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Abstract
This work presents a framework for studying temporal networks using zigzag
persistence, a tool from the field of Topological Data Analysis (TDA). The resulting
approach is general and applicable to a wide variety of time-varying graphs. For
example, these graphs may correspond to a system modeled as a network with
edges whose weights are functions of time, or they may represent a time series of a
complex dynamical system. We use simplicial complexes to represent snapshots of
the temporal networks that can then be analyzed using zigzag persistence. We show
two applications of our method to dynamic networks: an analysis of commuting
trends on multiple temporal scales, e.g., daily and weekly, in the Great Britain
transportation network, and the detection of periodic/chaotic transitions due to
intermittency in dynamical systems represented by temporal ordinal partition
networks. Our findings show that the resulting zero- and one-dimensional zigzag
persistence diagrams can detect changes in the networks’ shapes that are missed by
traditional connectivity and centrality graph statistics.

Keywords: Zigzag persistence; Temporal graph; Dynamical network; Topological
data analysis; Persistent homology; Transportation network

1 Introduction
Network data, that is, the encoding of connections between objects, is a natural form
of information representation in many fields [1]. While the analysis of static networks
or graphs is already a broad field of research in itself, there is often much information
ignored. In particular, we are interested in the case of temporal networks [2, 3]; that is,
the case of a dynamical system represented by a network evolving over time. These net-
works can arise in many different cases, such as social networks [4], disease spread dynam-
ics [5], manufacturer-supplier networks [6], power grid network [7], and transportation
networks [8]. Many important characteristics of a dynamical network can be extracted
from the data. These include source and rate of disease spread as well as predictions on
future infections [9], weak branches in supply chains and possible failures [6, 10], changes
in infrastructure to avoid cascade failures in power grids [7, 11], transportation network
optimal routing (finding an optimal minimum time route between) [12], fault analysis (de-
tecting transportation disruptions) in transportation networks [13], and flow pattern anal-
ysis (visualization) [14].
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Temporal graph data is commonly represented using attributed information on the
edges for the time intervals or instances in which the edges are active [15, 16]. Using this
attributed information, we can represent the graph in several ways including edge label-
ing, snapshots, and static graph representations [17]. In this work we will first represent
the data in the standard attributed (labeled) temporal graph structure and then use the
graph snapshots approach, where our input is a sequence of static graphs G0, G1, . . . , Gn.

The available tools for analyzing such data is often inspired by the tools from the static
network community; for instance, centrality or flow measures [18]; temporal clustering
for event detection [19–21]; and connectedness [22]. However, these tools do not account
for higher-dimensional structures (e.g., loops as a one-dimensional structure). It may be
important to account for evolving higher-dimensional structures in temporal networks
to understand the changing structure better. For example, a highly connected network
may only have one connected component with no clear clusters, but the number of loops
within the network may detect the change.

For this reason, we introduce a method for incorporating ideas from Topological Data
Analysis (TDA) [23, 24] to encode more complex structure than can be seen in the stan-
dard graph tools. The mainstay of TDA is persistent homology, colloquially referred to as
persistence, which encodes structure by analyzing the changing shape of a simplicial com-
plex (a higher dimensional generalization of a network) over a filtration (a nested sequence
of subcomplexes K1 ⊆ K2 ⊆ · · · ⊆ Kn). This shape is measured via homology, a vector space
encoding information about topological structure of the space. Different dimensions of
homology measure different things: 0-dimensional homology encodes information about
connected components; 1-dimensional homology encodes loops; 2-dimensional homol-
ogy encodes voids. How these structures change over the filtration (e.g. when a loop ap-
pears and then subsequently fills in) can be stored as a persistence diagram; that is, a collec-
tion of points in the upper half plane where a point at (i, j) means that a structure appeared
at Ki but was lost at Kj.

However, a major limitation of standard persistence for the temporal network input data
is the requirement that inclusions only go one way. Over the evolution parameter, our
temporal graphs might add or remove edges, and we would like to build a system that
can account for this. Thus, to study the evolving higher dimensional structures within a
temporal network, we will leverage zigzag persistence [25], which allows for insertions
and deletions of simplices at every step. The same mathematical theorems that make it
possible to represent the information of standard persistence in a persistence diagram
or barcode can be used in the case of a zigzag filtration. Zigzag persistence tracks the
formation and disappearance of homological structures through a persistence diagram as
a two-dimensional summary diagram.

