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Abstract
Human communication, the essence of collective social phenomena ranging from
small-scale organizations to worldwide online platforms, features intense reciprocal
interactions between members in order to achieve stability, cohesion, and
cooperation in social networks. While high levels of reciprocity are well known in
aggregated communication data, temporal patterns of reciprocal information
exchange have received far less attention. Here we propose measures of reciprocity
based on the time ordering of interactions and explore them in data from multiple
communication channels, including calls, messaging and social media. By separating
each channel into reciprocal and non-reciprocal temporal networks, we find
persistent trends that point to the distinct roles of one-to-one exchange versus
information broadcast. We implement several null models of communication activity,
which identify memory, a higher tendency to repeat interactions with past contacts,
as a key source of temporal reciprocity. When adding memory to a model of
activity-driven, time-varying networks, we reproduce the levels of temporal
reciprocity seen in empirical data. Our work adds to the theoretical understanding of
the emergence of reciprocity in human communication systems, hinting at the
mechanisms behind the formation of norms in social exchange and large-scale
cooperation.
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1 Introduction
Reciprocity, the tendency of entities to mutually interact, is a widespread feature of com-
plex networked systems, central to social network analysis [1, 2], evolutionary game theory
[3–5], and the economics of public goods and social norms [6, 7]. Already recognized in
some of the earliest sociometrics studies [8], reciprocity is an emergent moral norm of
human interaction [9] indicating stability, cohesion, and cooperation in social networks
[10–13]. Reciprocity is also widely considered as a main contributor to tie strength [14, 15]
and social influence [16].

Highly reciprocal patterns of connectivity have been found in static, aggregated data [17]
from the world trade web, internet, and neurons, as well as in social networks of commu-
nication [18–20], kinship [21], and strategic partnerships [22]. This has prompted the de-
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velopment of reference models with tunable amounts of reciprocity within the framework
of exponential random graphs [23–25], both in the absence [26] and presence [27, 28] of
degree correlations. The resulting reciprocity measures have been extended to weighted
[18, 29–31] and bipartite [32] networks, and used to uncover the role of reciprocal links
in the world wide web [33, 34], the growth of Wikipedia [35, 36], synchronization in brain
networks [37], and the dynamics of scientific reputation [38].

When inferring social network structure from repeated interactions like communica-
tion events [39, 40], reciprocity emerges as an inherently temporal property. A scenario
in which individual A receives 10 messages from person B, followed by 10 messages from
B to A, is structurally different from the case where 20 messages are exchanged in an al-
ternating way (A → B, B → A, etc.). An appropriate notion to tackle this scenario is a
temporal network [41, 42], where nodes are people and time-stamped edges are interac-
tion events in one of potentially multiple forms of communication [43–45]. In contrast
to the static case, reciprocity in temporal, non-aggregated network data has received less
attention in the literature. Notable exceptions are the extension of reciprocity measures
to spatio-temporal urban networks [46], as well as studies of the role of reciprocity in the
temporal stability of non-human social networks [47], and in the dynamics of both collab-
oration [48] and organizational [49, 50] networks.

Here we explore the temporal patterns of reciprocity in social networks by analyzing
time-stamped social interaction data in several communication channels (face-to-face,
calls, text, email, online messaging, social media, etc.) [51–54]. We start by proposing mea-
sures of reciprocity that explicitly take into account the time ordering of events and are
thus related to widely studied patterns of temporal inhomogeneity like burstiness [55, 56].
These measures give additional information than their aggregated counterparts [17, 31],
particularly the overall balance between events in different directions over a social tie [20].
By separating each dataset into reciprocal and non-reciprocal temporal networks, we ob-
serve persistent differences between channels that point to their distinct roles in commu-
nication [57], in agreement with previous work on the structure of egocentric networks
[58, 59] and daily patterns of communication [60]. Finally, we introduce a model within
the framework of activity-driven, time-varying networks [61, 62], combining both hetero-
geneous node activity [63] and repeated interactions over established social connections
[64, 65], which recovers the empirical levels of reciprocity seen in temporal communica-
tion networks.

