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Abstract

Figures are an essential part of scientific communication. Yet little is understood
about how accessible (e.g., color-blind safe), readable (e.g., good contrast), and
explainable (e.g., contain captions and legends) they are. We develop computational
techniques to measure these features and analyze a large sample of them from open
access publications. Our method combines computer and human vision research
principles, achieving high accuracy in detecting problems. In our sample, we
estimated that around 20.6% of publications contain either accessibility, readability, or
explainability issues (around 2% of all figures contain accessibility issues, 3% of
diagnostic figures contain readability issues, and 23% of line charts contain
explainability issues). We release our analysis as a dataset and methods for further
examination by the scientific community.

Keywords: Accessibility; Open Access; Computer Vision

1 Introduction

Figures are an essential part of scientific publications because they can present complex
data relationships to readers in an efficient manner. However, figures can have several is-
sues that reduce their communication quality. For example, when they contain color-blind
issues, they preclude readers from understanding the underlying trends or even make
them misinterpret results (Jambor et al. [10]; Jefferson & Harvey [11]). In some disciplines,
editors and reviewers might not pay enough attention to figures (Helsloot [7]), partially be-
cause it is time-consuming. Using computational methods to help flag common patterns
in figures could thus be important.

In particular, we create three classifiers that detect whether a panel within a figure has
color-blind unsafe problems or low light, and whether a line chart has insufficient legend
or captions. Our method is validated on a hand-annotated dataset and simulated image
datasets, achieving high accuracy on these three tasks. We apply our classifiers to a large
sample of 70,000+ publications and 300,000 figures from the PubMed Open Access Subset
(see Fig. 1 for the process of our analysis). Our results show that around 2% of all figures
contain accessibility issues, 3% of diagnostic figures contain readability issues, and 23% of
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line charts contain explainability issues (see Fig. 2 for example figures with ARE issues). We
analyze whether these issues are associated with bibliometric factors such as ranking of the
journal, seniority of the researcher, country, and field. Finally, we discuss the applications
of this technology to other aspects of good publication practices.
This study has the following two objectives:
1. Propose computational methods to detect accessibility issues (e.g., color-blind
unsafe), readability issues (e.g., low light and contrast), and explainability issues
(e.g., missing captions and legends, ARE issues).
2. Estimate the prevalence of ARE issues in open access publications and the statistical
patterns between journals’ bibliometric features and their proportion of articles
with ARE issues.

2 Literature review

2.1 Principles of graphical presentation in science

Scientific figures are expected to convey precise information to readers. To achieve this
goal, visualization researchers have proposed guidance on figures: figures should be un-
derstandable by readers, regardless of their disability (Jambor et al. [10]). Also, scientific
figures should be understandable to color-blind and low-vision readers. Figures should
contain enough information to be explainable to readers. For example, they should con-
tain legends when necessary and captions. We now review three aspects: accessibility,
readability, and explainability.

2.1.1 Accessibility issues

Accessibility in scientific articles is closely related to being “accessible information tech-
nology” artifacts, which is defined by the Americans with Disability Act (ADA) as “tech-
nology that can be used by people with a wide range of abilities and disabilities. It incorpo-
rates the principles of universal design, whereby each user can interact with the technology
in ways that work best for him or her? Accessibility issues is rooted in color combinations
or color maps, such as the rainbow color map (Borland & Taylor Ii [3]) and can affect
how various color-blind readers (such as red-green color-blindness and blue-yellow color-
blindness) understand a figure and research findings. This issue should draw the attention
of authors and publishers because, in some regions, 14% of middle-aged populations are
color-blind (Jafarzadehpur et al. [9]), and from 1.69% to 8.73% of the population is color-
blind (Shah et al. [20]). Some researchers have developed technologies to help color-blind
readers view electronic documents. For example, researchers developed software to de-
tect images with a rainbow color map (eLife Labs [19]) and a computer interface to assist
color-blind computer users (Jefferson & Harvey [12]).

