to be inconsistent. As
the influenza prevalence increases from 1% to 3%, this has a positive effect on forecasts as
would be expected during the winter months, and can be confirmed by the fact that most
of the weather-perception values are downward trending. An unexpected pattern can be
seen as influenza prevalence levels increase beyond 3% where counter-intuitively a mixed,
and more negative effect is exerted on the forecasts which is contrary to the reported ex-
perience of the clinic’s staff.10

Meanwhile, in Fig. 10c it is observable that as the pedestrian traffic increases, there is a
generally a decreasing effect on the forecasts11 until the highest pedestrian traffic values

9The greatest values indeed coincided with the first and the highest COVID-19 Alert Level announced in March 2020.
10The negative effect of high influenza prevalence may be due to uncertainty in the data itself which raises some questions
about the reliability of this feature since it is incomplete with the data being available from 2018 onward. It may also be
explained by the fact that this feature is a nationwide indicator and influenza incidence is likely to be different in colder
regions of the country than in Auckland. The fact that the highest values of flu prevalence coincide with high weather
values as negative drivers of forecasts may be suggestive that this period corresponds with the earlier beginning of spring
in Auckland than in other regions, which leads to a sharp actual decline in respiratory related illness.
11This is explainable by the fact that the pedestrian traffic peaks midweek when the patient arrivals are at their lowest.
Meanwhile, the pedestrian traffic is lowest in the CBD during the weekend when patient demand is typically at its highest.
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are reached, at which point, the behaviour of the models becomes more erratic, possibly
due to public holidays and large events. The highest COVID-19 Alert Level values together
with the ensuing lowest pedestrian traffic values, aggressively decrease the forecasts as
expected. The highest positive effects on the forecasts are seen in data points where the
pedestrian traffic is low but the COVID-19 Alert Level is less than 4 which corresponds
with the most stringent lockdown mandates. This also corresponds with the loosening of
the lockdown restrictions which in turn trigger increased clinic visits due to the pent-up
demand during the highest lockdown conditions.

In the last illustration, Fig. 10d depicts the effects of increasing Google Trends search
terms with respect to changes to weather conditions. We see that some of the highest
Google Trends search values (from 80 onward) correspond with the strongest negative
forecasting effects. We can correlate this result with Fig. 10 which shows that some of the
highest Google Trends values occurred during the highest lockdown measures. A strong
negative effect on the forecasts can be explained by the increase in the general anxiety lev-
els of the homebound populace, resulting in an increase in Google searches covering terms
related to respiratory illnesses, while at the same time discouraging the population from
seeking non-urgent medical attention to lessen the risk of exposure as directed by the high
covid alert levels. Therefore, it can be surmised that unusually high Google Trends search
values from 80 onward are exceptional as they are attributable to severe lockdown condi-
tions. Meanwhile, Google Trends search values ranging from 50 to 80 can be interpreted
as belonging to the winter months and represent typical patterns that are confirmed by the
low weather temperatures for this range. The effect of the summer months and the lowest
Google Trends search values can also be observed where the strongest negative effects on
the forecast values are exerted.

5 Discussion
A comprehensive empirical investigation was conducted using a broad set of models
and features which achieved considerably improved accuracies over the benchmark ap-
proaches as well as competitive accuracies with respect to prior studies. In addressing
the study’s first research question (RQ1), we find that the ensemble-based Voting method
consistently outperformed all other candidate algorithms for this setting. The approach
successfully combined a mixture of both machine learning and statistical techniques in or-
der to leverage the advantages of both. This finding aligns with the literature on ensemble-
based machine learning which attests to the benefits of using such methods in comparison
to utilizing single models. The theory of ensemble-based machine learning posits that by
aggregating the predictions of diverse models, the resulting ensemble will on average ex-
hibit superior performance across a wide range of datasets when compared to utilizing a
single model.

The abrupt onset of the concept drift caused by the COVID-19 pandemic conditions
degraded the forecasting accuracies initially. Nonetheless, the experiments indicated that
the suite of novel real-time proxy variables were effective at adjusting the models to the
new and evolving drivers of patient flows. Not only were the proposed features useful at
triggering adaptations to the disruptions of historic patterns, but they were also effective
at improving the model forecasts in general (RQ2). Indeed, the experiments showed that
reasonable models could be generated using only proxy variables without reliance on au-
toregressive feature values. The study confirmed that the COVID-19 Alert Level feature
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was particularly effective at forecasting patient volumes during disruptive periods, while
determining the effectiveness of the Google search terms, pedestrian foot traffic as well
as weather data. While the reported prevalence of influenza prevalence was a useful fea-
ture and contributed to some degree in improving forecasts, it was less reliable than the
other proxy features likely due to its incompleteness. The implications of this finding is
that accurate forecasting of patient flows should remain possible using these features in
the event of future pandemic outbreaks.