2 Results
2.1 Multi-channel communication networks are reciprocal
We study temporal network data in several communication channels: phone-enabled so-
cial interactions via calls and messages in the Copenhagen Network Study [51, 52] (de-
noted calls & sms), private messages sent in an online social network at the University of
California, Irvine [53] (msg), emails exchanged among members of a European research
institution [54] (email), and our own crawl of retweets and mentions in Twitter with key-
words associated to the anti-vaccination movement in Italy (retweets & mentions) (Fig. 1
and Table 1; for data description see Supplementary Information [Additional file 1] Sec-
tion S2).

In a temporal network of social interactions via communication, two individuals i and
j, or nodes, interact through a directed time-stamped event eijt , when source node i com-
municates with target node j at time t (e.g., calls, sends a message, etc.). The time-ordered
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Figure 1 Reciprocal and non-reciprocal activity in empirical communication networks. (top) Schema for
separating a temporal network of time-stamped, directed communication events between pairs of
individuals (black arrows, left) into reciprocal and non-reciprocal components (right). A pair of consecutive
events is a reciprocation if events have the opposite direction (blue areas), and a non-reciprocation if they have
the same direction (red areas). (Non-) reciprocal time gaps are then the inter-event times within (non-)
reciprocations (see Additional file 1 Section S1). (bottom) Complementary cumulative distribution function
P(n′ > n) (ccdf ), the fraction of nodes having strictly more than n reciprocations (solid) or non-reciprocations
(dashed) in various communication channels. one-to-one communication channels tend to be more
reciprocal than broadcasting channels (i.e. Twitter; see Table 1)

Table 1 Basic statistics of studied datasets. Temporal network data on calls and messages from the
Copenhagen Network Study [51, 52] (calls & sms), online social network messages at the University of
California, Irvine [53] (msg), emails at a European research institution [54] (email), and our crawl of
keyword-restricted retweets and mentions in Twitter (retweets & mentions) (see Additional file 1
Section S2). Table shows the number of events E, links L, and nodes N, as well as the fraction of
reciprocations over a link, p(Erec), and the fraction of links having at least one reciprocation, p(lrec) (see
Additional file 1 Section S1). Most channels (apart from Twitter) show significant levels of temporal
reciprocity

dataset E L N p(Erec) p(lrec)

calls 2430 181 252 0.44 0.95
sms 23,779 473 482 0.74 0.99
msg 40,600 3343 941 0.67 0.87
email 306,529 6864 753 0.45 0.90
retweets 57,899 3142 1156 0.10 0.33
mentions 226,774 8292 1609 0.11 0.40

sequence of events of link lij is, e.g., {eijt1 , ejit2 , eijt3 ...ejitT } (with T the total number of events
in the link) and one can display its directed events by arrows (Fig. 1 top; for definitions see
Additional file 1 Section S1). Communication between a pair of individuals can then be
divided into reciprocal and non-reciprocal components. Two consecutive events in oppo-
site directions form a reciprocation [(eijt1 , ejit2 ) with t2 > t1], while two in the same direction
are a non-reciprocation [(eijt1 , eijt2 ) with t2 > t1]. Other, less restrictive definitions of tem-
poral reciprocity that do not require consecutive events are also possible (see Additional
file 1 Section S7).

We compute the complementary cumulative distribution function P(n′ > n) (ccdf ), i.e.
the fraction of nodes having strictly more than n reciprocations or non-reciprocations in
each of the 6 studied communication channels (Fig. 1 bottom). At this level of aggrega-
tion, calls and email are slightly more reciprocal, while sms and msg tend towards non-
reciprocity. In both retweets and mentions, Twitter is markedly more non-reciprocal than
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other communication networks. This contrast is likely due to the different purposes for
which these social networks are used [57]. Communication networks (msg, calls, email,
sms) are primarily conversation channels where interactions are parts of a discussion, peo-
ple reaching out to each other and responding throughout time. On the other hand, Twit-
ter is mostly used as a broadcasting platform, where users post to reach the community
and do not target specific users.