2.1.2 Readability issues

Readability issues prevent the reader from correctly parsing information presented in a
figure. Among the factors affecting this ability are low light and contrast images and high
complexity images. Low light and contrast issues are especially worrying among the el-
derly because they have difficulty reading low-contrast images (Owsley et al. [18]) be-
cause they are likely to make readers lose details of objects. High complexity images typi-
cally need more attention and effort for readers to understand, and this complexity can be
quantified by computational methods (Hou & Zhang [8]). However, there is limited liter-
ature in vision science about the relationship between saliency map and their readability,
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and vision science researchers have conducted multiple experiments on the contrast of
images and their readability to viewers with different eye conditions. Interestingly, some
researchers have developed a method to enhance low contrast images to improve their
quality (Hasikin & Isa [5]). It is unclear whether scientific articles use low contrast and
light figures. Since highly-cited scientists are relatively old compared to other scientists

(Normile [17]), understanding this prevalence is essential.

2.1.3 Explainability issues

Explainability can be broadly understood as being able to produce an explanation of the
trends and factors observed in a scientific figure. For example, some line charts or bar
charts need legend or caption to assist readers to understand them because of their usage
of colors and graphic design. Also, biological images can be hard to interpret if they do
not have a scale bar. Explainability issues affect all the population because they relate to
whether a figure contains a good caption or legend. A recent study found that between 5
to 17 percent of scientific figures do not provide enough information to explain the colors
inside them (Jambor et al. [10]). Yet, this previously mentioned study has a relatively small
sample of figures, and a large-scale analysis on this issue might estimate the prevalence of

explainability issues more accurately.

3 Method and material

3.1 Materials

3.1.1 Data and image preprocessing

In this research, we first randomly selected 300,000 figures from 71,508 publications in
PudMed Open Access, a subset of PubMed Central, containing millions of publications
(see Fig. 1 for details of publications, figures, panels, and types of panels analyzed). We
applied compound figure classification and separation to get 788,028 subplots to analyze
each image or graph (we used the method described in (Zhuang et al. [26])). We esti-
mated the accessibility of all subplots with computer vision techniques. We estimated the
readability of diagnostic figures using a fine-tuned deep learning network called ResNet50
v2 (He et al. [6]). Finally, we estimated the explainability of line charts by fine-tuning a

ResNet152 v2 classifier using our annotations.

3.1.2 Annotations

To train the classification and detection models for explainability analysis, we manually
annotated 1,407 line charts for legend detection and 1,454 line charts for legend necessary
classification. In legend detection, we annotated where the legend was in the chart. For
legend neediness, we annotated line charts as needed for a legend if there is more than

one line or symbol.

3.2 Methods
The following methods are available in the GitHub repository https://github.com/sciosci/
ARE-analysis.

3.2.1 Image preprocessing
To analyze these issues in each subplot, we applied the following preprocessing steps.


https://github.com/sciosci/ARE-analysis
https://github.com/sciosci/ARE-analysis
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Figure 1 The data processing flow. We use deep learning techniques (ResNet152 v2 and YOLO v4) to detect
compound figures, separate subplots, classify all subplots into image categories. Then we use computer
vision, deep learning, and other techniques to detect color-blind unsafe figure, low light and contrast figures,
and line charts with explainability issues

« Compound figure classification. Compound figures are common in publications to
show relevant information and results together; nonetheless, we discuss issues on
each figure in this work. Thus, we use a convolutional neural network-based model
(Resnet-152 v2, pre-trained on ImageNet) as a feature extractor and train its top layer
with a compound figure classification dataset from ImageCLEF 2016 (Garcia Seco de
Herrera et al. [4]).

« Compound figure separation. For compound figures, we separate each subplot from
them by a fine-tuned convolutional neural network (YOLO v4 (Bochkovskiy et al. [2]),
pre-trained on MS COCO dataset) with a subfigure separation dataset from
ImageCLEF 2016 (Garcia Seco de Herrera et al. [4]).

« Image classification. We apply a high-quality feature extractor based on a
convolutional neural network (Resnet-152 v2, pre-trained on ImageNet) to classify

figures: bar charts, line charts, scatter charts, heatmap charts, box charts, area charts,

Page 4 of 16
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Figure 2 The illustration of results of our computational methods. After we obtain subplots from our image
sample and separate subplots into different categories, our techniques detected examples above: color-blind
unsafe figure, low light and contrast figures, and line charts with explainability issues

radar plots, maps, pie charts, tables, pareto charts, venn diagrams, violin charts, and
diagnostic figures.
For more details, please see (Zhuang et al. [26]).