The tools we employ will treat the graph input itself as a topological structure by using
it to extract distance information between the vertices. For the work discussed here, we
will assume the input networks are unweighted graphs and thus use the shortest path
distance between vertices. However, this is by no means the only way to incorporate graph
data for persistent homology; see [26] for a survey. Further, because we generally treat
our networks as a metric space, our intuition is that the tools developed here are most
applicable to data where vertices have a geometric component (such as networks where
nodes come from geo-spatial data) rather than only combinatorial data (such as human
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proximity networks, even if this has to do with physical proximity), but we look forward
to being proven wrong.

We thus apply our methods to two sample data sets. The first is transportation data from
Great Britain [27], where we can use the zigzag persistent homology for understanding
higher order structures in the system, and see behavior such as daily periodicity repre-
sented automatically in the diagram output. The second data comes from input data from
time series analysis. We have previously used zigzag persistence to detect Hopf bifurca-
tions by taking as input a point cloud approximation of the underlying attractor to the
time series [28]. However, the computational limitations of zigzag persistence on large
point clouds makes its use in this setting unwieldy. Thus, we combine these ideas with
recently available network representations of time series [29] to instead encode the struc-
ture of the time series in a graph. Previous work shows that measuring this structure using
standard persistent homology can be used to differentiate between behaviors in the un-
derlying dynamical system [30, 31].

1.1 Organization
We will start in Sect. 2 with an introductory background on persistent homology and
zigzag persistence. Next, in Sect. 3, we overview the general pipeline for applying zigzag
persistence to temporal graph data. We couple this explanation with a demonstrative toy
example. In Sect. 4 we introduce the two systems we will study. The first is a dataset col-
lected over a week of the Great Britain transportation system [27]. The second is an inter-
mittent Lorenz system simulation, where we generate a temporal network through com-
plex networks of sliding windows. Then we apply zigzag persistence to our two examples
and show how the resulting persistence diagrams help visualize the underlying dynamics
in comparison to standard temporal network analysis techniques.

2 Background
2.1 Persistent homology
Persistent homology, the flagship tool from the field of Topological Data Analysis (TDA), is
used to measure the shape of a dataset at multiple dimensions. For example, it can measure
connected components (dimension zero), loops (dimension one), voids (dimension two),
and higher dimensional analogues. Persistent homology measures these shapes using a pa-
rameterized filtration to detect when the structures are born (appear) and die (disappear).
We give the basic ideas in this section and direct the interested reader to more complete
introductions to standard homology [32, 33] and persistent homology [23, 24, 34].

The required input for persistence is a filtration of a simplicial complex K . Specifically,
a filtration {Kai}i is a parameterized sequence of simplicial complexes which are nested;
i.e.

Kα0 ⊆ Kα1 ⊆ Kα2 ⊆ · · · ⊆ Kαn . (1)

Under this notation, there are n + 1 simplicial complexes; and it is often the case that Kα0

is either the empty complex or the complex consisting of only the vertex set. We can then
calculate the homology of dimension p for each complex, Hp(Kai ), which is a vector space
representing the p-dimensional structure of the space such as loops, voids, etc. Surpris-
ingly, there is further information to be used, namely that the inclusions on the simplicial
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Figure 1 An example of a Rips filtration where the input is the shortest path distance on an example graph G.
The persistence diagram in the top right is for standard persistence rather than zigzag as will be discussed
later in the paper

complexes induce linear maps on the vector spaces resulting in a construction called a
persistence module:

Hp(Kα0 ) → Hp(Kα1 ) → Hp(Kα2 ) → ·· · → Hp(Kαn ). (2)

The appearance and disappearance of classes in this object can be tracked, resulting in
a representation of the information known as a persistence diagram. For each class which
appears at Kbi and disappears at Kdi , we draw a point in the plane at (bi, di). Taken together,
the collection of points (also called persistence pairs), all of which are above the diagonal
� = {(x, y) | x = y}, is called a persistence diagram.

One common approach to obtain this setup is in the case where the input data is a finite
metric space (M, d); i.e. a finite set M with distances given by d(m1, m2). For example, M
might be a finite point cloud χ ⊂ R

k with d given by Euclidean distance. In the case of
a graph G as input data, we can have M = V the vertex set, and d(u, v) as the number of
edges in the shortest path between vertex u and vertex v.

From this metric space data, we fix a value α ≥ 0 and construct the Vietoris–Rips (VR)
complex, denoted Rα(M). In the VR construction, we have a vertex set M and a simplex
σ ⊆ M is included in the abstract simplicial complex Rα(M) whenever d(v, w) ≤ α for all
v, w ∈ σ . Then by definition, Rα(χ ) ⊆ Rα′ (χ ) whenever α ≤ α′. In this particular context,
the axes of the persistence diagram correspond to distances between points. So, for exam-
ple, points in the diagram that are far from the diagonal of the 1-dimensional persistence
diagram represent large loop structures in the input data.