We begin to explore the temporal nature of reciprocity by measuring the number of
reciprocations Erec,ij over link lij, relative to the number of consecutive event pairs on
that link, Eij – 1. By averaging over links, we obtain the reciprocation probability p(Erec) =
〈Erec,ij/(Eij – 1)〉ij. We also compute the number of links with at least one reciprocation
(lrec) relative to the total number of links (L), p(lrec) = lrec/L (Table 1). We filter out links
with less than five events, the lowest threshold value that starts showing relatively low
variation in most quantities studied (for sensitivity analysis see Additional file 1 Section
S3). This choice of filtering is motivated by previous studies on social network structure
[14, 30, 66], which show that repeated interaction is a good proxy for tie strength. In our
case, we remove the weakest ties to focus on more persistent patterns of communication.

All conversation channels (calls, sms, msg, email) show high levels of temporal reci-
procity. The fraction of reciprocations p(Erec) ranges between 0.74 (sms) and 0.44 (calls,
email) (Table 1). In contrast, low levels of temporal reciprocity in Twitter are likely due
to the broadcasting, uni-directional nature of the platform, with p(Erec) ∼ 0.10. The ag-
gregated weighted network of Twitter shows a significant negative correlation between
in- and out-strengths (see Additional file 1 Section S5), meaning that communication be-
tween pairs of nodes is potentially unbalanced overall. As we describe in more detail below,
if communication between two nodes is highly skewed in one direction, then temporal
reciprocity [as measured by p(Erec)] cannot be high. We observe a similar behaviour with
p(lrec): most of the links (87–99%) in conversation channels have at least one reciprocation,
while this is only the case for 33–40% of the links in retweets and mentions.

2.2 Balance is an upper bound of temporal reciprocity
A way of highlighting the temporal nature of reciprocity is by comparing it with the overall
balance between events in different directions over a social tie. Following [20], we define
balance between nodes i and j as bij = max(nij ,nji)

nij+nji
, where nij and nji are the number of events

from i to j and from j to i, respectively, for link lij in the aggregated network. In other
words, balance quantifies how much the interaction between two individuals is skewed in
one direction or another.

Communication data shows an inverse correlation between balance b in the aggregated
network and the fraction of reciprocations p(Erec) in the temporal network (Fig. 2). When
b ∼ 1/2 (the numbers of events from i to j and from j to i are equal, i.e. the social tie is
balanced), p(Erec) is large, meaning that the direction of the interaction between i and j
changes repeatedly over time. Then, as b moves away from 0.5, p(Erec) decreases, indicat-
ing that unidirectional interactions are more prevalent. Still, the fraction of reciprocations
ranges from 0 to the approximate upper bound 2(1 – b) (for derivation see Additional file
1 Section S6), meaning there is variability in p(Erec) among all datasets for a fixed value
of b. Messaging, in particular, seems able to maximise reciprocity over balanced ties [i.e.
p(Erec) ∼ 2(1 – b) for b ∼ 1/2 in msg and sms]. Thus, p(Erec) complements balance as a
measure of reciprocal relationships in communication networks, capturing its temporal
nature more accurately.
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Figure 2 Balance as upper bound of reciprocity in temporal networks. Distribution of fraction of
reciprocations p(Erec) over nodes in dataset (box plot), and approximate upper bound p(Erec) = 2(1 – b) (see
Additional file 1 Section S6), both as function of balance b over nodes [20]. Balance is constrained to
0.5≤ b ≤ 1, with b = 1 an unbalanced, unidirectional relationship from one node to the other, and b = 0.5
perfect bidirectionality between two nodes. p(Erec) decreases as communication moves away from perfect
balance, for both conversation (calls, sms, msg, email) and broadcasting (Twitter) channels. p(Erec) is highest
for balanced conversations (b ∈ (0.5, 0.6]), and smallest for severely unbalanced interactions between node
pairs (b ∈ (0.9, 1]). As an aggregate measure, balance does not convey the same information as temporal
reciprocity, since p(Erec) varies greatly among the 6 datasets for the same interval of b; balance is a necessary
but not sufficient condition for reciprocation. Outliers above the upper bound of balance are due to an
approximation in its derivation (see Additional file 1 Section S6)