3.2.2 Accessibility issue detection

There are various kinds of accessibility issues because deuteranomaly color-blind readers
are red-green colorblind, tritanopia color-blind readers are blue-yellow color-blind, and
other kinds of color-blind issues. In this article, we focus on red-green color-blind issue
as a representative of accessibility issues because it is the most common color-blindness.
To detect figures with this issue, we obtain figures in color-blind vision systems through a
simulation method (Machado et al. [15]). Then, we examine if an original figure contains
red and green areas simultaneously, and if the red area disappears in the simulated figure,
this figure can be colorblind unsafe. More specially, we first denoise the image and then
resize the image to save computational load. Then for each pixel, we compute the distance
between its color (RGB value) with colors (blue, green, red, cyan, magenta, yellow, black,
white) in lab color space and consider the pixel has one specific color when it is closest
to the color. After identifying the color for each pixel, we can compute the size of each
color by dividing the total number of pixels in each color by the total number of pixels in
the image. Then if both red and green areas are present in an image (more than 2% of the
image) and the red area in the simulated image disappears; thus we consider it might be
color-blind unsafe.

3.2.3 Readability issue detection

We fine-tuned a convolutional neural network with a low light image dataset (Low Light
dataset (Wei et al. [23])) as our classifier to detect figures that have readability issues. Be-
cause some scientific figures can be different from natural scenes in our training dataset,
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we focus on diagnostic figures in detecting readability issues (see Fig. 1 for our data pro-
cessing flow, because figures of table or texts can be misclassified as diagnostic figures,
we removed them from our analysis). We also applied principles from vision science as a
constraint to improve the accuracy of our predictions. More specifically, when the spatial
frequency of the object in images is too high (e.g., greater than 30 of spatial frequency. In
this article, we take the extreme, 60 of spatial frequency), details of some objects can be
hard for some readers to view even with high contrast (Kara et al. [13]; Watson & Ahu-
mada [22]). In our image analysis, the spatial frequency of one image was estimated by
transforming the image with Fast Fourier Transform and getting the spatial frequency of
pixels. Then we can measure if one image has a large area (greater than half of the image)
with high spatial frequency. Taking our low-light image classifier and spatial frequency
analysis together, if an image is classified as a low-light image by our classifier and also
contains a large area of high spatial frequency, we consider such images with readability

issues.

3.2.4 Explainability issue detection

In this work, we focus on line charts as legend is usually necessary when there are two
or more groups of data. To estimate the explainability, we have two parts of analysis to
estimate the explainability: legend detection and caption analysis. The following are the

models and methods to detect legend and analyze caption.

Legend detection we fine-tuned a deep neural network model (YOLO-v4, pre-trained on
MS COCO dataset) on human-annotated figures to identify legends on scientific figures
(0.88 precision, 0.84 recall, and 0.936 mean average precision on testing set). Some com-
pound figures may only contain one legend and apply to all subplots, so we also detect if

a legend exists in original compound figures of corresponding subplots.

Legend neediness classification Sometimes, the legend is not always necessary when
there is only one line in the graph. To filter this situation, we find-tune a convolution neural
network (ResNet152v2, pre-trained on ImageNet) on human-annotated charts to classify
if figures need legend or not (0.73 precision, 0.81 recall on testing set).

Caption analysis  Scientific figures might have explanations in corresponding captions;
therefore, we used Pubmed Parser to extract captions from the Pubmed dataset and check
if color or symbol explanations exist (e.g. blue, red, green, dashed line, solid line, triangle,
square, etc.).

Lastly, we classify a line chart to have explainability issues if we could not detect a legend

and explanation in the caption for legend needed charts.

4 Result

4.1 Methods performance

Accessibility issue detection: to examine the performance of method, we generated two
set of color-blind unsafe and safe figures: a set of images with random shapes and a set of
academic charts, such as bar charts, box charts, and other charts to validate our method.
For the test images with random shapes (1,120 images), our method shows a precision
of 1.0 and a recall of 0.56. For the test academic charts (990 images), our method has a
precision of 0.98 and a recall of 0.42.
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Readability issue detection: we validated our method against the test split (15 pairs of
low-light images and normal images) in the low light image (LOL) dataset and our method
achieved a precision of 1.0 and a recall of 1.0 in detecting low light images. As mentioned in
the method section, we applied one vision principle as a constraint to the detected images
to only keep images of low light and contrast.