See Fig. 1 for an example of the filtration in this setting. The graph G is shown at the top
left, and the distance defined on the nodes is given in the matrix at the top middle. The
bottom row shows the Rips complexes for different choices of α parameter. In particular,
note that R1(V , d) has the graph G as the 1-skeleton, but includes an additional triangle
not present in the graph. The top right shows the 1-dimensional persistence diagram. Note
that the two large loops in the graph are encoded as points in the diagram; while the small
triangle is immediately filled in and thus not represented.
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Figure 2 Example application of zigzag persistence to study changing topology of simplicial complex
sequence. This example shows the sequence of simplicial complexes with intermediate unions and
corresponding time stamps on the left and on the right the resulting zigzag persistence diagram on the right
for dimension 0 and 1 as H0 and H1, respectively

2.2 Zigzag persistence
A limitation of the standard setup of persistent homology is that it requires each simplicial
complex to be a subset of the next, as shown in Eq. (1). This means that at each step, we are
only allowed to add new simplices to the previous complex to build this filtration. However,
temporal graphs have no such behavior. Thus, this issue can be alleviated through zigzag
persistence [25, 35], which allows for inclusions which can go either way at each step. This
is often written as

Kα0 ↔ Kα1 ↔ Kα2 ↔ ·· · ↔ Kαn , (3)

where ↔ denotes one of the two inclusions ↪→ and ←↩.
A common special case of this definition is where the left and right inclusions alternate,

which can arise by taking a sequence of simplicial complexes, and interleaving them with
either unions or intersections of the adjacent complexes. Focusing on the case of the union,
denote Ki,i+1 = Ki ∪ Ki+1 to get the zigzag filtration

Kα0 ↪→ Kα0,α1 ←↩ Kα1 ↪→ Kα1,α2 ←↩ Kα2 ↪→ ·· · ←↩ Kαn–1 ↪→ Kαn–1,αn ←↩ Kαn .

The same algebra that makes it possible for standard persistence to be represented in
a diagram allows for computation of when homology features are born and die based on
the zigzag persistence, however one must take care as some of the intuition from stan-
dard persistence is lost. We can again track this with a persistence diagram consisting of
persistence pairs (bi, di). In the case of a class appearing or disappearing at the union com-
plex Kαi ,αi+1 , we draw the index at the average (αi + αi+1)/2. If a topological feature persists
through the last simplicial complex we set its death as the end time of the last window or
index n + 0.5.

To demonstrate how zigzag persistence tracks the changing topology in a sequence of
simplicial complexes we will use a simple example shown in Fig. 2. The sequence of sim-
plicial complexes are shown as [K0, K1, K2], with unions given by K0,1 and K1,2. The per-
sistence diagram then tracks where topological features of various dimensions of Hp (di-
mension 0 and 1 for this example) form and disappear. For example, for H0 there are two
components in K0. At the next simplicial complex K0,1 the two 0-dimensional features
combine signifying one of their deaths which is tracked in the persistence diagram as the
persistence pair (0, 0.5) since 0.5 is the average of 0 and 1. The component that persists
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Figure 3 Several examples showing how the zigzag persistence diagram can be affected by the existence of
small loops. The first and third; and the second and fourth examples have the same filtration with the addition
of a single triangle in the later case. In each case, the generators of homology are shown with the interval
decomposition drawn below. The resulting persistence diagrams show that the third and fourth examples
show a single bar representing the persisting loop. However in the first two intervals are quite different, where
the long lived bar is split into two pieces in the second example

Figure 4 Pipeline for applying zigzag persistence to temporal networks. Begin with an unweighted and
undirected temporal graphwhere each edge is on at a point or interval of time. Create graph snapshots using a
sliding window interval over the time domain. Create a sequence of simplicial complexes from the graphs and
apply zigzag persistence to the union zigzag simplicial complexes

remains throughout all of the simplicial complexes. Therefore, we set its death as the last
time stamp plus 0.5 and record the persistence pair as (0, 2.5). On the other hand, there is
a single loop (a 1-dimensional feature) which is shown only at K0,1. For technical reasons,
this is drawn as a point with birth time 0.5 (the average of 0 and 1) and death time 1 since
it dies entering K1.