Comparing datasets by p(Erec) for a given value of b (Fig. 2), we find that conversa-
tion channels show higher levels of temporal reciprocity than Twitter. The datasets sms
and msg show the largest p(Erec), followed by email and calls, with Twitter mentions and
retweets at the lowest level of reciprocation (see Table 1). There are several potential ex-
planations for this behavior. Short phone messages (sms) and direct messages within an
online social network (msg) are usually directed at specific people and not used for broad-
casting, meaning high temporal reciprocity. Institutional communication (email) is often
used both for sharing university-wide messages and talking among small groups of peo-
ple, leading to heterogeneous values of p(Erec). Phone conversations (calls) are inherently
bidirectional irrespective of who initiates the call, so people can be reciprocal within con-
versations even when data shows lower values of p(Erec). Twitter is consistently unidirec-
tional mostly regardless of balance, in line with its use as a broadcast platform (see related
results for aggregate in-/out-strengths in Additional file 1 Section S5).

2.3 Reciprocation is more bursty than non-reciprocation
Human communication is typically bursty (made up of short trains of intense activity sep-
arated by long silences [20, 56]), making us wonder about the relationship between tempo-
ral reciprocity and burstiness. We find, however, no significant correlation between p(Erec)
and standard measures of burstiness [55, 67] (see Additional file 1 Section S6). By separat-
ing communication channels into reciprocal and non-reciprocal temporal networks (see
Fig. 1 top), we can also compute the time elapsed between successive interactions which
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Figure 3 Reciprocation is more bursty than non-reciprocation in human communication, and varies across
channels. Distribution p(�t) of the time gap �t (in days) within (non-)reciprocations (left column), and
distribution p(B) of the time gap burstiness B (right column), both over links of all communication channels.
Mean values 〈�t〉 and 〈B〉 are marked by dashed lines (same colors as corresponding histograms).
Reciprocations seem to be faster, showing smaller time gaps than non-reciprocations, for conversation
channels (calls, sms, msg, emails), while the opposite holds for Twitter. Reciprocal communication is
significantly more bursty (non-homogeneous) than non-reciprocity for sms, msg and email, and becomes less
so for calls and the broadcasting channels retweets and mentions. We compute statistical significance of the
difference between two distributions via a Kolmogorov-Smirnov (KS) 2-sample test; p-values (pval) < 0.01 are
deemed significant (green, otherwise red)

are both reciprocal or non-reciprocal, which we refer to as the (non-) reciprocal time gap
�t (Fig. 3 left). The time gap is analogous to the well-known concept of inter-event time
in temporal networks [41, 42], but limited to the inter-event times within reciprocations
or non-reciprocations.

The time gap distribution p(�t) shows that time scales of communication vary widely
among channels – sms has a fast dynamics with average time gap 〈�t〉 ≈ 0.5, 1.25 days
within reciprocations or non-reciprocations, respectively. Then we have calls, msg, men-
tions, retweets, and finally, emails as the slowest system with 〈�t〉 ≈ 28 days within (non-)
reciprocations. The broad distribution in the email channel seems to be consistent with
its heterogeneous use for both sporadic institutional communication and more frequent
personal exchanges. We also notice that reciprocation is faster than non-reciprocation
in conversation channels (sms, msg, and email). The opposite is true for mentions, while
calls and retweets show similar shapes of p(�t) between reciprocal and non-reciprocal ex-
change. Twitter as a broadcasting platform shows more non-reciprocations and less time
between their events.
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Following previous work on non-homogeneous patterns of communication activity
over time [20, 55, 56, 67], we extend the notion of burstiness to time gaps by defining
B = (σ – μ)/(σ + μ), where μ and σ are, respectively, the mean and standard deviation
of the time gaps within (non-)reciprocations. Time gap burstiness B ranges between –1
and 1, meaning time gaps are distributed either regularly or broadly in time. Explicitly,
B ∼ 1 corresponds to the most bursty time gap distributions possible (σ 
 μ), B = 0 is
a neutral case [an exponential distribution with σ = μ], and B = –1 indicates identical
time gaps (σ = 0) [67]. The difference between communication channels is even more ev-
ident when looking at the distribution p(B) of time gap burstiness in both reciprocal and
non-reciprocal components (Fig. 3 right). In conversation channels (sms, msg, email), re-
ciprocal communication is significantly more bursty (i.e. less regular) than non-reciprocal
exchange, while the broadcasting platform Twitter shows the opposite (non-reciprocity is
more bursty). By explicitly separating communication into reciprocal and non-reciprocal
components, sms comes out as the most non-homogeneous form of reciprocal communi-
cation among all channels considered. Overall, the consideration of temporal reciprocity,
time gaps, and burstiness allow us to identify a spectrum of roles of communication (from
one-to-one communication to uni-directional broadcast) not apparent from aggregated
data alone.