Explainability issue detection: To understand how the models work generally, we ran-
domly sampled 100 line charts to evaluate errors in prediction against human experts.
In this evaluation, we examine the performance of our two main steps in this task (see
method section for more details): legend detection in line chars and legend neediness in
line chart. Our legend detection has a precision of 0.94 and recall of 0.86. Also, our legend

neediness classification has a precision of 0.85 and a recall of 0.85.

4.2 Bibliometric analysis of ARE issues in open access publications

All of our results use the journal as the unit of analysis. We predict ARE issues in figures
first, and we conducted linear regression for ARE issues separately, in the level of journals.
More specifically, we aggregate images into publication level first: one publication is con-
sidered with ARE issues if any of its figures have ARE issues. Then we get the percentage of
publications with ARE issues by aggregating the publications (we exclude journals in our
sample with publications of fewer than 3). So each data point in the linear regression is a
journal. We measure country, the field of study, journal’s rank, number of publications in
ajournal, journal’s age, h-index of authors, and author’s academic age. We use a threshold
of 5% for all regression analyses to assess statistical significance for all regression analyses.
We confirm with a GVIF analysis whether the independent variables are excessively cor-
related, using a maximum of GVIF 5 (Montgomery [16]), which all the regression analyses
passed.

We first want to understand how the bibliometric factors (see Table 1) are distributed
by themselves (Fig. 3). After matching publications in our sample to Microsoft Academic
Graph and removing outliers (see Materials and Methods), we analyze 57,837 publications
from 1,818 journals from 1966 until 2018. The three most popular publication countries
are the United States, China, and Great Britain. The three most popular fields are Biology,
Medicine, and Chemistry.

Table 1 bibliometric features explanations and computation methods. We use MAG to produce the
features in this table

Bibliometric feature Computational method

Field of study We estimate this feature for each journal by aggregating their publications’ field of
study, which is predicted by Microsoft Academic Graph (MAG) with hierarchical
topic modeling

The number of publications ~ We estimate this feature for each journal by counting unique publications in these
journals from MAG

Average h-index of Authors ~ We estimate this feature for each journal by computing h-index of authors in MAG
and then take the average of the authors in each journal

Journal Rank The rank of a journal is computed by MAG based on the citation network of
publications. The more top-ranked journals (the smaller the rank is) get more
citations from the citation network

Author academic age We estimate this feature for each journal by computing the number of years to
2022 since the authors' year of first publications in MAG and then take the average
of the authors for each journal

Journal age The number of years to 2022 since the year of the journal’s first publication in MAG
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The journal rank is based on the PageRank of the citations to the journal, as calculated by
the Microsoft Academic Graph (see Materials and Methods). The average rank of journals
is 10,353, with an SD = 1,638. The average number of publications by a journal is 10,193.22,
with a minimum of 248 and a maximum of 276,186. The average age of a journal is 37.41,
with the newest being seven years old and the oldest being 222 years old. The average /-
index of authors in journals is 12.47, with an SD of 4.19. Finally, the average academic age
is 20.48 years, with an SD of 5.79 years.

Before delving into analyses of journals and ARE issues, we wanted to understand how

the variables are related to each other through a correlation analysis (Fig. 4). We codify
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Figure 4 Correlation matrix of predictors. Only a few of predictors have a relatively high correlation between
each other, such as journal age and journal rank

the field as dummy variables. The most correlated features are the journal’s rank, num-
ber of publications, and journal age. Journal rank is numerically high if the journal is not
cited as often as a journal with a rank numerically smaller. These correlations are negative,

meaning that top-cited journal cites produce more papers and are older.