It should be noted that sometimes zigzag persistence results are counter-intuitive to
those used to standard persistence interpretation. For example, consider the example of
Fig. 3. The first two filtrations each appear to have a circular structure which lasts through
the duration of the filtration, however, the zigzag persistence diagram sees the first case
as a class living throughout, while the second breaks this class into two individual bars.
In this case at least, the issue can be mitigated by including a triangle at the top of the
house filling in the short cycle, resulting in both filtrations having only a single point in
the persistence diagram representing the loop in the house.

Secondly, we also note that the axes in the zigzag diagram correspond to indexing in the
zigzag diagram. This means that a point far from the diagonal means there is a loop struc-
ture that is present for a large portion of the index set, rather than being a measurement
of size of that same loop.
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3 Method
To apply zigzag persistence for studying temporal graphs, we use the pipeline shown in
Fig. 4 which we describe more specifically here. A temporal graph is a graph structure that
incorporates time information on when edges and/or nodes are present in the graph. We
will only be using the case of temporal information attributed to the edges in this work and
assume nodes are included as part of an edge-induced subgraph. Thus, our starting data is
a graph G = (V , E) where each edge e has a collection of closed intervals Ie = {Ie,1, . . . , Ie,ke}
associated to it for when that edge is active. Fitting with the previous section, we fix a
collection of times t0 ≤ t1 ≤ · · · ≤ tn and a choice of window size w. Then Gi = (Vi, Ei) is the
graph induced by edges present within a window [ti –w/2, ti +w/2]. Please note that to ease
notation, we are using subscripts i for the graphs, but the graphs should be thought of as
encoding information for the interval centered at ti and thus when computing persistence,
the birth and death times are associated to the ti’s rather than the i’s. Finally, we define
Gi,i+1 = Gi ∪ Gi+1 to be the union of the two adjacent graphs.

While we can construct a zigzag filtration of graphs

G0 ↪→ G0,1 ←↩ G1 ↪→ G1,2 ←↩ G2 ↪→ ·· · ←↩ Gn–1 ↪→ Gn–1,n ←↩ Gn

this is not actually the zigzag we will be using since, as noted earlier, it is not flexible
enough to find some of the loop structures needed in the later analysis. So, for any graph
Gi with vertex set Vi ⊆ V , we let di be the shortest path distance on that graph. That is,
di : Vi ×Vi →R where di(u, v) is the number of edges needed to get from vertex u to vertex
v. Fixing an r ≥ 0, let Kr

i := Rr(Vi, di) be the Rips complex constructed from this distance
information. First, we note that K0

i is the simplicial complex with only the vertex set Vi.
When r = 1, K1

i is the clique complex of the original graph Gi; where the 1-simplices are
the same as that of the graph, but higher dimensional simplices are filled in when avail-
able. Then for higher r, we have more and more edges added to the original graph, so
this construction is more complicated than simply treating the graph itself as a simplicial
complex.

Assuming we have similar notation for the union graph information (di,i+1, Kr
i,i+1, etc),

we form a zigzag filtration by replacing Gi with its Vietoris–Rips complex,

Kr
0 ↪→ Kr

0,1 ←↩ Kr
1 ↪→ Kr

1,2 ←↩ Kr
2 ↪→ ·· · ←↩ Kr

n–1 ↪→ Kr
n–1,n ←↩ Kr

n.

Finally, we compute the p-dimensional homology at each step and from there compute
the zigzag persistence diagram. Our code uses the Dionysus2 package [36] for this last
step. Again, be aware that the indices on the zigzag persistence points correspond to the
ti value associated to the given complex.

3.1 Example
In the following simple example shown in Fig. 5, we describe the method in more detail
and show how to interpret the resulting zigzag persistence diagram. In this example, we
measure the changing structure of a simple 5-node cycle graph as edges are added and
removed based on the temporal information. Fixing r = 1, the simplicial complexes are
exactly the same as the graphs Ki = Gi as there are no cliques in this particular example.
The bottom left of Fig. 5(a) shows the times associated to each edge, and the resulting
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Figure 5 Example zigzag persistence applied to a simple temporal graph with temporal information stored
for each edge as intervals. (Left) Edge intervals with sliding windows highlighted (alternating blue-red) with
corresponding graphs and union graphs above. (Right) Zigzag persistence diagram for both H0 and H1. The
birth and death of a feature is encoded as the midpoint of the interval where the event happened

graphs are shown above. In this notation, the subscripts correspond to the interval of time
used to build the graphs. Then we have w = 0.5, and the centers of intervals are t0 = 0.5,
t1 = 1.5, . . . , t9 = 9.5. This results in intervals for graph Gi of the form (i, i + 1) and intervals
for the union graphs Gi,i+1 as (i, i + 2). At the end of the sliding windows, we consider the
graph empty and set the death of any remaining homology features as the end time of the
last window (i.e., t = 10 for this example).