2.4 Null models identify memory as mechanism for temporal reciprocity
Having established the presence of reciprocity and its temporal features in several com-
munication channels, we turn to the question of how much of the reciprocation seen in
data is explained simply by random processes, and how much is otherwise potentially due
to specific mechanisms of social interaction, particularly memory [64]. In line with previ-
ous work on random models of reciprocity in static networks [26–28, 31], we focus on four
null models that randomize (i.e. shuffle) the time of occurrence of events and/or the net-
work topology. As a task of hypothesis testing via reference models of temporal networks
[68], our null models correspond to the class of microcanonical randomized reference
models, since we impose constraints on some network features (e.g., degree, number of
events, etc.), while randomly shuffling others (e.g., time ordering of events, links, etc.).

The null models considered include two types of shuffling: a) timestamp shuffling, or
b) rewiring and timestamp shuffling. Timestamp shuffling keeps the network topology
fixed while randomly exchanging the times of event occurrence, thus randomizing the
temporal aspects of communication only, not the underlying pattern of interactions. The
rewiring and timestamp shuffling method randomizes both the network topology and
timestamps of event occurrence, affecting temporal and structural patterns of informa-
tion exchange. We implement the two shuffling methods at two levels of resolution: a) node
level or b) network level. Shuffling at the node level is applied to the ego networks of each
node independently, while shuffling at the network level is applied to all nodes at once.
The combination of a shuffling method and a level leads to four null models, which we
denote: (i) NTS (Network Shuffling Timestamps), (ii) NDS (Node Shuffling Timestamps),
(iii) NTSR (Network Rewiring and Shuffling Timestamps), and (iv) NDSR (Node Rewiring
and Shuffling Timestamps) (for a detailed description of each null model see Additional
file 1 Section S4).

In line with the observation that humans remember past contacts and often repeat them
over time [64], the analysis of our null models suggests memory as one of the underlying
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Table 2 Null models identify memory as a mechanism for reciprocity. Signed (one-tailed) p-values of
the temporal reciprocity measures p(Erec) and p(lrec) between the studied datasets and four null
models shuffling interaction events. Symbols are � (p < 0.03), � (0.03 < p < 1), and ◦ (p = 1), with
filled symbols indicating a statistical significant difference between model and data (significance
level α = 0.03). The sign of the p-value is chosen with respect to median values: for positive (green)
p-values, empirical measures are higher than the median of shuffling results, and viceversa for the
negative (red) p-values (see Additional file 1 Section S4 for details). Null models are denoted by NTS
(Network Shuffling Timestamps), NDS (Node Shuffling Timestamps), NTSR (Network Rewiring and
Shuffling Timestamps), and NDSR (Node Rewiring and Shuffling Timestamps) (Additional file 1
Section S4). The calls dataset is not included due to its small size after filtering (Additional file 1
Section S3). We see more positive than negative statistically significant p-values, implying that
temporal reciprocity is not reproduced by randommechanisms. The NTSR model randomizes the
timeline of social interactions of an individual and the identities of its neighbours, erasing its
structural and temporal memory. Positive p-values for NTSR thus suggest memory as a potentially
relevant mechanism for reciprocal interaction in social communication. There is also a notable
difference in p-value sign between conversation (sms, msg, email) and broadcasting (retweets,
mentions) channels, pointing to the distinct roles of bidirectional vs. unidirectional exchange

mechanisms for reciprocal interactions in temporal networks (Table 2). We measure the
role of memory by calculating one-tailed p-values directly as the probability that the null
hypothesis introduced by each shuffling method produces temporal reciprocity values at
least as extreme as the empirical value in each dataset (further details in Additional file
1 Section S4). Both proposed measures of temporal reciprocity [p(Erec) and p(lrec)] have
many statistically significant positive p-values across null models, indicating that empiri-
cal communication channels have more reciprocation than randomized reference models.