4.3 Accessibility issues

We analyzed accessibility issues in scientific publications and found that 2% of scientific
figures (788,028 figures in our sample, and see Fig. 1 for more details) contain color-blind
unsafe figures. We use multiple linear regression analysis to examine if journals’ bibliomet-
ric factors associated with the percentage of their publications with accessibility issues. We
found that the journals in business and in engineering fields published the least and most
color-blind unsafe figures, respectively (Table 2). Interestingly, we found that journals’ av-
erage author h-index has the biggest coefficient (standardized coef = 0.20, £(3895) = 11.43,
p < 0.001), suggesting that journals with highly-cited authors have a higher proportion
of articles with accessibility issues. This is somewhat counteracted by the negative ef-
fect of authors’ academic age (standardized coef = —0.057, £(3895) = —-3.41, p < 0.001).
Older journals have a lower proportion of articles with accessibility issues (standardized
coef = —0.0493, £(3895) = —2.6251, p = 0.0087) (see Fig. 5).
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Table 2 Linear regression (standardized coefficients) on journals' proportion of publications with
accessibility issues

Term Estimate (Standardize™*) Std error t value p-value
(Intercept) 0.030 0.031 0.957 0.339
Field:
Business -0.482 0.146 -3.308 0.001
Chemistry 0.087 0.054 1.599 0.110
Computer science 0.010 0.069 0.142 0.887
Engineering 0.523 0.182 2.876 0.004
Environmental science -0.250 0.128 -1.948 0.052
Geography -0.394 0.112 -3.505 0.001
Geology 0.090 0.244 0370 0.711
Materials science 0.464 0.082 5631 <0.001
Mathematics —-0.030 0.104 -0.289 0.772
Medicine -0.112 0.041 -2.746 0.006
Physics 0.376 0114 3.299 0.001
Psychology -0.204 0.068 -2.995 0.003
Number of publications (log) -0.048 0.047 -1.021 0.307
Author average h-index 0.200 0.018 11431 <0.001
Journal rank (log) -0.100 0.050 -2.004 0.045
Author academic age -0.058 0.017 -3.406 0.001
Journal age -0.049 0.019 -2.625 0.009

F(17,3895) = 18,547, p < 0.001.
R2 =0075, Adj. B2 = 0.070.
*:only the independent variables are standardized.

4.4 Readability

Readability issues (low light and contrast images) can also affect older readers. The el-
derly population is likely to have difficulty reading images with low contrast (Owsley et
al. [18]). Our research community must be aware of the prevalence of low contrast and
light scientific figures and reduce these issues. We develop a model to automatically as-
sess low contrast and low light in images (see Materials and Methods). We find that 3% of
medical diagnostic figures (259,351 diagnostic figures, see Fig. 1 for details) have low light
and contrast. We use multiple linear regression analysis to examine if journals’ bibliomet-
ric factors associated with the percentage of their publications with readability issues. We
found that journals in physics and business fields published the most and least figures with
readability issues, respectively (Table 3). We found that journals’ average author h-index
has the biggest coefficient (standardized coef = 0.20, £(3228) = 10.20, p < 0.001), suggesting
that journals with highly-cited authors have a higher proportion of articles with readabil-
ity issues. Also, older journals have a higher proportion of articles with readability issues
(standardized coef = 0.066, £(3228) = 3.16, p = 0.002) (see Fig. 6).

4.5 Explainability

Another issue in scientific figures is explainability: some figures have no legend even if they
have multiple colors, symbols, or lines or have no caption. In this study, we focus this anal-
ysis on line charts only because they typically need an explanation. We develop a method
that splits the classification into detecting legend and whether the caption exists and con-
tains legend-related information (see Methods). We found that the explainability issues
with line charts are very high: around 23% of them (22,065 line charts, see Fig. 1 for more
details) lacking legends and color explanations in their captions. While our method is not

perfect, in the worst-case scenario (see Methods for performance evaluation), we would
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Figure 5 Statistically significant marginal effects on journals’ proportion of publications with accessibility
issues. (A) journal average author academic age’s marginal effect (B) journal average author h-index’s marginal
effect (C) journal age’s marginal effect (D) journal rank’s marginal effect

predict the prevention of explainability issues to be surprisingly high still. We use multi-
ple linear regression analysis to examine if journals’ bibliometric factors associate with the
percentage of their publications with explainability issues. We found that journals’ aver-
age author h-index has the biggest coefficient (standardized coef = —0.20, £(2191) = -8.77,
» < 0.001), suggesting that journals with highly-cited scientists have a lower proportion of
articles with explainability issues (Table 4 and Fig. 7).