The resulting zigzag persistence diagram is shown in Fig. 5(b). This persistence dia-
gram shows the zero-dimensional and one-dimensional features as H0 and H1, respec-
tively. There are two zero-dimensional features at persistence pairs (1, 3) and (0.5, 10).
The later represents the connected component which appears at the first graph and lasts
throughout the filtration. The other component is the piece consisting of vertices 3 and
4 which appears at union graph G(0,2), thus is associated to a birth at the midpoint of this
interval occurring at 1.

The one-dimensional feature (the cycle represented in H1) is present twice in the persis-
tence diagram. This is due to it first appearing in G(3,5) and then disappearing at G(4,5) with
corresponding persistence pair (4, 4.5). The cycle then reappears at G(5,7) and disappears
at G(8,9) resulting in persistence pair at (6, 8.5).

This example demonstrates how zigzag persistence captures the changing structure of
temporal graphs at multiple dimensions. It is possible to also capture higher-dimensional
structures using higher-dimensional homology, although we do not investigate this di-
rection in this work. In particular, it is not clear what higher dimensional homol-
ogy would represent in the context of data coming from 1-dimensional graph struc-
tures.

4 Results
To demonstrate the functionality of zigzag persistence for analyzing temporal graphs, we
will use two examples. The first is an analysis of transportation data from Great Britain
in Sect. 4.1. The second is a simulated dataset from the Lorenz system that exhibits in-
termittency, a dynamical system phenomenon where the dynamic state transition from
periodic to chaotic in irregular intervals with results in Sect. 4.2. We study this signal
using the temporal ordinal partition network framework as described in Sect. 4.2.1. We
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Figure 6 Zigzag persistence diagrams of the rail transportation network of Great Britain

compare our results for both examples to some standard networks tools to analyze tem-
poral networks. Namely, we will compare two connectivity statistics and three centrality
statistics.

The two connectivity statistics analyze the Connected Components (CCs). The first CC
statistic is the number of connected components Ncc, which provides a simple shape sum-
mary of the graph snapshots by understanding the number of disconnected subgraphs.
The second statistic is the average size (number of nodes) of the connected components
S̄cc. This statistic provides insight into how significant the components are for each graph
snapshot.

The second statistic type is on centrality measures. The three centrality measures we
use are the average and standardized degree centrality C̄d , betweenness centrality C̄b, and
closeness centrality C̄c. The degree centrality measures the number of edges connected to
a node, the betweenness centrality measures how often a node is used in all possible short-
est paths, and the closeness centrality measures how close the node is to all other nodes
through the shortest path. For details on the implementation of each centrality measure,
we direct the reader to [37].

4.1 Great Britain temporal transportation network
We use temporal networks created from the Great Britain (GB) temporal transportation
dataset [27] for the air, rail, and coach transportation methods. This data provides the des-
tinations (nodes) and connections (edges) for public transportation in GB. Additionally,
the departure and arrival times are provided to allow a temporal analysis. This temporal
data was collected for one week, Monday through Sunday. In this section, we use both the
rail and coach data; similar calculations for air data are included in Appendix A. The rail
graph constructed without the inclusion of temporal information is shown at left in Fig. 6
where the destinations are overlaid with a GB map outline. Figures for the similar air and
coach graphs are included in Appendix A. In all three cases, we set the sliding windows
to have width w = 20 minutes. Because the average wait time was 7 minutes and 7 sec-
onds with a standard deviation of 7 minutes and 24 seconds from a collected sample [38],
this ensures that we retain connectivity. Additionally, we used an overlap of 50% between
adjacent windows.
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Figure 7 Connectivity and centrality analysis on temporal Great Britain rail network

4.1.1 Rail
We first focus on the rail data, for which we use the VR complex with r = 1. The 0- and 1-
dimensional zigzag diagrams are shown in Fig. 6. The first noticeable feature is that the 1-
dimensional diagram has a clear daily pattern of points, implying that there are many loops
in the rail network that persist during the day, but become disconnected in the evenings
when the trains are no longer running. However, there is still an overarching connectivity
of the rail network seen during the week, as noted by the high persistence point at approxi-
mately (0, 6) in the 0-dimensional diagram. We note that this does not mean that the entire
graph is connected for the entirety of the days Monday through Saturday, but instead that
there is some connected area that remains running even overnight. We suspect this would
be tied to some of the more urban areas such as London, but further work would be needed
to implement code to obtain generators of the zigzag diagram. This lower connectivity on
Saturday and Sunday can also be seen in the additional sparsity in the day 6 and day 7
peaks in the 1-dimensional diagram.