A particularly novel contribution of this study was the extensive use of XAI tools in
order to expose the internals of the forecasting models. The use of the SHAP technique
to achieve global interpretability of the models was highlighted and proved effective in
depicting the various effects that features and their values bear on the final forecasts (RQ3).
Additionally, at the local level, the technique demonstrated its ability to clearly explain
the drivers of the forecasted values for individual days. Meanwhile, the dependence plots
yielded extra insights into the interactions of various features and how they collectively
influence the final forecasts. This also enabled the validation of the models against domain
knowledge to take place.

The findings of this study contain practical implications for practitioners. While the re-
sults of this study are specific to the two clinics in question, replication of our approach to
other clinics in different cities would require re-evaluation of the features used. However,
the insights and findings of this study can inform practitioners about the potential utility
of these features for generalisation and their potential responsiveness to concept drifts.
Additionally, the study’s results can inform practitioners about the potential performance
and limitations of different machine learning algorithms when applied to patient flow pre-
diction tasks. Our analysis approach is therefore generalisable to different contexts, and
the demonstrated XAI tools can be utilised to evaluate and fine-tune models. We offer
some recommendations to practitioners:

• Consider the timeliness and granularity of data: Choose real-time proxy variables that
are available in a timely manner and at the appropriate level of granularity for accurate
forecasting, ensuring that there also exists a sufficient amount of historic values for
model training.

• Consider unique attributes of the clinic: When selecting real-time proxy variables for
patient forecasting, consider the unique features of the clinic, such as its location, the
local transportation system and nearby hospitals.

• Explore diverse data sources: Look beyond traditional data sources, and explore other
sources of data, such as social media, Google Analytics, ED capacities at nearby
hospitals and local General Practitioners if available.

• Consider using ensemble methods: Model forecasts using ensemble methods, such as
combining multiple algorithms or models, to improve forecasting accuracy.

• Evaluate and detect concept drift: Simple concept drift methods that track the error
rate of a model can be applied for this purpose where drift is detected when the error
rate increases significantly compared to a minimum observed error rate. Confidence
intervals can be used to determine if a significant increase in error rate has occurred.

• Anticipate and mitigate for concept drift: Stay ahead of some causes of concept drift
which can come in the form of changes in nearby hospital operations of their EDs,
competition from new UCCs and reforms in healthcare policies concerning subsidies.
Concept drifts can also accompany infrastructure and transportation changes as well
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as economic downturns. While these factors can lead to fluctuations in patient arrival
patterns and demand for services, exploratory modelling using additional flag
variables that attempt to represent these events may act to preserve forecasting
accuracy.

6 Conclusion
Patient flows in Urgent Care Clinics (UCCs) and Emergency Departments (EDs) have been
experiencing increasing pressure as the volumes have grown and have become less pre-
dictable using ad hoc approaches. The ability to accurately forecast patient arrivals in these
contexts, and to understand better what some of the drivers of demand are, is important
for the efficient and effective functioning of these healthcare providers by enabling them
to respond faster and achieve more optimal human resourcing.

There are many factors which affect patient arrivals and randomness accounts for some
of this. Autoregressive variables as well as calendar and meteorological indicators have
already been explored in prior research and have been found useful for estimating patient
flows. This study goes further by also considering additional quasi-real-time variables like
Google search terms, pedestrian traffic and prevailing incidence levels of influenza, along-
side COVID-19 Alert Level indicators to improve the forecast accuracy.

This study makes a unique contribution in several respects. Not only does this study
integrate a wide variety of new features for forecasting patient flows, but it also considers
both the effects that the concept drift triggered by the recent pandemic conditions had
on the forecast accuracies, and the means by which the models can rapidly adapt to the
changing context in order to learn and recover. This research also ventured beyond the
standard studies using machine learning methods in this domain, by utilising tools from
the eXplainable AI field in order to expose the internals of the models, thus achieving
both the high-level interpretability of the models and the explainability of their individual
forecasts.

Our research determined that the Voting ensemble-based method performed most re-
liably in this setting and the final accuracies were competitive with those from prior stud-
ies. While the autoregressive and calendar features were important, the experiments in-
dicated that the prevailing COVID-19 Alert Level feature together Google search terms
and pedestrian traffic were effective at generating accurate forecasts.

Appendix A: Detailed model accuracies and statistical test results
A.1 Quantifying improvements of proposed methods versus the benchmark
Tables 8 and 9 show the improvements achieved by the top seven proposed methods using
all features over the benchmark as a percentage of MAPE. The results are broken down
by year.