In particular, the NTSR null model randomizes social contacts and their event times,
thus erasing the memory of individuals in the structural and temporal sense, while pre-
serving the in- and out-degree of each node in the network. This randomization results in
decreased temporal reciprocity levels for both p(Erec) and p(lrec). The NTS model, which
only shuffles event times –erasing temporal memory but preserving structural memory,
i.e. the identity of social contacts– decreases only p(Erec) but leaves p(lrec) unchanged.
Thus, a lack of reciprocation upon removing memory mechanisms, while preserving in-
dividual and network properties, suggests that the memory of past social interactions is
one of the drivers for temporal reciprocity in social communication networks.

In the other two null models (NDS and NDSR), we see a similar trend in p-values for
p(Erec). As p(lrec) is unchanged under event-time randomization (NTS and NDS), p values
are trivially 1, while NDSR randomization produces higher p(lrec) values than the empirical
networks, across all datasets. A possible reason for the increase of p(lrec) in NDSR could be
that this null model homogenizes the strength of a node’s connections to its neighbours,
thus increasing the chance of at least a single reciprocal event with each neighbour when
compared to a more skewed strength distribution. These results indicate that p(Erec) is a
useful measure of actual reciprocity in the network, in the sense that it reacts in similar
ways to random events and noise from system to system.
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A comparison of the values of p(Erec) between empirical data and the null models also
highlights the distinct roles of more traditional communication channels (sms, msg, and
email, mostly used for one-to-one conversations) as opposed to the broadcasting plat-
form Twitter (retweets, mentions) (Table 2). Conversation channels all have positive and
statistically significant p-values, meaning that empirical values of p(Erec) are higher than
their randomized counterparts in all shuffling methods, while the opposite happens in
Twitter. We interpret this behaviour as an increased tendency for reciprocal and bursty
interactions in conversation channels. Communication on Twitter seems less reciprocal
and bursty, possibly due to the intended use of the platform as a public setting dominated
by unidirectional messaging aimed toward wider audiences.

2.5 Modeling reciprocity in temporal networks
Efforts at theoretically understanding the emergence of reciprocal interactions in tempo-
ral communication data include Bayesian inference via network models of Hawkes pro-
cesses [69, 70] and stochastic blockmodeling of relational event data [71] in both directed
[72] and temporal [73] networks. When posed as a machine learning task, the identifica-
tion of reciprocal interactions has also been applied to the prediction of online extremism
in Twitter [74]. Here, we attempt to model the temporal patterns of reciprocity seen in em-
pirical data via a flexible framework of activity-driven (AD) temporal networks [61], used
previously to explore several features of human communication dynamics, from cognitive
constraints [75] to social contagion [62].

The AD model introduces a (typically broad) activity potential to describe the dynam-
ics of structural heterogeneity in temporal networks [61]: active nodes are chosen more
frequently to interact with other randomly selected nodes, with no memory of past in-
teractions. Empirical communication data shows, however, a tendency of individuals to
communicate preferentially over established social connections. Indeed, a previous anal-
ysis of mobile call networks [64] shows that, as time goes by and social circles evolve,
individuals are more likely to re-contact someone they already know, and less likely to in-
teract with new people. Ref. [64] extends the AD model to include a notion of memory (the
ADM model), which promotes connections with past neighbours. Independently, the AD
model has also been extended with a concept of attractiveness (the ADA model), by which
an individual aggregates more incoming connections from active nodes than from others
[63].