We compare these interpretations to the standard graph analysis tools [3]. The standard
centrality and connectivity statistics for the same data are shown in Fig. 7. We can clearly
see that there is a daily periodicity in the data from these standard tools as was seen in
the zigzag persistence. Specifically, all the connectivity and centrality measures increase
during peak travel hours. What is lost, and which can be augmented with the zigzag view-
point, is the ability to connect the clustering and centrality measures from one time step
to the next. There is no way to determine, say, from the Ncc graph that there is some por-
tion of the graph that remains connected for 6 out of the 7 days. For this reason, we believe
that the zigzag setting can be used along side the standard measures in order to strengthen
analysis of given temporal graph information.

4.1.2 Coach
Now, we use the coach network data to illustrate using the VR complexes with different
r values. In Fig. 8, 1-dimensional zigzag persistence diagrams are displayed. The leftmost
diagram is computed using the graphs directly as input to the zigzag persistence with-
out taking the VR complex. The second and third were obtained using the graph and VR
complexes with r = 1 and r = 2 respectively.
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Figure 8 Zigzag persistence diagrams of the coach transportation network of Great Britain

Both diagrams (a) and (b) show periodic structure during the day which is to be expected
as the number of buses running diminishes overnight. However, in diagram (b) we can
clearly see a daily trend. While unfortunately difficult to see on the diagram, this is in fact
points in the diagram overlaid, implying we have two loops of more than three edges that
persist during the day. If the loops had length 3, they would be filled in by triangles when
replacing the graph with the VR complex. This further implies that the noise seen in (a) is
the existence of a great deal of triangles; not surprising in a highly connected local system
like a bus network. But then, we can also compare persistence diagram Fig. 8(b) to the
analogous Fig. 6(c) from the rail network. The more locally connected nature of the bus
system means that many of these small loops are not included when using the VR complex;
however the rail system is more spread out, thus resulting in longer loops that are not filled
in by a choice of r = 1.

Finally, we observe that in the persistence diagram of Fig. 8(c), where there is very little
of the periodic structure remaining. From this, we can assume that the many small loops
seen in the r = 1 diagram have been filled in by our choice of r = 2, thus meaning that the
loops are of length at most 6 (See the text surrounding Fig. 6 of [30] for a discussion of
lifetime of loops by length in this setting).

4.2 Temporal ordinal partition network for intermittency detection
In this section we apply the zigzag methods to study time series data encoded using com-
plex networks; namely, the ordinal partition network. Ordinal partition networks [29] are a
graph representation of time series data based on permutation transitions. As such, they
encapsulate the state space structure of the underlying system. While we only use the
ordinal partition network in this work, there are several other transitional complex net-
works from time-series data that a similar analysis could be done. These include k-nearest-
neighbors [39], epsilon-recurrence [40], and coarse-grained state-space networks [41, 42].
We begin by giving a brief introduction to the construction of the network from time series
data, followed by the results of analysis using zigzag persistence.

4.2.1 Temporal ordinal partition network
Given a time series x = [x0, x1, x2, . . . , xn] for a sequence of times t = [t0, . . . , tn], the ordi-
nal partition network is formed by first generating a sequence of permutations using a
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Figure 9 Example formation of an ordinal partition network for a sinusoidal signal x(t) = sin(t) with
permutations of dimension n = 3. The resulting permutation sequence � shows how these permutations
transition, which is captured by the ordinal partition network on the right

fixed permutation dimension m and delay τ . We generate a sequence of permutations by
assigning each vector embedding

vi = [xi, xi+τ , xi+2τ , . . . , xi+(m–1)τ ] =
[
vi(0), vi(1) . . . , vi(m – 1)

]
(4)

to one of the m! possible permutations. We give an arbitrary ordering to the permutations
for labeling purposes, and assign the permutation πj = [πj(0), . . .πj(m – 1)] ∈ Z

m based on
the ordinal pattern of vi such that vi(πj(0)) ≤ vi(πj(1)) ≤ · · · ≤ vi(πj(m – 1)).

Using the chronologically ordered sequence of permutations �, we can form a graph
G(E, V ) by setting the vertices V as all permutations used and edges for transitions from
πa to πb with a, b ≤ m! and a �= b (no self-loops). We will not add weight or directionality
to the graph for this formation. However, we will track the index i for the corresponding
time xi when the edge is activated as the temporal data for the graph.