5 Discussion

This paper developed a method to detect accessibility in broad terms. We focused on
color-blind unsafe (Accessibility), low contrast and light (Readability), and missing legend
and caption (Explainability). Our method combines computer vision, machine learning
and human vision principles in our methods and achieves high accuracy. We further in-
vestigate bibliometric trends about scientific figures with ARE issues. At the journal level,
a multiple regression analysis revealed that the author’s h-index and academic age, jour-
nal rank, and journal age are all significantly predictive of one of the ARE factors. We
found that a surprisingly large proportion of line charts lack a legend and proper caption
and journals with higher average author h-index are less likely to have publications with
this issue. However, journals with higher average author’s h-index are more likely to have
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Table 3 Linear regression (standardized coefficients) on journals' proportion of publications with
readability issues

Term Estimate (Standardize*) std error tvalue p-value
(Intercept) 0.044 0.034 13 0.194
Fields:
Business -0.489 0.160 -3.065 0.002
Chemistry 0.034 0.058 0.595 0.552
Computer science -0.114 0.073 -1.571 0.116
Engineering 0.111 0.194 0.570 0.569
Environmental science -0422 0.139 -3.036 0.002
Geography -0.372 0.124 -3.006 0.003
Geology -0.401 0.254 -1.579 0.114
Materials science 0.043 0.085 0.498 0618
Mathematics —-0.091 0.109 -0.831 0.406
Medicine -0.058 0.046 -1.277 0.202
Physics 0.180 0.118 1.534 0.125
Psychology -0.068 0.079 -0.866 0.387
Number of publications (log) 0.037 0.051 0.743 0.458
Author average h-index 0.198 0.019 10.196 <0.001
Journal rank (log) -0.021 0.054 -0.400 0.689
Author academic age -0.005 0.019 -0.270 0.788
Journal age 0.066 0.021 3.157 0.002

F(17,3228) = 12.4870, p < 0.001.
R2 =00617, Adj. 82 = 00568.

*:only the independent variables are standardized.

>
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Proportion of publications with readabililty issues
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average h-index of authors
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Proportion of publications with readabililty issues

0.0-
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age of journal

Figure 6 Statistically significant marginal effects on journals' proportion of publications with readability
issues. (A) journal average author h-index’s marginal effect. (B) journal age’s marginal effect

publications with accessibility and readability problems. A plausible explanation is that
these journals tend to be more interdisciplinary and accept standards from many more
disciplines, making them more vulnerable to these kinds of issues. Given the limitation
of our sample size, some journals cannot be well represented. Thus, our linear regression
might not predict specific journals accurately. In sum, our results show that Al promises
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Table 4 Linear regression (standardized coefficients) on journals' proportion of publications with
explainability issues

Term Estimate (Standardize*) std error tvalue p-value
(Intercept) —0.055 0.041 -1.329 0.184
Fields
Business 0.243 0.175 1.391 0.164
Chemistry -0.003 0.065 -0.052 0.959
Computer science 0.103 0.084 1.234 0217
Engineering -0.054 0.214 -0.251 0.802
Environmental science 0.249 0.147 1.686 0.092
Geography 0.123 0.136 0.905 0.365
Geology 0.463 0.281 1.65 0.099
Materials science 0.104 0.094 1.102 027
Mathematics —-0.001 0.118 -0.004 0.997
Medicine 0.069 0.058 1.185 0.236
Physics 0.027 0.122 022 0.826
Psychology 0.145 0.091 1.597 0.11
Number of publications (log) -0.092 0.055 -167 0.095
Average author h-index -0.201 0.023 -8.77 <0.001
Journal rank (log) 0.096 0.058 1.649 0.099
Author academic age 0.001 0.022 0.026 0.979
Journal age -0.023 0.024 -0.958 0338

F(17,2191) = 12,4265, p < 0.001.
72 = 00879, Adj. 82 = 0.0809.
*:only the independent variables are standardized.
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Proportion of publications with explainability issue

0.00- 40t o e emimmme et e mee e e e ——e s o——————— e teowen Sron ¢+

0 10 20 30
average h-index of authors

Figure 7 Journal average author h-index’s significant marginal effects on journals’ proportion of publications
with explainability issues

to be a useful tool for analyzing ARE factors at scale and that we can use these findings to
understand patterns of problems in scientific figures.