Here we combine both features (attractiveness and memory) into a single model,
ADAM, and use it to reproduce the observed levels of temporal reciprocity in our six
datasets. We define the activity ai and attractiveness bi of node i as

ai =
∑

t kout(i, t)
∑

�,t kout(�, t)
, bi =

∑
t kin(i, t)

∑
�,t kin(�, t)

, (1)

where kin(i, t) and kout(i, t) are the empirical in- and out-degrees of node i at time t. In other
words, the activation probability is proportional to out-degree and the attractiveness to
in-degree. Then, the ADAM model follows the next rules recursively:

• At each discrete time step t the synthetic network starts with N disconnected nodes.
• With probability ai�t each node i becomes an active source node and generates m

out-stubs (or half-links). For each out-stub,
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Figure 4 Memory drives temporal reciprocity in activity-driven network model. Fraction of reciprocations
p(Erec) (top), and fraction of links having at least one reciprocation, p(lrec) (bottom), for several empirical
communication channels (Data), as well as in synthetic temporal networks fitted by the ADAM and ADA
models. The ADAMmodel, implementing both memory and attractiveness of nodes, reproduces empirical
levels of temporal reciprocity in all datasets, outperforming the memoryless ADA model. We filter out links
with less than nevents = 3 events. For calls, ADA does not produce any links with more than 3 events on them,
so all edges are filtered out and the ADA symbol disappears. Qualitatively similar results are obtained for a
different choice of filter, nevents = 5 (see Additional file 1 Section S8)

- (memory step) with probability c/(c + k), where c is a memory parameter, select
target node j from the past contacts of node i, according to its attractiveness bj. The
memory parameter c is fitted from each dataset as in [64].

- Otherwise, the target j is chosen randomly from the whole population with
probability equal to its attractiveness bj.

• At the next time step t + �t, all edges in the synthetic network are deleted. Thus, all
interactions have a constant duration �t.

We numerically simulate the ADAM model, produce synthetic temporal communica-
tion networks and measure levels of reciprocity via p(lrec) and p(Erec) (Fig. 4). Comparison
against an ADA model (i.e. lacking memory) serves as a baseline for testing the perfor-
mance of our model. The ADAM model captures very well p(lrec), consistently outper-
forming ADA across all channels considered. Values of p(Erec) are well reproduced by
ADAM for retweets, mentions and calls, while ADA fails for all but email. Our results
are robust to the time scale of the observation period for all datasets. Indeed, we compare
the levels of temporal reciprocity in data and models over increasing time windows, find-
ing that ADAM systematically outperforms ADA (for details see Additional file 1 Section
S9). Overall, a preference to preferentially interact with active individuals and previous so-
cial contacts, both within an activity-driven framework, seems enough to reproduce the
temporal patterns of reciprocity observed in several communication channels.

Note that ADAM is not able to reproduce p(Erec) for sms and msg, perhaps due to a more
complex role of memory in these communication channels. The ADAM model does in-
deed account for memory of past contacts; however, it ignores the possibility that alters
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are treated differently by an ego. Namely, strong weight heterogeneity over the links of ag-
gregated ego networks might cause discrepancies between data and ADAM. In any case,
ADAM outperforms ADA even in the case of sms and msg, showcasing the relevance of
some type of memory effect. Future research in the drivers of reciprocity in social com-
munication networks might consider more involved implementations of memory, such as
one where the number of past contacts with a given individual determines the frequency
of future interactions.

3 Discussion
In this paper, we have proposed measures of reciprocity that explicitly account for the tem-
porality of social interactions in human communication, and used them to quantity the
levels of reciprocation in multiple channels including calls, messaging and social media.
We have shown that existing reciprocity measures on aggregated directed and weighted
networks [17, 31], particularly the notion of balance [20], are actually an upper bound
on temporal reciprocity measures like p(Erec). Given a level of balance between pairs of
nodes, temporal reciprocity can vary widely, highlighting differences across communica-
tion channels. Indeed, for conversation channels like sms, msg and email, the time gaps
within reciprocations tend to be shorter than for non-reciprocations. This suggests that
one-to-one channels [57] support quicker reciprocal communication than the broadcast-
ing platform Twitter. We have seen a similar effect for time gap burstiness; conversation
channels have more bursty reciprocal activity, while Twitter displays more bursty non-
reciprocal dynamics.