In Fig. 9 we demonstrate the ordinal partition network formation procedure for a simple
example signal as x(t) = sin(t), where t ∈ [0, 15] sampled at a rate of fs = 25 Hz. Using the
method of multi-scale permutation entropy we selected τ = 52 and set n = 3 for demon-
strative purposes. The corresponding permutations to delay embedding vector vi is shown
as a sequence � in the middle subfigure of Fig. 9. This sequence captures the periodic na-
ture of the signal which is then summarized as the ordinal partition network on the right
with each permutation as a vertex and edges added for permutation transitions in �. For
more details and examples of the ordinal partition network, we direct the reader to [29, 30].

4.2.2 Ordinal partition network results
Using a sliding window technique, we can represent ordinal partition networks as tempo-
ral graphs. However, instead of each edge having a set of intervals associated with it as in
the example in Sect. 3.1, they have time instances where the edge is active based on when
a transition between unique permutations occur. For example, the transition from πi to
πi+1 occurring at time tj would be active for the moment in time tj. If the sliding window
contains an edge’s activation instance, we add that edge to the sliding window graph.

We will show how this procedure can be used to detect chaotic and periodic windows
in a signal exhibiting intermittency (i.e., the irregular transitions from periodic to chaotic
dynamics). The signal used here is the z solution to the simulated Lorenz system defined
as

dx
dt

= σ (y – x),
dy
dt

= x(ρ – z) – y,
dz
dt

= xy – βz (5)
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Figure 10 On the left, the z solution of the intermittent Lorenz system described in Eq. (5) is shown, along
with four different graphs obtained from the corresponding ordinal partition networks in the windows of
matching color. On the right, the one-dimensional zigzag persistence diagram

with system parameters σ = 10, β = 8/3, and ρ = 166.18 for a response with type 1 inter-
mittency [43]. We simulated the system with a sampling rate of 100 Hz for 500 seconds
with only the last 70 seconds used. To construct the ordinal partition network, we choose
m = 6 and τ using the multi-scale permutation entropy method as suggested in [44]. We
set the sliding windows for generating graph snapshots to have a width of 5τ and 80%

overlap between adjacent windows.
The resulting signal z(t) from simulating the Lorenz system in Eq. (5) is shown in Fig. 10,

with four examples of ordinal partition networks generated at several window locations.
These sample graph snapshots show that the structure of the ordinal partition network
significantly changes depending on the dynamic state of the window’s time-series seg-
ment. At right in the figure, we see the 1-dimensional zigzag diagram for the data. Of
particular note is that there are several high persistence points in the diagram. Recalling
that the coordinates of these points are associated to time of appearance of loops rather
than size of the loops themselves, we have marked the regions of the times series associ-
ated to these points in blue at left. From visual inspection, it appears that these regions
correspond to periodic behavior in the time series. The remaining chaotic windows char-
acteristically have many low-lifetime persistence pairs seen close to the diagonal in the
persistence diagram. This is in line with the results in [30] that showed ordinal partition
networks from chaotic signals tend to have persistence diagrams with many features in
H1 when compared to their periodic counterpart. The fact that this labeling is done with
only the user’s choice of threshold for what is considered a high-persistence point makes
this a potentially exciting avenue for future work to understand how it can be used in the
case of labeling intermittency in time series.

Additionally, note in the persistence diagram in Fig. 10 the point near the diagonal, at
around second 442, representing a loop in the network that quickly disappears, as seen
also in the first three ordinal partition networks shown at left of Fig. 10. This tells us that
low-lifetime loops may show up in the middle of periodic regions while the main periodic
trend is preserved, confirming that we can still trust the coordinates of high persistence
points as the bounds of periodic regions. Thus, in general, we can use the persistence
diagram to identify periodic regions by looking for intervals where there are persistent
loops over relatively long periods and very few (or no) other shorter-living loops, which is
easily identified from the persistent points coordinates.
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Figure 11 Connectivity and centrality analysis on temporal ordinal partition network with periodic regions as
labeled with the zigzag persistence points highlighted in blue

To compare with the standard tools from temporal network analysis, we show the con-
nectivity and centrality measures of the graph snapshots in Fig. 11. The number of com-
ponents Ncc is constant due to the nature of the ordinal partition network, where the se-
quence of permutation transitions creates a chain of connected edges. As such, there is no
structural information in the number of components. However, the size of the components
does increase during the chaotic windows. This increase is due to, in general, more unique
permutations and thus nodes used in a chaotic signal compared to periodic. Of the cen-
trality statistics, only the average closeness centrality shows an apparent increase during
chaotic regions. The increase in centrality is most likely due to the chaotic regions causing
a more highly connected graph as demonstrated in the chaotic window and correspond-
ing network of Fig. 11. While these statistics do provide some insight into the changing
dynamics, they do not show how the higher-dimensional structure of the graph evolves
through the sliding windows and graph snapshots, in contrast to zigzag persistence.