Previous research has mostly used manual analysis to understand ARE issues. Although
human experts can detect these issues accurately, they can be slow. Our results open the
door to conducting a much larger scale analysis and increase the power of statistical anal-
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yses. The method we propose is general enough to accommodate other types of analyses.
Previous research has shown how to detect proportional ink issues (Zhuang et al. [26]),
figure manipulation (Xiang & Acuna [24]), figure duplication (Acuna et al. [1]), and cita-
tion missingness (Zeng & Acuna [25]). Other researchers have also developed many other
analyses that journals could automate (e.g. (Kroon et al. [14])), and they have a big oppor-
tunity for automation.

Older researchers are less likely to produce publications with color-blind safety issues.
Researchers with a higher impact are less likely to produce publications that need legends
or explanations in captions. Interestingly, we did not find that either senior researchers or
high-impact journals are less likely to produce publications with low contrast and light.
These analyses are somewhat limited in that we focused on the journal level. In the future,
we will analyze whether co-authorship, temporal, and training factors are at play.

We believe our method and AI techniques have the potential to help people with vision
disabilities. For example, one of our methods can measure the light of an image, and Al
techniques could automatically improve the light of images (Wang et al. [21]). Similarly,
our method measures whether a line chart needs a legend, and new Al techniques might
automatically create such annotation based on the text citing the figure. There is a poten-
tial to collaborate with researchers in Human-Computer Interaction.

Our analysis shows that some disciplines have more accessibility and readability issues,
which can be hard to solve because of the nature of the figures. However, there is reason-
able room for research communities to remedy such issues and help viewers, especially
with color blindness or other vision deficiencies. We recommend authors highlight the
name of colors in figure captions if their figures can be color-blind unsafe. We also suggest
publishers consider implementing an editorial policy to encourage authors to underline
their use of color-unsafe figures in their manuscripts.

Our techniques make mistakes, which can introduce errors to our estimation of the
prevalence of accessibility, readability, and explainability issues. Also, some images in our
sample might with low quality and could not be analyzed by our method. These limitations
in our detection might affect our regression analysis because our dependent variable, the
percentage of ARE issues in a journal, is affected by these errors.

Our analysis only focuses on a handful of accessibility, readability, and explainability
issues. The choices that we made to analyze low light, lack of legends, and so on were be-
cause of computational convenience. The ultimate goal would be to analyze a manuscript
automatically and measure all the missing pieces that make it inaccessible to the many
limitations in human perception and cognition. However, we believe the choices provide
a playground to test our ideas and show that it is possible to use Al to measure these fac-
tors. In the future, we will continue expanding these analyses.

Some of our automated judgment was based on principles of human vision, while we did
not test whether human annotators would agree with these predictions. For example, we
computed spatial frequency and taking thresholds that, on average, make those frequen-
cies hard to detect for humans. However, the field of human vision is much more complex
than these functions, and low contrast depends on many factors beyond our control. For
example, we do not know how far readers will read the article or under which lighting
conditions. We think this opens opportunities for collaborating with vision researchers

and device designers.
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6 Conclusions

In this article, we use Al to analyze accessibility, readability, and explainability issues. Our
method is based on a combination of classifiers, and it works relatively well. We found
several bibliometric factors at the journal level are predictive of these ARE issues.

We believe one of the obvious next steps is to fix figures based on our results automati-
cally. Our method detects ARE factors, but there is no reason to prevent us from touching
up and generating images that make all these issues disappear. Perhaps a tool like this could
be automatically incorporated into PDF viewers or screen readers for low vision scientists.
Or they could be part of statistical packages that could warn the user if a figure contains
an ARE issue.

Our method is unique enough to highlight how journals and reviewers can use Al to
analyze figures for accessibility factors. Our method is accurate, fast, and allows us to un-
derstand patterns of ARE issues. While there is still much room for improvement, our
method and results pave the way for future research. And to the best of our knowledge,
this research is one of the first ones to be done.
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