While our measures of temporal reciprocity uncover a range of differences between con-
versation and broadcasting channels, it would be interesting to perform a similar analysis
on channels combining features of both classes. For example, reply dynamics in Twitter
may show similar levels of reciprocation as the conversation channels explored here. Im-
plementing several null models based on event shuffling [68], we have also identified the
memory of past contacts as a driver of temporal reciprocity. Upon adding a memory mech-
anism to a framework of activity-driven temporal networks [61, 63, 64], we were able to
theoretically emulate the observed levels of temporal reciprocity in several communica-
tion channels.

Even if more granular than previous measures on aggregate data, the quantities p(Erec)
and p(lrec) are themselves bounds on reciprocal activity over a social tie. We define tem-
poral reciprocity as consecutive pairs of events in opposite directions across a tie, but less
restrictive notions of reciprocity may apply to realistic scenarios of social communication.
For example, a reciprocation could be a pair of events in opposite directions within a win-
dow of � events, regardless of the direction of other events in the window (see Additional
file 1 Section S7). This definition increases temporal reciprocity with larger �, as expected,
yet it maintains the observed difference between modes of comunication: in conversation
channels, reciprocations are more bursty and closer in time, while in broadcasting chan-
nels, even these relaxed reciprocations have more events in between.

Our measures of temporal reciprocity do not explicitly consider the time elapsed be-
tween events. But if this time gap is too large, events are potentially not related to each
other (e.g., correspond to different conversations, topics, or even people), meaning actual
temporal reciprocity is equal or lower than p(Erec) and p(lrec). This effect might not be
large given our observation that reciprocal communication is bursty, i.e. trains of recipro-
cations with small time gaps within them are common, notably in conversation channels
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(Fig. 3). While we have measured the burstiness of reciprocal interactions and thus quan-
tified the change in temporal reciprocity at the link level, considering temporal correla-
tions may help further uncover periods of high reciprocation punctuated by intermittent
non-reciprocal trains. Still, it remains an open question whether our measures could be
extended beyond event directionality to reflect reciprocal human behaviour more closely,
by, for example, integrating potential correlations between reciprocity, time gaps, and in-
dividual activity, or communication content via text analysis [76].

An interesting open question remains as to what extent temporal reciprocity is an indi-
cator of the strength and persistence of ties in social networks, in line with long-standing
hypotheses by Granovetter and others [14, 15]. A preliminar analysis shows that high and
low levels of temporal reciprocity in communication channels can be found regardless of
the amount of activity and structural cohesion around a tie, while in broadcasting chan-
nels, high communication frequency tends to be slightly more non-reciprocal (see Addi-
tional file 1 Section S6). These results are consistent with recent studies estimating the
strength and persistence of social ties via temporal communication data, where similar
low correlations have been found [40, 77]. In this sense, temporal reciprocity contains ad-
ditional information and may be considered a complementary indicator of tie strength
beyond aggregate topological measures.

Our exploration of patterns of reciprocity in human communication deals with the
large-scale structure of temporal networks. We identify reciprocal interactions at the link
level and then accumulate them over whole channels. This reveals a spectrum of modes
of communication, from reciprocal, one-to-one conversation channels, to non-reciprocal
platforms used mainly for broadcasting. The way temporal reciprocity is distributed across
the ego network of an individual is, however, still unexplored. Social signatures, a ranking
of alters by decreasing number of contacts with the ego, seem to persist in time and across
communication channels [58, 59] and correlate with individual traits [60]. Alter turnover
also grows as we go down the ranking, in agreement with generic behavior of rankings in
open social systems [78]. By extending our measures to the dynamics of social signatures,
we might find higher levels of reciprocal activity among top alters, further cementing the
relationship between reciprocity and notions of stability and cohesion in social networks.
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27. Zamora-López G, Zlatić V, Zhou C, Štefančić H, Kurths J (2008) Reciprocity of networks with degree correlations and

arbitrary degree sequences. Phys Rev E 77(1):016106
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