5 Conclusion
In this work we investigated one method for applying zigzag persistence to temporal
graphs and discussed interpretation in several settings. We treated these graphs as inputs
to create a metric space, and then studied the zigzag constructed by the changing graph
over time for a fixed connectivity parameter. Zigzag persistence provides a unique per-
spective when studying the evolving structure of a temporal graph by tracking the standard
lower-dimensional features (e.g., connected components), but also higher-dimensional
features (e.g., loops and voids) through a sequence of simplicial complexes. This allows
for an understanding of the evolving topology of a temporal graph which can be used
in addition to more standard techniques for their analysis. We showed interpretation for
these tools on two examples: the Great Britain transportation network and temporal ordi-
nal partition networks. Our results showed that the informative zero and one-dimensional
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Figure 12 Results for the coach transportation network of Great Britain

zigzag persistence provided insights into the structure of the temporal graph that were not
easily gleaned from standard centrality and connectivity statistics.

It should be noted that the work here is essentially functioning as a more computa-
tionally tractable version of what we would like to do, namely two-parameter persistence.
Because multiparameter persistence presents mathematical barriers to simplified repre-
sentations in the spirit of persistence diagrams [35], many other workarounds have sprung
up. These include vineyards [45], where we study a one parameter family of persistence
diagrams; or CROCKER plots [46, 47], where we can study a similarly evolving Betti curve.
There has been previous work investigating the use of zigzag persistence in graph based
applications in the broader theoretical framework of formigrams [48, 49] with additional
results on stability [50]. These include applications to dynamic metric spaces [51, 52] and
brain networks [53], although this setting is restricted to 0-dimensional persistence due
to its tight connection to time-varying clustering. Even though in theory the running time
of zigzag persistence should be similar to standard persistence [54], in practice it has not
seen the flurry of optimizations available in the regular case [55, 56]. However, recent
work [57–59] promises substantial improvements in the potentially available code, which
should further make the tools discussed in this paper more accessible to a wide array of
data sets.

We believe zigzag persistence could also be leveraged to study other temporal graphs
including flock behavior models (e.g., Viscsek model) and the emergence of coordinated
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Figure 13 Results for the air transportation network of Great Britain

motion, power grid dynamics with the topological characteristics of a cascade failures,
and supplier-manufacture networks through the effects of trade failures on production
and consumption. Future work could involve an analysis on deciding an optimal window
size and overlap, a method to incorporate edge weight and directionality, and temporal
information on both the nodes and edges. It would also be worth investigating higher-
dimensional features (e.g., voids through H2), although more likely because of the 1-
dimensional structure of the input data, it is less clear what sorts of behavior might arise
in the form of interesting behavior in the zigzag diagrams.

Additionally, the method presented here is by no means the only way to incorporate the
input temporal graph in a form that could generate a zigzag complex. We direct the in-
terested reader to [26] for a large collection of possible 1-parameter filtrations that could
be generated from a fixed graph. Utilizing any of these for some fixed filtration param-
eter evolving over the temporal graph information could yield a zigzag diagram whose
structure may be useful for additional interpretation in other applications.

Appendix A: Great Britain transportation networks results: air and coach travel
For completeness, we include figures and persistence diagrams for the Great Britain trans-
portation data not included in Sect. 4.1.
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A.1 Coach travel network analysis
Figure 12 shows the full network for the coach data, and the 0- and 1-dimensional zigzag
diagrams in the top row. The standard statistics for temporal graphs are shown in the
bottom row. See Sect. 4.1.2 for a full discussion of the coach data.

A.2 Air travel network analysis
Figures 13 shows the zigzag diagrams and standard measures for the air travel data. Like
rail and coach, the air travel network clearly has regular daily structure as seen in both di-
agrams. Interestingly, here we have a daily persistence point in 0-dimensions with splits in
the middle, meaning that the air network does not retain any connected regions overnight.
This, again, is not surprising as there is more tendency for airports to have absolutely no
flights overnight as opposed to late-night bus systems. The lack of high persistence points
in H1 suggests that there are not even many small loops in the network at any given time,
which might be caused by having considerably fewer edges in this network than the oth-
ers.
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