A.2 TheilU statistical test on the significance of model improvements over the
benchmark

Tables 10 and 11 display the results of the TheilU statistical test showing the detailed im-
provements attained by the top seven proposed methods using all features over the bench-
mark. The test is performed across all years as a summary as well as broken down by year
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Table 8 Percentage improvement of proposed models over the benchmark for Clinic 1 across all
years

2017 2018 2019 2020 2021 2022 Overall

Prophet 26.8 29.8 25.5 27.7 26.1 3.3 25.0
Random Forest 17.1 26.2 27.8 38.5 29.7 22.2 27.3
CatBoost 13.6 27.6 26.5 43.5 30.5 25.3 28.1
Gradient Boosting 18.4 26.9 28.5 43.1 31.3 24.6 29.2
Stacking 25.7 30.6 30.1 40.5 31.0 19.1 30.5
Averaging 24.6 31.3 32.1 42.0 34.5 25.4 32.2
Voting 25.5 31.0 32.3 41.2 36.1 27.2 32.7

Table 9 Percentage improvement of proposed models over the benchmark for Clinic 2 across all
years

2017 2018 2019 2020 2021 2022 Overall

Prophet 25.8 12.0 26.2 –25.0 29.6 –15.1 11.2
Gradient Boosting 21.6 12.2 28.7 –0.7 38.0 17.2 19.7
Random Forest 23.8 13.0 27.3 2.0 36.1 19.1 20.3
CatBoost 23.0 12.0 26.9 5.1 38.1 14.0 20.4
Stacking 27.5 17.0 33.7 –2.6 37.9 13.6 21.9
Averaging 29.0 16.8 34.0 1.1 39.4 16.1 23.4
Voting 29.8 16.6 34.6 –1.2 40.3 17.2 23.4

Table 10 TheilU Statistic for Clinic 1

2017 2018 2019 2020 2021 2022 Overall

Random Forest 0.576 0.623 0.635 0.99 0.894 0.989 0.762
Prophet 0.507 0.584 0.612 0.927 0.873 1.417 0.756
Gradient Boosting 0.566 0.622 0.63 0.863 0.872 0.965 0.721
CatBoost 0.598 0.599 0.629 0.85 0.866 0.959 0.719
Stacking 0.516 0.573 0.596 0.845 0.865 1.127 0.706
Averaging 0.525 0.565 0.588 0.833 0.816 1.000 0.685
Voting 0.516 0.559 0.581 0.821 0.795 0.956 0.671

Table 11 TheilU Statistic for Clinic 2

2017 2018 2019 2020 2021 2022 Overall

Prophet 0.774 0.76 0.591 1.584 1.064 1.133 1.045
Stacking 0.725 0.693 0.56 1.167 0.888 0.982 0.855
Random Forest 0.743 0.73 0.631 1.026 0.962 0.969 0.845
Averaging 0.703 0.689 0.566 1.052 0.871 0.967 0.815
Gradient Boosting 0.736 0.732 0.626 0.894 0.916 1.043 0.810
Voting 0.692 0.684 0.558 1.009 0.886 0.947 0.800
CatBoost 0.754 0.737 0.63 0.836 0.872 1.069 0.796

for each clinic. The tables show that all the values for the Voting model are below 1, in-
dicating an improvement over the in-house method, apart from one instance in 2020 for
Clinic 2, where the performance was comparable.

A.3 Accuracies of the proxy-only model
Table 12 shows the detailed MAPE accuracies of the proxy-only models for Clinic 1 con-
trasted with univariate ARIMA and Prophet models. The univariate models outperform
the proxy-only models in the period leading up to the pandemic, but subsequently the
Voting proxy-only models shows general improvements over the univariate methods as
the concept drift takes effect from 2020 onward.
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Table 12 MAPE accuracies for the proxy-only models for Clinic 1

2017 2018 2019 2020 2021 2022 Overall mean

MAPE R MAPE R MAPE R MAPE R MAPE R MAPE R MAPE R

CatBoost 16.9 4.5 14.0 4.1 14.0 4.1 16.5 3.7 12.8 3.6 14.0 3.8 14.8 4.0
Random Forest 16.3 4.2 14.0 4.2 14.3 4.3 16.3 3.7 13.0 3.8 13.3 3.3 14.6 4.0
ARIMA 9.7 2.0 9.7 2.5 9.0 2.3 13.1 2.6 10.8 2.7 10.5 2.4 10.5 2.4
Prophet 8.5 1.7 8.4 1.9 8.4 2.1 13.3 2.8 10.2 2.6 14.2 3.5 10.2 2.3
Voting 11.0 2.6 9.7 2.3 9.7 2.3 12.4 2.1 10.0 2.2 11.3 2.0 10.6 2.3

Figure 11 Pedestrian Traffic Proxy Feature for 2019 and 2020

Figure 12 ‘Feels Like’ Temperature Proxy Feature for 2019 and 2020

Appendix B: Proxy feature values versus patient flows
Figures 11 to 14 highlight the correlation between the patient arrivals per day for Clinic
1 against the proxy variable values for 2019 and 2020, contrasting trends over stable and
concept drift periods.
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Figure 13 Flu Tracker Proxy Feature for 2019 and 2020

Figure 14 Google Trends Proxy Feature for 2019 and 2020
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